diff --git a/deflate.js b/deflate.js new file mode 100644 index 0000000..9a47af5 --- /dev/null +++ b/deflate.js @@ -0,0 +1,1654 @@ +/* Copyright (C) 1999 Masanao Izumo + * Version: 1.0.1 + * LastModified: Dec 25 1999 + */ + +/* Interface: + * data = zip_deflate(src); + */ + +/* constant parameters */ +var zip_WSIZE = 32768; // Sliding Window size +var zip_STORED_BLOCK = 0; +var zip_STATIC_TREES = 1; +var zip_DYN_TREES = 2; + +/* for deflate */ +var zip_DEFAULT_LEVEL = 6; +var zip_FULL_SEARCH = true; +var zip_INBUFSIZ = 32768; // Input buffer size +var zip_INBUF_EXTRA = 64; // Extra buffer +var zip_OUTBUFSIZ = 1024 * 8; +var zip_window_size = 2 * zip_WSIZE; +var zip_MIN_MATCH = 3; +var zip_MAX_MATCH = 258; +var zip_BITS = 16; +// for SMALL_MEM +var zip_LIT_BUFSIZE = 0x2000; +var zip_HASH_BITS = 13; +// for MEDIUM_MEM +// var zip_LIT_BUFSIZE = 0x4000; +// var zip_HASH_BITS = 14; +// for BIG_MEM +// var zip_LIT_BUFSIZE = 0x8000; +// var zip_HASH_BITS = 15; +if(zip_LIT_BUFSIZE > zip_INBUFSIZ) + alert("error: zip_INBUFSIZ is too small"); +if((zip_WSIZE<<1) > (1< zip_BITS-1) + alert("error: zip_HASH_BITS is too large"); +if(zip_HASH_BITS < 8 || zip_MAX_MATCH != 258) + alert("error: Code too clever"); +var zip_DIST_BUFSIZE = zip_LIT_BUFSIZE; +var zip_HASH_SIZE = 1 << zip_HASH_BITS; +var zip_HASH_MASK = zip_HASH_SIZE - 1; +var zip_WMASK = zip_WSIZE - 1; +var zip_NIL = 0; // Tail of hash chains +var zip_TOO_FAR = 4096; +var zip_MIN_LOOKAHEAD = zip_MAX_MATCH + zip_MIN_MATCH + 1; +var zip_MAX_DIST = zip_WSIZE - zip_MIN_LOOKAHEAD; +var zip_SMALLEST = 1; +var zip_MAX_BITS = 15; +var zip_MAX_BL_BITS = 7; +var zip_LENGTH_CODES = 29; +var zip_LITERALS =256; +var zip_END_BLOCK = 256; +var zip_L_CODES = zip_LITERALS + 1 + zip_LENGTH_CODES; +var zip_D_CODES = 30; +var zip_BL_CODES = 19; +var zip_REP_3_6 = 16; +var zip_REPZ_3_10 = 17; +var zip_REPZ_11_138 = 18; +var zip_HEAP_SIZE = 2 * zip_L_CODES + 1; +var zip_H_SHIFT = parseInt((zip_HASH_BITS + zip_MIN_MATCH - 1) / + zip_MIN_MATCH); + +/* variables */ +var zip_free_queue; +var zip_qhead, zip_qtail; +var zip_initflag; +var zip_outbuf = null; +var zip_outcnt, zip_outoff; +var zip_complete; +var zip_window; +var zip_d_buf; +var zip_l_buf; +var zip_prev; +var zip_bi_buf; +var zip_bi_valid; +var zip_block_start; +var zip_ins_h; +var zip_hash_head; +var zip_prev_match; +var zip_match_available; +var zip_match_length; +var zip_prev_length; +var zip_strstart; +var zip_match_start; +var zip_eofile; +var zip_lookahead; +var zip_max_chain_length; +var zip_max_lazy_match; +var zip_compr_level; +var zip_good_match; +var zip_nice_match; +var zip_dyn_ltree; +var zip_dyn_dtree; +var zip_static_ltree; +var zip_static_dtree; +var zip_bl_tree; +var zip_l_desc; +var zip_d_desc; +var zip_bl_desc; +var zip_bl_count; +var zip_heap; +var zip_heap_len; +var zip_heap_max; +var zip_depth; +var zip_length_code; +var zip_dist_code; +var zip_base_length; +var zip_base_dist; +var zip_flag_buf; +var zip_last_lit; +var zip_last_dist; +var zip_last_flags; +var zip_flags; +var zip_flag_bit; +var zip_opt_len; +var zip_static_len; +var zip_deflate_data; +var zip_deflate_pos; + +/* constant tables */ +var zip_extra_lbits = new Array( + 0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0); +var zip_extra_dbits = new Array( + 0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13); +var zip_extra_blbits = new Array( + 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7); +var zip_bl_order = new Array( + 16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15); +var zip_configuration_table = new Array( + new zip_DeflateConfiguration(0, 0, 0, 0), + new zip_DeflateConfiguration(4, 4, 8, 4), + new zip_DeflateConfiguration(4, 5, 16, 8), + new zip_DeflateConfiguration(4, 6, 32, 32), + new zip_DeflateConfiguration(4, 4, 16, 16), + new zip_DeflateConfiguration(8, 16, 32, 32), + new zip_DeflateConfiguration(8, 16, 128, 128), + new zip_DeflateConfiguration(8, 32, 128, 256), + new zip_DeflateConfiguration(32, 128, 258, 1024), + new zip_DeflateConfiguration(32, 