mirror of
https://github.com/Llewellynvdm/php-ml.git
synced 2025-01-25 08:08:31 +00:00
cf222bcce4
* Linear classifiers * Code formatting to PSR-2 * Added basic test cases for linear classifiers
132 lines
3.1 KiB
PHP
132 lines
3.1 KiB
PHP
<?php
|
|
|
|
declare(strict_types=1);
|
|
|
|
namespace tests\Preprocessing;
|
|
|
|
use Phpml\Preprocessing\Normalizer;
|
|
use PHPUnit\Framework\TestCase;
|
|
|
|
class NormalizerTest extends TestCase
|
|
{
|
|
/**
|
|
* @expectedException \Phpml\Exception\NormalizerException
|
|
*/
|
|
public function testThrowExceptionOnInvalidNorm()
|
|
{
|
|
new Normalizer(99);
|
|
}
|
|
|
|
public function testNormalizeSamplesWithL2Norm()
|
|
{
|
|
$samples = [
|
|
[1, -1, 2],
|
|
[2, 0, 0],
|
|
[0, 1, -1],
|
|
];
|
|
|
|
$normalized = [
|
|
[0.4, -0.4, 0.81],
|
|
[1.0, 0.0, 0.0],
|
|
[0.0, 0.7, -0.7],
|
|
];
|
|
|
|
$normalizer = new Normalizer();
|
|
$normalizer->transform($samples);
|
|
|
|
$this->assertEquals($normalized, $samples, '', $delta = 0.01);
|
|
}
|
|
|
|
public function testNormalizeSamplesWithL1Norm()
|
|
{
|
|
$samples = [
|
|
[1, -1, 2],
|
|
[2, 0, 0],
|
|
[0, 1, -1],
|
|
];
|
|
|
|
$normalized = [
|
|
[0.25, -0.25, 0.5],
|
|
[1.0, 0.0, 0.0],
|
|
[0.0, 0.5, -0.5],
|
|
];
|
|
|
|
$normalizer = new Normalizer(Normalizer::NORM_L1);
|
|
$normalizer->transform($samples);
|
|
|
|
$this->assertEquals($normalized, $samples, '', $delta = 0.01);
|
|
}
|
|
|
|
public function testFitNotChangeNormalizerBehavior()
|
|
{
|
|
$samples = [
|
|
[1, -1, 2],
|
|
[2, 0, 0],
|
|
[0, 1, -1],
|
|
];
|
|
|
|
$normalized = [
|
|
[0.4, -0.4, 0.81],
|
|
[1.0, 0.0, 0.0],
|
|
[0.0, 0.7, -0.7],
|
|
];
|
|
|
|
$normalizer = new Normalizer();
|
|
$normalizer->transform($samples);
|
|
|
|
$this->assertEquals($normalized, $samples, '', $delta = 0.01);
|
|
|
|
$normalizer->fit($samples);
|
|
|
|
$this->assertEquals($normalized, $samples, '', $delta = 0.01);
|
|
}
|
|
|
|
public function testL1NormWithZeroSumCondition()
|
|
{
|
|
$samples = [
|
|
[0, 0, 0],
|
|
[2, 0, 0],
|
|
[0, 1, -1],
|
|
];
|
|
|
|
$normalized = [
|
|
[0.33, 0.33, 0.33],
|
|
[1.0, 0.0, 0.0],
|
|
[0.0, 0.5, -0.5],
|
|
];
|
|
|
|
$normalizer = new Normalizer(Normalizer::NORM_L1);
|
|
$normalizer->transform($samples);
|
|
|
|
$this->assertEquals($normalized, $samples, '', $delta = 0.01);
|
|
}
|
|
|
|
public function testStandardNorm()
|
|
{
|
|
// Generate 10 random vectors of length 3
|
|
$samples = [];
|
|
srand(time());
|
|
for ($i=0; $i<10; $i++) {
|
|
$sample = array_fill(0, 3, 0);
|
|
for ($k=0; $k<3; $k++) {
|
|
$sample[$k] = rand(1, 100);
|
|
}
|
|
$samples[] = $sample;
|
|
}
|
|
|
|
// Use standard normalization
|
|
$normalizer = new Normalizer(Normalizer::NORM_STD);
|
|
$normalizer->transform($samples);
|
|
|
|
// Values in the vector should be some value between -3 and +3
|
|
$this->assertCount(10, $samples);
|
|
foreach ($samples as $sample) {
|
|
$errors = array_filter($sample,
|
|
function ($element) {
|
|
return $element < -3 || $element > 3;
|
|
});
|
|
$this->assertCount(0, $errors);
|
|
}
|
|
}
|
|
}
|