php-ml/tests/Phpml/Classification/Ensemble/BaggingTest.php
Mustafa Karabulut 1d73503958 Ensemble Classifiers : Bagging and RandomForest (#36)
* Fuzzy C-Means implementation

* Update FuzzyCMeans

* Rename FuzzyCMeans to FuzzyCMeans.php

* Update NaiveBayes.php

* Small fix applied to improve training performance

array_unique is replaced with array_count_values+array_keys which is way
faster

* Revert "Small fix applied to improve training performance"

This reverts commit c20253f16ac3e8c37d33ecaee28a87cc767e3b7f.

* Revert "Revert "Small fix applied to improve training performance""

This reverts commit ea10e136c4c11b71609ccdcaf9999067e4be473e.

* Revert "Small fix applied to improve training performance"

This reverts commit c20253f16ac3e8c37d33ecaee28a87cc767e3b7f.

* First DecisionTree implementation

* Revert "First DecisionTree implementation"

This reverts commit 4057a08679c26010c39040a48a3e6dad994a1a99.

* DecisionTree

* FCM Test

* FCM Test

* DecisionTree Test

* Ensemble classifiers: Bagging and RandomForests

* test

* Fixes for conflicted files

* Bagging and RandomForest ensemble algorithms

* Changed unit test

* Changed unit test

* Changed unit test

* Bagging and RandomForest ensemble algorithms

* Baggging and RandomForest ensemble algorithms

* Bagging and RandomForest ensemble algorithms

RandomForest algorithm is improved with changes to original DecisionTree

* Bagging and RandomForest ensemble algorithms

* Slight fix about use of global Exception class

* Fixed the error about wrong use of global Exception class

* RandomForest code formatting
2017-02-07 12:37:56 +01:00

128 lines
4.8 KiB
PHP

<?php
declare(strict_types=1);
namespace tests\Classification\Ensemble;
use Phpml\Classification\Ensemble\Bagging;
use Phpml\Classification\DecisionTree;
use Phpml\Classification\NaiveBayes;
use Phpml\Classification\KNearestNeighbors;
use Phpml\ModelManager;
use PHPUnit\Framework\TestCase;
class BaggingTest extends TestCase
{
private $data = [
['sunny', 85, 85, 'false', 'Dont_play' ],
['sunny', 80, 90, 'true', 'Dont_play' ],
['overcast', 83, 78, 'false', 'Play' ],
['rain', 70, 96, 'false', 'Play' ],
['rain', 68, 80, 'false', 'Play' ],
['rain', 65, 70, 'true', 'Dont_play' ],
['overcast', 64, 65, 'true', 'Play' ],
['sunny', 72, 95, 'false', 'Dont_play' ],
['sunny', 69, 70, 'false', 'Play' ],
['rain', 75, 80, 'false', 'Play' ],
['sunny', 75, 70, 'true', 'Play' ],
['overcast', 72, 90, 'true', 'Play' ],
['overcast', 81, 75, 'false', 'Play' ],
['rain', 71, 80, 'true', 'Dont_play' ]
];
private $extraData = [
['scorching', 90, 95, 'false', 'Dont_play'],
['scorching', 0, 0, 'false', 'Dont_play'],
];
public function testPredictSingleSample()
{
list($data, $targets) = $this->getData($this->data);
$classifier = $this->getClassifier();
// Testing with default options
$classifier->train($data, $targets);
$this->assertEquals('Dont_play', $classifier->predict(['sunny', 78, 72, 'false']));
$this->assertEquals('Play', $classifier->predict(['overcast', 60, 60, 'false']));
$this->assertEquals('Dont_play', $classifier->predict(['rain', 60, 60, 'true']));
list($data, $targets) = $this->getData($this->extraData);
$classifier->train($data, $targets);
$this->assertEquals('Dont_play', $classifier->predict(['scorching', 95, 90, 'true']));
$this->assertEquals('Play', $classifier->predict(['overcast', 60, 60, 'false']));
return $classifier;
}
public function testSaveAndRestore()
{
list($data, $targets) = $this->getData($this->data);
$classifier = $this->getClassifier(5);
$classifier->train($data, $targets);
$testSamples = [['sunny', 78, 72, 'false'], ['overcast', 60, 60, 'false']];
$predicted = $classifier->predict($testSamples);
$filename = 'bagging-test-'.rand(100, 999).'-'.uniqid();
$filepath = tempnam(sys_get_temp_dir(), $filename);
$modelManager = new ModelManager();
$modelManager->saveToFile($classifier, $filepath);
$restoredClassifier = $modelManager->restoreFromFile($filepath);
$this->assertEquals($classifier, $restoredClassifier);
$this->assertEquals($predicted, $restoredClassifier->predict($testSamples));
}
public function testBaseClassifiers()
{
list($data, $targets) = $this->getData($this->data);
$baseClassifiers = $this->getAvailableBaseClassifiers();
foreach ($baseClassifiers as $base => $params) {
$classifier = $this->getClassifier();
$classifier->setClassifer($base, $params);
$classifier->train($data, $targets);
$baseClassifier = new $base(...array_values($params));
$baseClassifier->train($data, $targets);
$testData = [['sunny', 78, 72, 'false'], ['overcast', 60, 60, 'false'], ['rain', 60, 60, 'true']];
foreach ($testData as $test) {
$result = $classifier->predict($test);
$baseResult = $classifier->predict($test);
$this->assertEquals($result, $baseResult);
}
}
}
protected function getClassifier($numBaseClassifiers = 50)
{
$classifier = new Bagging($numBaseClassifiers);
$classifier->setSubsetRatio(1.0);
$classifier->setClassifer(DecisionTree::class, ['depth' => 10]);
return $classifier;
}
protected function getAvailableBaseClassifiers()
{
return [
DecisionTree::class => ['depth' => 5],
NaiveBayes::class => []
];
}
private function getData($input)
{
// Populating input data to a size large enough
// for base classifiers that they can work with a subset of it
$populated = [];
for ($i=0; $i<20; $i++) {
$populated = array_merge($populated, $input);
}
shuffle($populated);
$targets = array_column($populated, 4);
array_walk($populated, function (&$v) {
array_splice($v, 4, 1);
});
return [$populated, $targets];
}
}