php-ml/tests/Math/Statistic/CovarianceTest.php
Marcin Michalski db82afa263 Update to phpunit 8 and bump min php to 7.2 (#367)
* Update to phpunit 8

* Require at least PHP 7.2
2019-04-10 20:42:59 +02:00

106 lines
3.5 KiB
PHP

<?php
declare(strict_types=1);
namespace Phpml\Tests\Math\Statistic;
use Phpml\Exception\InvalidArgumentException;
use Phpml\Math\Statistic\Covariance;
use Phpml\Math\Statistic\Mean;
use PHPUnit\Framework\TestCase;
class CovarianceTest extends TestCase
{
public function testSimpleCovariance(): void
{
// Acceptable error
$epsilon = 0.001;
// First a simple example whose result is known and given in
// http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf
$matrix = [
[0.69, 0.49],
[-1.31, -1.21],
[0.39, 0.99],
[0.09, 0.29],
[1.29, 1.09],
[0.49, 0.79],
[0.19, -0.31],
[-0.81, -0.81],
[-0.31, -0.31],
[-0.71, -1.01],
];
$knownCovariance = [
[0.616555556, 0.615444444],
[0.615444444, 0.716555556], ];
$x = array_column($matrix, 0);
$y = array_column($matrix, 1);
// Calculate only one covariance value: Cov(x, y)
$cov1 = Covariance::fromDataset($matrix, 0, 0);
self::assertEqualsWithDelta($cov1, $knownCovariance[0][0], $epsilon);
$cov1 = Covariance::fromXYArrays($x, $x);
self::assertEqualsWithDelta($cov1, $knownCovariance[0][0], $epsilon);
$cov2 = Covariance::fromDataset($matrix, 0, 1);
self::assertEqualsWithDelta($cov2, $knownCovariance[0][1], $epsilon);
$cov2 = Covariance::fromXYArrays($x, $y);
self::assertEqualsWithDelta($cov2, $knownCovariance[0][1], $epsilon);
// Second: calculation cov matrix with automatic means for each column
$covariance = Covariance::covarianceMatrix($matrix);
self::assertEqualsWithDelta($knownCovariance, $covariance, $epsilon);
// Thirdly, CovMatrix: Means are precalculated and given to the method
$x = array_column($matrix, 0);
$y = array_column($matrix, 1);
$meanX = Mean::arithmetic($x);
$meanY = Mean::arithmetic($y);
$covariance = Covariance::covarianceMatrix($matrix, [$meanX, $meanY]);
self::assertEqualsWithDelta($knownCovariance, $covariance, $epsilon);
}
public function testThrowExceptionOnEmptyX(): void
{
$this->expectException(InvalidArgumentException::class);
Covariance::fromXYArrays([], [1, 2, 3]);
}
public function testThrowExceptionOnEmptyY(): void
{
$this->expectException(InvalidArgumentException::class);
Covariance::fromXYArrays([1, 2, 3], []);
}
public function testThrowExceptionOnTooSmallArrayIfSample(): void
{
$this->expectException(InvalidArgumentException::class);
Covariance::fromXYArrays([1], [2], true);
}
public function testThrowExceptionIfEmptyDataset(): void
{
$this->expectException(InvalidArgumentException::class);
Covariance::fromDataset([], 0, 1);
}
public function testThrowExceptionOnTooSmallDatasetIfSample(): void
{
$this->expectException(InvalidArgumentException::class);
Covariance::fromDataset([1], 0, 1);
}
public function testThrowExceptionWhenKIndexIsOutOfBound(): void
{
$this->expectException(InvalidArgumentException::class);
Covariance::fromDataset([1, 2, 3], 2, 5);
}
public function testThrowExceptionWhenIIndexIsOutOfBound(): void
{
$this->expectException(InvalidArgumentException::class);
Covariance::fromDataset([1, 2, 3], 5, 2);
}
}