mirror of
https://github.com/Llewellynvdm/php-ml.git
synced 2024-11-22 13:05:10 +00:00
f4650c696c
* fix imports order * drop unused docs typehints, make use of return types where possible
108 lines
2.5 KiB
PHP
108 lines
2.5 KiB
PHP
<?php
|
|
|
|
declare(strict_types=1);
|
|
|
|
namespace tests;
|
|
|
|
use Phpml\Classification\SVC;
|
|
use Phpml\FeatureExtraction\TfIdfTransformer;
|
|
use Phpml\FeatureExtraction\TokenCountVectorizer;
|
|
use Phpml\Pipeline;
|
|
use Phpml\Preprocessing\Imputer;
|
|
use Phpml\Preprocessing\Imputer\Strategy\MostFrequentStrategy;
|
|
use Phpml\Preprocessing\Normalizer;
|
|
use Phpml\Regression\SVR;
|
|
use Phpml\Tokenization\WordTokenizer;
|
|
use PHPUnit\Framework\TestCase;
|
|
|
|
class PipelineTest extends TestCase
|
|
{
|
|
public function testPipelineConstruction()
|
|
{
|
|
$transformers = [
|
|
new TfIdfTransformer(),
|
|
];
|
|
$estimator = new SVC();
|
|
|
|
$pipeline = new Pipeline($transformers, $estimator);
|
|
|
|
$this->assertEquals($transformers, $pipeline->getTransformers());
|
|
$this->assertEquals($estimator, $pipeline->getEstimator());
|
|
}
|
|
|
|
public function testPipelineEstimatorSetter()
|
|
{
|
|
$pipeline = new Pipeline([new TfIdfTransformer()], new SVC());
|
|
|
|
$estimator = new SVR();
|
|
$pipeline->setEstimator($estimator);
|
|
|
|
$this->assertEquals($estimator, $pipeline->getEstimator());
|
|
}
|
|
|
|
public function testPipelineWorkflow()
|
|
{
|
|
$transformers = [
|
|
new Imputer(null, new MostFrequentStrategy()),
|
|
new Normalizer(),
|
|
];
|
|
$estimator = new SVC();
|
|
|
|
$samples = [
|
|
[1, -1, 2],
|
|
[2, 0, null],
|
|
[null, 1, -1],
|
|
];
|
|
|
|
$targets = [
|
|
4,
|
|
1,
|
|
4,
|
|
];
|
|
|
|
$pipeline = new Pipeline($transformers, $estimator);
|
|
$pipeline->train($samples, $targets);
|
|
|
|
$predicted = $pipeline->predict([[0, 0, 0]]);
|
|
|
|
$this->assertEquals(4, $predicted[0]);
|
|
}
|
|
|
|
public function testPipelineTransformers()
|
|
{
|
|
$transformers = [
|
|
new TokenCountVectorizer(new WordTokenizer()),
|
|
new TfIdfTransformer()
|
|
];
|
|
|
|
$estimator = new SVC();
|
|
|
|
$samples = [
|
|
'Hello Paul',
|
|
'Hello Martin',
|
|
'Goodbye Tom',
|
|
'Hello John',
|
|
'Goodbye Alex',
|
|
'Bye Tony',
|
|
];
|
|
|
|
$targets = [
|
|
'greetings',
|
|
'greetings',
|
|
'farewell',
|
|
'greetings',
|
|
'farewell',
|
|
'farewell',
|
|
];
|
|
|
|
$pipeline = new Pipeline($transformers, $estimator);
|
|
$pipeline->train($samples, $targets);
|
|
|
|
$expected = ['greetings', 'farewell'];
|
|
|
|
$predicted = $pipeline->predict(['Hello Max', 'Goodbye Mark']);
|
|
|
|
$this->assertEquals($expected, $predicted);
|
|
}
|
|
}
|