diff --git a/phpseclib/Crypt/Hash.php b/phpseclib/Crypt/Hash.php index 4ad4cdd5..37693f8e 100644 --- a/phpseclib/Crypt/Hash.php +++ b/phpseclib/Crypt/Hash.php @@ -568,11 +568,14 @@ class Hash // For each chunk, except the last: endian-adjust, NH hash // and add bit-length. Use results to build Y. // - $length = new BigInteger(1024 * 8); + $length = PHP_INT_SIZE == 8 ? 1024 * 8 : new BigInteger(1024 * 8); $y = ''; + for ($i = 0; $i < count($m) - 1; $i++) { $m[$i] = pack('N*', ...unpack('V*', $m[$i])); // ENDIAN-SWAP - $y .= static::nh($k, $m[$i], $length); + $y .= PHP_INT_SIZE == 8 ? + static::nh64($k, $m[$i], $length) : + static::nh($k, $m[$i], $length); } // @@ -585,7 +588,9 @@ class Hash $m[$i] = str_pad(isset($m[$i]) ? $m[$i] : '', $pad, "\0"); // zeropad $m[$i] = pack('N*', ...unpack('V*', $m[$i])); // ENDIAN-SWAP - $y .= static::nh($k, $m[$i], new BigInteger($length * 8)); + $y .= PHP_INT_SIZE == 8 ? + static::nh64($k, $m[$i], $length * 8) : + static::nh($k, $m[$i], new BigInteger($length * 8)); return $y; } @@ -651,6 +656,141 @@ class Hash return $y->add($length)->toBytes(); } + /** + * 64-bit Multiply with 2x 32-bit ints + * + * @param int $x + * @param int $y + * @return int $x * $y + */ + private static function mul64($x, $y) + { + // since PHP doesn't implement unsigned integers we'll implement them with signed integers + // to do this we'll use karatsuba multiplication + + // this could be made to work on 32-bit systems with the following changes: + // $x & 0xFFFFFFFF => fmod($x, 0x100000000) + // $x >> 32 => (int) ($x / 0x100000000); + // you'd then need to casts the floats to ints after you got the carry + + $x1 = ($x >> 16) & 0xFFFF; + $x0 = $x & 0xFFFF; + + $y1 = ($y >> 16) & 0xFFFF; + $y0 = $y & 0xFFFF; + + $z2 = $x1 * $y1; // up to 32 bits long + $z0 = $x0 * $y0; // up to 32 bits long + $z1 = $x1 * $y0 + $x0 * $y1; // up to 33 bit long + // normally karatsuba multiplication calculates $z1 thusly: + //$z1 = ($x1 + $x0) * ($y0 + $y1) - $z2 - $z0; + // the idea being to eliminate one extra multiplication. for arbitrary precision math that makes sense + // but not for this purpose + + // at this point karatsuba would normally return this: + //return ($z2 << 64) + ($z1 << 32) + $z0; + // the problem is that the output could be out of range for signed 64-bit ints, + // which would cause PHP to switch to floats, which would risk losing the lower few bits + // as such we'll OR 4x 16-bit blocks together like so: + /* + ........ | ........ | ........ | ........ + upper $z2 | lower $z2 | lower $z1 | lower $z0 + | +upper $z1 | +upper $z0 | + + $carry | + $carry | | + */ + // technically upper $z1 is 17 bit - not 16 - but the most significant digit of that will + // just get added to $carry + + $a = $z0 & 0xFFFF; + $b = ($z0 >> 16) + ($z1 & 0xFFFF); + $c = ($z1 >> 16) + ($z2 & 0xFFFF) + ($b >> 16); + $b = ($b & 0xFFFF) << 16; + $d = ($z2 >> 16) + ($c >> 16); + $c = ($c & 0xFFFF) << 32; + $d = ($d & 0xFFFF) << 48; + + return $a | $b | $c | $d; + } + + /** + * 64-bit Addition with 2x 64-bit ints + * + * @param int $x + * @param int $y + * @return int $x + $y + */ + private static function add64($x, $y) + { + // doing $x + $y risks returning a result that's out of range for signed 64-bit ints + // in that event PHP would convert the result to a float and precision would be lost + // so we'll just add 2x 32-bit ints together like so: + /* + ........ | ........ + upper $x | lower $x + +upper $y |+lower $y + + $carry | + */ + // in theory we should be able to get this working on 32-bit PHP install + // but we'd need to return the result as a string vs an int and do fmod() + // vs "& 0xFFFFFFFF" + $x1 = $x & 0xFFFFFFFF; + $x2 = ($x >> 32) & 0xFFFFFFFF; + $y1 = $y & 0xFFFFFFFF; + $y2 = ($y >> 32) & 0xFFFFFFFF; + $a = $x1 + $y1; + $c = $a >> 32; + $b = ($x2 + $y2) & 0xFFFFFFFF; + $b = ($b + $c) << 32; + $a &= 0xFFFFFFFF; + + return $a | $b; + } + + /** + * NH Algorithm + * + * @param string $k string of length 1024 bytes. + * @param string $m string with length divisible by 32 bytes. + * @return string string of length 8 bytes. + */ + private static function nh64($k, $m, $length) + { + // + // Break M and K into 4-byte chunks + // + $k = unpack('N*', $k); + $m = unpack('N*', $m); + $t = count($m); + + // + // Perform NH hash on the chunks, pairing words for multiplication + // which are 4 apart to accommodate vector-parallelism. + // + $i = 1; + $y = 0; + while ($i <= $t) { + $temp = ($m[$i] + $k[$i]) & 0xFFFFFFFF; + $temp2 = ($m[$i + 4] + $k[$i + 4]) & 0xFFFFFFFF; + $y = self::add64($y, self::mul64($temp, $temp2)); + + $temp = ($m[$i + 1] + $k[$i + 1]) & 0xFFFFFFFF; + $temp2 = ($m[$i + 5] + $k[$i + 5]) & 0xFFFFFFFF; + $y = self::add64($y, self::mul64($temp, $temp2)); + + $temp = ($m[$i + 2] + $k[$i + 2]) & 0xFFFFFFFF; + $temp2 = ($m[$i + 6] + $k[$i + 6]) & 0xFFFFFFFF; + $y = self::add64($y, self::mul64($temp, $temp2)); + + $temp = ($m[$i + 3] + $k[$i + 3]) & 0xFFFFFFFF; + $temp2 = ($m[$i + 7] + $k[$i + 7]) & 0xFFFFFFFF; + $y = self::add64($y, self::mul64($temp, $temp2)); + + $i += 8; + } + + return pack('J', self::add64($y, (int) $length)); + } + /** * L2-HASH: Second-Layer Hash *