mirror of
https://github.com/Llewellynvdm/php-ml.git
synced 2024-11-28 15:56:36 +00:00
85 lines
3.0 KiB
PHP
85 lines
3.0 KiB
PHP
<?php
|
|
|
|
declare(strict_types=1);
|
|
|
|
namespace tests\Phpml\Metric;
|
|
|
|
use Phpml\Metric\ClassificationReport;
|
|
|
|
class ClassificationReportTest extends \PHPUnit_Framework_TestCase
|
|
{
|
|
public function testClassificationReportGenerateWithStringLabels()
|
|
{
|
|
$labels = ['cat', 'ant', 'bird', 'bird', 'bird'];
|
|
$predicted = ['cat', 'cat', 'bird', 'bird', 'ant'];
|
|
|
|
$report = new ClassificationReport($labels, $predicted);
|
|
|
|
$precision = ['cat' => 0.5, 'ant' => 0.0, 'bird' => 1.0];
|
|
$recall = ['cat' => 1.0, 'ant' => 0.0, 'bird' => 0.67];
|
|
$f1score = ['cat' => 0.67, 'ant' => 0.0, 'bird' => 0.80];
|
|
$support = ['cat' => 1, 'ant' => 1, 'bird' => 3];
|
|
$average = ['precision' => 0.75, 'recall' => 0.83, 'f1score' => 0.73];
|
|
|
|
$this->assertEquals($precision, $report->getPrecision(), '', 0.01);
|
|
$this->assertEquals($recall, $report->getRecall(), '', 0.01);
|
|
$this->assertEquals($f1score, $report->getF1score(), '', 0.01);
|
|
$this->assertEquals($support, $report->getSupport(), '', 0.01);
|
|
$this->assertEquals($average, $report->getAverage(), '', 0.01);
|
|
}
|
|
|
|
public function testClassificationReportGenerateWithNumericLabels()
|
|
{
|
|
$labels = [0, 1, 2, 2, 2];
|
|
$predicted = [0, 0, 2, 2, 1];
|
|
|
|
$report = new ClassificationReport($labels, $predicted);
|
|
|
|
$precision = [0 => 0.5, 1 => 0.0, 2 => 1.0];
|
|
$recall = [0 => 1.0, 1 => 0.0, 2 => 0.67];
|
|
$f1score = [0 => 0.67, 1 => 0.0, 2 => 0.80];
|
|
$support = [0 => 1, 1 => 1, 2 => 3];
|
|
$average = ['precision' => 0.75, 'recall' => 0.83, 'f1score' => 0.73];
|
|
|
|
$this->assertEquals($precision, $report->getPrecision(), '', 0.01);
|
|
$this->assertEquals($recall, $report->getRecall(), '', 0.01);
|
|
$this->assertEquals($f1score, $report->getF1score(), '', 0.01);
|
|
$this->assertEquals($support, $report->getSupport(), '', 0.01);
|
|
$this->assertEquals($average, $report->getAverage(), '', 0.01);
|
|
}
|
|
|
|
public function testPreventDivideByZeroWhenTruePositiveAndFalsePositiveSumEqualsZero()
|
|
{
|
|
$labels = [1, 2];
|
|
$predicted = [2, 2];
|
|
|
|
$report = new ClassificationReport($labels, $predicted);
|
|
|
|
$this->assertEquals([1 => 0.0, 2 => 0.5], $report->getPrecision(), '', 0.01);
|
|
}
|
|
|
|
public function testPreventDivideByZeroWhenTruePositiveAndFalseNegativeSumEqualsZero()
|
|
{
|
|
$labels = [2, 2, 1];
|
|
$predicted = [2, 2, 3];
|
|
|
|
$report = new ClassificationReport($labels, $predicted);
|
|
|
|
$this->assertEquals([1 => 0.0, 2 => 1, 3 => 0], $report->getPrecision(), '', 0.01);
|
|
}
|
|
|
|
public function testPreventDividedByZeroWhenPredictedLabelsAllNotMatch()
|
|
{
|
|
$labels = [1, 2, 3, 4, 5];
|
|
$predicted = [2, 3, 4, 5, 6];
|
|
|
|
$report = new ClassificationReport($labels, $predicted);
|
|
|
|
$this->assertEquals([
|
|
'precision' => 0,
|
|
'recall' => 0,
|
|
'f1score' => 0,
|
|
], $report->getAverage(), '', 0.01);
|
|
}
|
|
}
|