mirror of
https://github.com/Llewellynvdm/php-ml.git
synced 2024-11-11 08:10:56 +00:00
57 lines
1.6 KiB
PHP
57 lines
1.6 KiB
PHP
<?php
|
|
|
|
declare(strict_types=1);
|
|
|
|
namespace Phpml\Tests\Metric;
|
|
|
|
use Phpml\Classification\SVC;
|
|
use Phpml\CrossValidation\RandomSplit;
|
|
use Phpml\Dataset\Demo\IrisDataset;
|
|
use Phpml\Exception\InvalidArgumentException;
|
|
use Phpml\Metric\Accuracy;
|
|
use Phpml\SupportVectorMachine\Kernel;
|
|
use PHPUnit\Framework\TestCase;
|
|
|
|
class AccuracyTest extends TestCase
|
|
{
|
|
public function testThrowExceptionOnInvalidArguments(): void
|
|
{
|
|
$this->expectException(InvalidArgumentException::class);
|
|
$actualLabels = ['a', 'b', 'a', 'b'];
|
|
$predictedLabels = ['a', 'a'];
|
|
Accuracy::score($actualLabels, $predictedLabels);
|
|
}
|
|
|
|
public function testCalculateNormalizedScore(): void
|
|
{
|
|
$actualLabels = ['a', 'b', 'a', 'b'];
|
|
$predictedLabels = ['a', 'a', 'b', 'b'];
|
|
|
|
self::assertEquals(0.5, Accuracy::score($actualLabels, $predictedLabels));
|
|
}
|
|
|
|
public function testCalculateNotNormalizedScore(): void
|
|
{
|
|
$actualLabels = ['a', 'b', 'a', 'b'];
|
|
$predictedLabels = ['a', 'b', 'b', 'b'];
|
|
|
|
self::assertEquals(3, Accuracy::score($actualLabels, $predictedLabels, false));
|
|
}
|
|
|
|
public function testAccuracyOnDemoDataset(): void
|
|
{
|
|
$dataset = new RandomSplit(new IrisDataset(), 0.5, 123);
|
|
|
|
$classifier = new SVC(Kernel::RBF);
|
|
$classifier->train($dataset->getTrainSamples(), $dataset->getTrainLabels());
|
|
|
|
$predicted = (array) $classifier->predict($dataset->getTestSamples());
|
|
|
|
$accuracy = Accuracy::score($dataset->getTestLabels(), $predicted);
|
|
|
|
$expected = PHP_VERSION_ID >= 70100 ? 1 : 0.959;
|
|
|
|
self::assertEquals($expected, $accuracy, '', 0.01);
|
|
}
|
|
}
|