258, 258, 4096)); + +/* objects (deflate) */ + +function zip_DeflateCT() { + this.fc = 0; // frequency count or bit string + this.dl = 0; // father node in Huffman tree or length of bit string +} + +function zip_DeflateTreeDesc() { + this.dyn_tree = null; // the dynamic tree + this.static_tree = null; // corresponding static tree or NULL + this.extra_bits = null; // extra bits for each code or NULL + this.extra_base = 0; // base index for extra_bits + this.elems = 0; // max number of elements in the tree + this.max_length = 0; // max bit length for the codes + this.max_code = 0; // largest code with non zero frequency +} + +/* Values for max_lazy_match, good_match and max_chain_length, depending on + * the desired pack level (0..9). The values given below have been tuned to + * exclude worst case performance for pathological files. Better values may be + * found for specific files. + */ +function zip_DeflateConfiguration(a, b, c, d) { + this.good_length = a; // reduce lazy search above this match length + this.max_lazy = b; // do not perform lazy search above this match length + this.nice_length = c; // quit search above this match length + this.max_chain = d; +} + +function zip_DeflateBuffer() { + this.next = null; + this.len = 0; + this.ptr = new Array(zip_OUTBUFSIZ); + this.off = 0; +} + +/* routines (deflate) */ + +function zip_deflate_start(level) { + var i; + + if(!level) + level = zip_DEFAULT_LEVEL; + else if(level < 1) + level = 1; + else if(level > 9) + level = 9; + + zip_compr_level = level; + zip_initflag = false; + zip_eofile = false; + if(zip_outbuf != null) + return; + + zip_free_queue = zip_qhead = zip_qtail = null; + zip_outbuf = new Array(zip_OUTBUFSIZ); + zip_window = new Array(zip_window_size); + zip_d_buf = new Array(zip_DIST_BUFSIZE); + zip_l_buf = new Array(zip_INBUFSIZ + zip_INBUF_EXTRA); + zip_prev = new Array(1 << zip_BITS); + zip_dyn_ltree = new Array(zip_HEAP_SIZE); + for(i = 0; i < zip_HEAP_SIZE; i++) + zip_dyn_ltree[i] = new zip_DeflateCT(); + zip_dyn_dtree = new Array(2*zip_D_CODES+1); + for(i = 0; i < 2*zip_D_CODES+1; i++) + zip_dyn_dtree[i] = new zip_DeflateCT(); + zip_static_ltree = new Array(zip_L_CODES+2); + for(i = 0; i < zip_L_CODES+2; i++) + zip_static_ltree[i] = new zip_DeflateCT(); + zip_static_dtree = new Array(zip_D_CODES); + for(i = 0; i < zip_D_CODES; i++) + zip_static_dtree[i] = new zip_DeflateCT(); + zip_bl_tree = new Array(2*zip_BL_CODES+1); + for(i = 0; i < 2*zip_BL_CODES+1; i++) + zip_bl_tree[i] = new zip_DeflateCT(); + zip_l_desc = new zip_DeflateTreeDesc(); + zip_d_desc = new zip_DeflateTreeDesc(); + zip_bl_desc = new zip_DeflateTreeDesc(); + zip_bl_count = new Array(zip_MAX_BITS+1); + zip_heap = new Array(2*zip_L_CODES+1); + zip_depth = new Array(2*zip_L_CODES+1); + zip_length_code = new Array(zip_MAX_MATCH-zip_MIN_MATCH+1); + zip_dist_code = new Array(512); + zip_base_length = new Array(zip_LENGTH_CODES); + zip_base_dist = new Array(zip_D_CODES); + zip_flag_buf = new Array(parseInt(zip_LIT_BUFSIZE / 8)); +} + +function zip_deflate_end() { + zip_free_queue = zip_qhead = zip_qtail = null; + zip_outbuf = null; + zip_window = null; + zip_d_buf = null; + zip_l_buf = null; + zip_prev = null; + zip_dyn_ltree = null; + zip_dyn_dtree = null; + zip_static_ltree = null; + zip_static_dtree = null; + zip_bl_tree = null; + zip_l_desc = null; + zip_d_desc = null; + zip_bl_desc = null; + zip_bl_count = null; + zip_heap = null; + zip_depth = null; + zip_length_code = null; + zip_dist_code = null; + zip_base_length = null; + zip_base_dist = null; + zip_flag_buf = null; +} + +function zip_reuse_queue(p) { + p.next = zip_free_queue; + zip_free_queue = p; +} + +function zip_new_queue() { + var p; + + if(zip_free_queue != null) + { + p = zip_free_queue; + zip_free_queue = zip_free_queue.next; + } + else + p = new zip_DeflateBuffer(); + p.next = null; + p.len = p.off = 0; + + return p; +} + +function zip_head1(i) { + return zip_prev[zip_WSIZE + i]; +} + +function zip_head2(i, val) { + return zip_prev[zip_WSIZE + i] = val; +} + +/* put_byte is used for the compressed output, put_ubyte for the + * uncompressed output. However unlzw() uses window for its + * suffix table instead of its output buffer, so it does not use put_ubyte + * (to be cleaned up). + */ +function zip_put_byte(c) { + zip_outbuf[zip_outoff + zip_outcnt++] = c; + if(zip_outoff + zip_outcnt == zip_OUTBUFSIZ) + zip_qoutbuf(); +} + +/* Output a 16 bit value, lsb first */ +function zip_put_short(w) { + w &= 0xffff; + if(zip_outoff + zip_outcnt < zip_OUTBUFSIZ - 2) { + zip_outbuf[zip_outoff + zip_outcnt++] = (w & 0xff); + zip_outbuf[zip_outoff + zip_outcnt++] = (w >>> 8); + } else { + zip_put_byte(w & 0xff); + zip_put_byte(w >>> 8); + } +} + +/* ========================================================================== + * Insert string s in the dictionary and set match_head to the previous head + * of the hash chain (the most recent string with same hash key). Return + * the previous length of the hash chain. + * IN assertion: all calls to to INSERT_STRING are made with consecutive + * input characters and the first MIN_MATCH bytes of s are valid + * (except for the last MIN_MATCH-1 bytes of the input file). + */ +function zip_INSERT_STRING() { + zip_ins_h = ((zip_ins_h << zip_H_SHIFT) + ^ (zip_window[zip_strstart + zip_MIN_MATCH - 1] & 0xff)) + & zip_HASH_MASK; + zip_hash_head = zip_head1(zip_ins_h); + zip_prev[zip_strstart & zip_WMASK] = zip_hash_head; + zip_head2(zip_ins_h, zip_strstart); +} + +/* Send a code of the given tree. c and tree must not have side effects */ +function zip_SEND_CODE(c, tree) { + zip_send_bits(tree[c].fc, tree[c].dl); +} + +/* Mapping from a distance to a distance code. dist is the distance - 1 and + * must not have side effects. dist_code[256] and dist_code[257] are never + * used. + */ +function zip_D_CODE(dist) { + return (dist < 256 ? zip_dist_code[dist] + : zip_dist_code[256 + (dist>>7)]) & 0xff; +} + +/* ========================================================================== + * Compares to subtrees, using the tree depth as tie breaker when + * the subtrees have equal frequency. This minimizes the worst case length. + */ +function zip_SMALLER(tree, n, m) { + return tree[n].fc < tree[m].fc || + (tree[n].fc == tree[m].fc && zip_depth[n] <= zip_depth[m]); +} + +/* ========================================================================== + * read string data + */ +function zip_read_buff(buff, offset, n) { + var i; + for(i = 0; i < n && zip_deflate_pos < zip_deflate_data.length; i++) + buff[offset + i] = + zip_deflate_data.charCodeAt(zip_deflate_pos++) & 0xff; + return i; +} + +/* ========================================================================== + * Initialize the "longest match" routines for a new file + */ +function zip_lm_init() { + var j; + + /* Initialize the hash table. */ + for(j = 0; j < zip_HASH_SIZE; j++) +// zip_head2(j, zip_NIL); + zip_prev[zip_WSIZE + j] = 0; + /* prev will be initialized on the fly */ + + /* Set the default configuration parameters: + */ + zip_max_lazy_match = zip_configuration_table[zip_compr_level].max_lazy; + zip_good_match = zip_configuration_table[zip_compr_level].good_length; + if(!zip_FULL_SEARCH) + zip_nice_match = zip_configuration_table[zip_compr_level].nice_length; + zip_max_chain_length = zip_configuration_table[zip_compr_level].max_chain; + + zip_strstart = 0; + zip_block_start = 0; + + zip_lookahead = zip_read_buff(zip_window, 0, 2 * zip_WSIZE); + if(zip_lookahead <= 0) { + zip_eofile = true; + zip_lookahead = 0; + return; + } + zip_eofile = false; + /* Make sure that we always have enough lookahead. This is important + * if input comes from a device such as a tty. + */ + while(zip_lookahead < zip_MIN_LOOKAHEAD && !zip_eofile) + zip_fill_window(); + + /* If lookahead < MIN_MATCH, ins_h is garbage, but this is + * not important since only literal bytes will be emitted. + */ + zip_ins_h = 0; + for(j = 0; j < zip_MIN_MATCH - 1; j++) { +// UPDATE_HASH(ins_h, window[j]); + zip_ins_h = ((zip_ins_h << zip_H_SHIFT) ^ (zip_window[j] & 0xff)) & zip_HASH_MASK; + } +} + +/* ========================================================================== + * Set match_start to the longest match starting at the given string and + * return its length. Matches shorter or equal to prev_length are discarded, + * in which case the result is equal to prev_length and match_start is + * garbage. + * IN assertions: cur_match is the head of the hash chain for the current + * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1 + */ +function zip_longest_match(cur_match) { + var chain_length = zip_max_chain_length; // max hash chain length + var scanp = zip_strstart; // current string + var matchp; // matched string + var len; // length of current match + var best_len = zip_prev_length; // best match length so far + + /* Stop when cur_match becomes <= limit. To simplify the code, + * we prevent matches with the string of window index 0. + */ + var limit = (zip_strstart > zip_MAX_DIST ? zip_strstart - zip_MAX_DIST : zip_NIL); + + var strendp = zip_strstart + zip_MAX_MATCH; + var scan_end1 = zip_window[scanp + best_len - 1]; + var scan_end = zip_window[scanp + best_len]; + + /* Do not waste too much time if we already have a good match: */ + if(zip_prev_length >= zip_good_match) + chain_length >>= 2; + +// Assert(encoder->strstart <= window_size-MIN_LOOKAHEAD, "insufficient lookahead"); + + do { +// Assert(cur_match < encoder->strstart, "no future"); + matchp = cur_match; + + /* Skip to next match if the match length cannot increase + * or if the match length is less than 2: + */ + if(zip_window[matchp + best_len] != scan_end || + zip_window[matchp + best_len - 1] != scan_end1 || + zip_window[matchp] != zip_window[scanp] || + zip_window[++matchp] != zip_window[scanp + 1]) { + continue; + } + + /* The check at best_len-1 can be removed because it will be made + * again later. (This heuristic is not always a win.) + * It is not necessary to compare scan[2] and match[2] since they + * are always equal when the other bytes match, given that + * the hash keys are equal and that HASH_BITS >= 8. + */ + scanp += 2; + matchp++; + + /* We check for insufficient lookahead only every 8th comparison; + * the 256th check will be made at strstart+258. + */ + do { + } while(zip_window[++scanp] == zip_window[++matchp] && + zip_window[++scanp] == zip_window[++matchp] && + zip_window[++scanp] == zip_window[++matchp] && + zip_window[++scanp] == zip_window[++matchp] && + zip_window[++scanp] == zip_window[++matchp] && + zip_window[++scanp] == zip_window[++matchp] && + zip_window[++scanp] == zip_window[++matchp] && + zip_window[++scanp] == zip_window[++matchp] && + scanp < strendp); + + len = zip_MAX_MATCH - (strendp - scanp); + scanp = strendp - zip_MAX_MATCH; + + if(len > best_len) { + zip_match_start = cur_match; + best_len = len; + if(zip_FULL_SEARCH) { + if(len >= zip_MAX_MATCH) break; + } else { + if(len >= zip_nice_match) break; + } + + scan_end1 = zip_window[scanp + best_len-1]; + scan_end = zip_window[scanp + best_len]; + } + } while((cur_match = zip_prev[cur_match & zip_WMASK]) > limit + && --chain_length != 0); + + return best_len; +} + +/* ========================================================================== + * Fill the window when the lookahead becomes insufficient. + * Updates strstart and lookahead, and sets eofile if end of input file. + * IN assertion: lookahead < MIN_LOOKAHEAD && strstart + lookahead > 0 + * OUT assertions: at least one byte has been read, or eofile is set; + * file reads are performed for at least two bytes (required for the + * translate_eol option). + */ +function zip_fill_window() { + var n, m; + + // Amount of free space at the end of the window. + var more = zip_window_size - zip_lookahead - zip_strstart; + + /* If the window is almost full and there is insufficient lookahead, + * move the upper half to the lower one to make room in the upper half. + */ + if(more == -1) { + /* Very unlikely, but possible on 16 bit machine if strstart == 0 + * and lookahead == 1 (input done one byte at time) + */ + more--; + } else if(zip_strstart >= zip_WSIZE + zip_MAX_DIST) { + /* By the IN assertion, the window is not empty so we can't confuse + * more == 0 with more == 64K on a 16 bit machine. + */ +// Assert(window_size == (ulg)2*WSIZE, "no sliding with BIG_MEM"); + +// System.arraycopy(window, WSIZE, window, 0, WSIZE); + for(n = 0; n < zip_WSIZE; n++) + zip_window[n] = zip_window[n + zip_WSIZE]; + + zip_match_start -= zip_WSIZE; + zip_strstart -= zip_WSIZE; /* we now have strstart >= MAX_DIST: */ + zip_block_start -= zip_WSIZE; + + for(n = 0; n < zip_HASH_SIZE; n++) { + m = zip_head1(n); + zip_head2(n, m >= zip_WSIZE ? m - zip_WSIZE : zip_NIL); + } + for(n = 0; n < zip_WSIZE; n++) { + /* If n is not on any hash chain, prev[n] is garbage but + * its value will never be used. + */ + m = zip_prev[n]; + zip_prev[n] = (m >= zip_WSIZE ? m - zip_WSIZE : zip_NIL); + } + more += zip_WSIZE; + } + // At this point, more >= 2 + if(!zip_eofile) { + n = zip_read_buff(zip_window, zip_strstart + zip_lookahead, more); + if(n <= 0) + zip_eofile = true; + else + zip_lookahead += n; + } +} + +/* ========================================================================== + * Processes a new input file and return its compressed length. This + * function does not perform lazy evaluationof matches and inserts + * new strings in the dictionary only for unmatched strings or for short + * matches. It is used only for the fast compression options. + */ +function zip_deflate_fast() { + while(zip_lookahead != 0 && zip_qhead == null) { + var flush; // set if current block must be flushed + + /* Insert the string window[strstart .. strstart+2] in the + * dictionary, and set hash_head to the head of the hash chain: + */ + zip_INSERT_STRING(); + + /* Find the longest match, discarding those <= prev_length. + * At this point we have always match_length < MIN_MATCH + */ + if(zip_hash_head != zip_NIL && + zip_strstart - zip_hash_head <= zip_MAX_DIST) { + /* To simplify the code, we prevent matches with the string + * of window index 0 (in particular we have to avoid a match + * of the string with itself at the start of the input file). + */ + zip_match_length = zip_longest_match(zip_hash_head); + /* longest_match() sets match_start */ + if(zip_match_length > zip_lookahead) + zip_match_length = zip_lookahead; + } + if(zip_match_length >= zip_MIN_MATCH) { +// check_match(strstart, match_start, match_length); + + flush = zip_ct_tally(zip_strstart - zip_match_start, + zip_match_length - zip_MIN_MATCH); + zip_lookahead -= zip_match_length; + + /* Insert new strings in the hash table only if the match length + * is not too large. This saves time but degrades compression. + */ + if(zip_match_length <= zip_max_lazy_match) { + zip_match_length--; // string at strstart already in hash table + do { + zip_strstart++; + zip_INSERT_STRING(); + /* strstart never exceeds WSIZE-MAX_MATCH, so there are + * always MIN_MATCH bytes ahead. If lookahead < MIN_MATCH + * these bytes are garbage, but it does not matter since + * the next lookahead bytes will be emitted as literals. + */ + } while(--zip_match_length != 0); + zip_strstart++; + } else { + zip_strstart += zip_match_length; + zip_match_length = 0; + zip_ins_h = zip_window[zip_strstart] & 0xff; +// UPDATE_HASH(ins_h, window[strstart + 1]); + zip_ins_h = ((zip_ins_h< zip_lookahead) + zip_match_length = zip_lookahead; + + /* Ignore a length 3 match if it is too distant: */ + if(zip_match_length == zip_MIN_MATCH && + zip_strstart - zip_match_start > zip_TOO_FAR) { + /* If prev_match is also MIN_MATCH, match_start is garbage + * but we will ignore the current match anyway. + */ + zip_match_length--; + } + } + /* If there was a match at the previous step and the current + * match is not better, output the previous match: + */ + if(zip_prev_length >= zip_MIN_MATCH && + zip_match_length <= zip_prev_length) { + var flush; // set if current block must be flushed + +// check_match(strstart - 1, prev_match, prev_length); + flush = zip_ct_tally(zip_strstart - 1 - zip_prev_match, + zip_prev_length - zip_MIN_MATCH); + + /* Insert in hash table all strings up to the end of the match. + * strstart-1 and strstart are already inserted. + */ + zip_lookahead -= zip_prev_length - 1; + zip_prev_length -= 2; + do { + zip_strstart++; + zip_INSERT_STRING(); + /* strstart never exceeds WSIZE-MAX_MATCH, so there are + * always MIN_MATCH bytes ahead. If lookahead < MIN_MATCH + * these bytes are garbage, but it does not matter since the + * next lookahead bytes will always be emitted as literals. + */ + } while(--zip_prev_length != 0); + zip_match_available = 0; + zip_match_length = zip_MIN_MATCH - 1; + zip_strstart++; + if(flush) { + zip_flush_block(0); + zip_block_start = zip_strstart; + } + } else if(zip_match_available != 0) { + /* If there was no match at the previous position, output a + * single literal. If there was a match but the current match + * is longer, truncate the previous match to a single literal. + */ + if(zip_ct_tally(0, zip_window[zip_strstart - 1] & 0xff)) { + zip_flush_block(0); + zip_block_start = zip_strstart; + } + zip_strstart++; + zip_lookahead--; + } else { + /* There is no previous match to compare with, wait for + * the next step to decide. + */ + zip_match_available = 1; + zip_strstart++; + zip_lookahead--; + } + + /* Make sure that we always have enough lookahead, except + * at the end of the input file. We need MAX_MATCH bytes + * for the next match, plus MIN_MATCH bytes to insert the + * string following the next match. + */ + while(zip_lookahead < zip_MIN_LOOKAHEAD && !zip_eofile) + zip_fill_window(); + } +} + +function zip_init_deflate() { + if(zip_eofile) + return; + zip_bi_buf = 0; + zip_bi_valid = 0; + zip_ct_init(); + zip_lm_init(); + + zip_qhead = null; + zip_outcnt = 0; + zip_outoff = 0; + + if(zip_compr_level <= 3) + { + zip_prev_length = zip_MIN_MATCH - 1; + zip_match_length = 0; + } + else + { + zip_match_length = zip_MIN_MATCH - 1; + zip_match_available = 0; + } + + zip_complete = false; +} + +/* ========================================================================== + * Same as above, but achieves better compression. We use a lazy + * evaluation for matches: a match is finally adopted only if there is + * no better match at the next window position. + */ +function zip_deflate_internal(buff, off, buff_size) { + var n; + + if(!zip_initflag) + { + zip_init_deflate(); + zip_initflag = true; + if(zip_lookahead == 0) { // empty + zip_complete = true; + return 0; + } + } + + if((n = zip_qcopy(buff, off, buff_size)) == buff_size) + return buff_size; + + if(zip_complete) + return n; + + if(zip_compr_level <= 3) // optimized for speed + zip_deflate_fast(); + else + zip_deflate_better(); + if(zip_lookahead == 0) { + if(zip_match_available != 0) + zip_ct_tally(0, zip_window[zip_strstart - 1] & 0xff); + zip_flush_block(1); + zip_complete = true; + } + return n + zip_qcopy(buff, n + off, buff_size - n); +} + +function zip_qcopy(buff, off, buff_size) { + var n, i, j; + + n = 0; + while(zip_qhead != null && n < buff_size) + { + i = buff_size - n; + if(i > zip_qhead.len) + i = zip_qhead.len; +// System.arraycopy(qhead.ptr, qhead.off, buff, off + n, i); + for(j = 0; j < i; j++) + buff[off + n + j] = zip_qhead.ptr[zip_qhead.off + j]; + + zip_qhead.off += i; + zip_qhead.len -= i; + n += i; + if(zip_qhead.len == 0) { + var p; + p = zip_qhead; + zip_qhead = zip_qhead.next; + zip_reuse_queue(p); + } + } + + if(n == buff_size) + return n; + + if(zip_outoff < zip_outcnt) { + i = buff_size - n; + if(i > zip_outcnt - zip_outoff) + i = zip_outcnt - zip_outoff; + // System.arraycopy(outbuf, outoff, buff, off + n, i); + for(j = 0; j < i; j++) + buff[off + n + j] = zip_outbuf[zip_outoff + j]; + zip_outoff += i; + n += i; + if(zip_outcnt == zip_outoff) + zip_outcnt = zip_outoff = 0; + } + return n; +} + +/* ========================================================================== + * Allocate the match buffer, initialize the various tables and save the + * location of the internal file attribute (ascii/binary) and method + * (DEFLATE/STORE). + */ +function zip_ct_init() { + var n; // iterates over tree elements + var bits; // bit counter + var length; // length value + var code; // code value + var dist; // distance index + + if(zip_static_dtree[0].dl != 0) return; // ct_init already called + + zip_l_desc.dyn_tree = zip_dyn_ltree; + zip_l_desc.static_tree = zip_static_ltree; + zip_l_desc.extra_bits = zip_extra_lbits; + zip_l_desc.extra_base = zip_LITERALS + 1; + zip_l_desc.elems = zip_L_CODES; + zip_l_desc.max_length = zip_MAX_BITS; + zip_l_desc.max_code = 0; + + zip_d_desc.dyn_tree = zip_dyn_dtree; + zip_d_desc.static_tree = zip_static_dtree; + zip_d_desc.extra_bits = zip_extra_dbits; + zip_d_desc.extra_base = 0; + zip_d_desc.elems = zip_D_CODES; + zip_d_desc.max_length = zip_MAX_BITS; + zip_d_desc.max_code = 0; + + zip_bl_desc.dyn_tree = zip_bl_tree; + zip_bl_desc.static_tree = null; + zip_bl_desc.extra_bits = zip_extra_blbits; + zip_bl_desc.extra_base = 0; + zip_bl_desc.elems = zip_BL_CODES; + zip_bl_desc.max_length = zip_MAX_BL_BITS; + zip_bl_desc.max_code = 0; + + // Initialize the mapping length (0..255) -> length code (0..28) + length = 0; + for(code = 0; code < zip_LENGTH_CODES-1; code++) { + zip_base_length[code] = length; + for(n = 0; n < (1< dist code (0..29) */ + dist = 0; + for(code = 0 ; code < 16; code++) { + zip_base_dist[code] = dist; + for(n = 0; n < (1<>= 7; // from now on, all distances are divided by 128 + for( ; code < zip_D_CODES; code++) { + zip_base_dist[code] = dist << 7; + for(n = 0; n < (1<<(zip_extra_dbits[code]-7)); n++) + zip_dist_code[256 + dist++] = code; + } + // Assert (dist == 256, "ct_init: 256+dist != 512"); + + // Construct the codes of the static literal tree + for(bits = 0; bits <= zip_MAX_BITS; bits++) + zip_bl_count[bits] = 0; + n = 0; + while(n <= 143) { zip_static_ltree[n++].dl = 8; zip_bl_count[8]++; } + while(n <= 255) { zip_static_ltree[n++].dl = 9; zip_bl_count[9]++; } + while(n <= 279) { zip_static_ltree[n++].dl = 7; zip_bl_count[7]++; } + while(n <= 287) { zip_static_ltree[n++].dl = 8; zip_bl_count[8]++; } + /* Codes 286 and 287 do not exist, but we must include them in the + * tree construction to get a canonical Huffman tree (longest code + * all ones) + */ + zip_gen_codes(zip_static_ltree, zip_L_CODES + 1); + + /* The static distance tree is trivial: */ + for(n = 0; n < zip_D_CODES; n++) { + zip_static_dtree[n].dl = 5; + zip_static_dtree[n].fc = zip_bi_reverse(n, 5); + } + + // Initialize the first block of the first file: + zip_init_block(); +} + +/* ========================================================================== + * Initialize a new block. + */ +function zip_init_block() { + var n; // iterates over tree elements + + // Initialize the trees. + for(n = 0; n < zip_L_CODES; n++) zip_dyn_ltree[n].fc = 0; + for(n = 0; n < zip_D_CODES; n++) zip_dyn_dtree[n].fc = 0; + for(n = 0; n < zip_BL_CODES; n++) zip_bl_tree[n].fc = 0; + + zip_dyn_ltree[zip_END_BLOCK].fc = 1; + zip_opt_len = zip_static_len = 0; + zip_last_lit = zip_last_dist = zip_last_flags = 0; + zip_flags = 0; + zip_flag_bit = 1; +} + +/* ========================================================================== + * Restore the heap property by moving down the tree starting at node k, + * exchanging a node with the smallest of its two sons if necessary, stopping + * when the heap property is re-established (each father smaller than its + * two sons). + */ +function zip_pqdownheap( + tree, // the tree to restore + k) { // node to move down + var v = zip_heap[k]; + var j = k << 1; // left son of k + + while(j <= zip_heap_len) { + // Set j to the smallest of the two sons: + if(j < zip_heap_len && + zip_SMALLER(tree, zip_heap[j + 1], zip_heap[j])) + j++; + + // Exit if v is smaller than both sons + if(zip_SMALLER(tree, v, zip_heap[j])) + break; + + // Exchange v with the smallest son + zip_heap[k] = zip_heap[j]; + k = j; + + // And continue down the tree, setting j to the left son of k + j <<= 1; + } + zip_heap[k] = v; +} + +/* ========================================================================== + * Compute the optimal bit lengths for a tree and update the total bit length + * for the current block. + * IN assertion: the fields freq and dad are set, heap[heap_max] and + * above are the tree nodes sorted by increasing frequency. + * OUT assertions: the field len is set to the optimal bit length, the + * array bl_count contains the frequencies for each bit length. + * The length opt_len is updated; static_len is also updated if stree is + * not null. + */ +function zip_gen_bitlen(desc) { // the tree descriptor + var tree = desc.dyn_tree; + var extra = desc.extra_bits; + var base = desc.extra_base; + var max_code = desc.max_code; + var max_length = desc.max_length; + var stree = desc.static_tree; + var h; // heap index + var n, m; // iterate over the tree elements + var bits; // bit length + var xbits; // extra bits + var f; // frequency + var overflow = 0; // number of elements with bit length too large + + for(bits = 0; bits <= zip_MAX_BITS; bits++) + zip_bl_count[bits] = 0; + + /* In a first pass, compute the optimal bit lengths (which may + * overflow in the case of the bit length tree). + */ + tree[zip_heap[zip_heap_max]].dl = 0; // root of the heap + + for(h = zip_heap_max + 1; h < zip_HEAP_SIZE; h++) { + n = zip_heap[h]; + bits = tree[tree[n].dl].dl + 1; + if(bits > max_length) { + bits = max_length; + overflow++; + } + tree[n].dl = bits; + // We overwrite tree[n].dl which is no longer needed + + if(n > max_code) + continue; // not a leaf node + + zip_bl_count[bits]++; + xbits = 0; + if(n >= base) + xbits = extra[n - base]; + f = tree[n].fc; + zip_opt_len += f * (bits + xbits); + if(stree != null) + zip_static_len += f * (stree[n].dl + xbits); + } + if(overflow == 0) + return; + + // This happens for example on obj2 and pic of the Calgary corpus + + // Find the first bit length which could increase: + do { + bits = max_length - 1; + while(zip_bl_count[bits] == 0) + bits--; + zip_bl_count[bits]--; // move one leaf down the tree + zip_bl_count[bits + 1] += 2; // move one overflow item as its brother + zip_bl_count[max_length]--; + /* The brother of the overflow item also moves one step up, + * but this does not affect bl_count[max_length] + */ + overflow -= 2; + } while(overflow > 0); + + /* Now recompute all bit lengths, scanning in increasing frequency. + * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all + * lengths instead of fixing only the wrong ones. This idea is taken + * from 'ar' written by Haruhiko Okumura.) + */ + for(bits = max_length; bits != 0; bits--) { + n = zip_bl_count[bits]; + while(n != 0) { + m = zip_heap[--h]; + if(m > max_code) + continue; + if(tree[m].dl != bits) { + zip_opt_len += (bits - tree[m].dl) * tree[m].fc; + tree[m].fc = bits; + } + n--; + } + } +} + + /* ========================================================================== + * Generate the codes for a given tree and bit counts (which need not be + * optimal). + * IN assertion: the array bl_count contains the bit length statistics for + * the given tree and the field len is set for all tree elements. + * OUT assertion: the field code is set for all tree elements of non + * zero code length. + */ +function zip_gen_codes(tree, // the tree to decorate + max_code) { // largest code with non zero frequency + var next_code = new Array(zip_MAX_BITS+1); // next code value for each bit length + var code = 0; // running code value + var bits; // bit index + var n; // code index + + /* The distribution counts are first used to generate the code values + * without bit reversal. + */ + for(bits = 1; bits <= zip_MAX_BITS; bits++) { + code = ((code + zip_bl_count[bits-1]) << 1); + next_code[bits] = code; + } + + /* Check that the bit counts in bl_count are consistent. The last code + * must be all ones. + */ +// Assert (code + encoder->bl_count[MAX_BITS]-1 == (1<> 1; n >= 1; n--) + zip_pqdownheap(tree, n); + + /* Construct the Huffman tree by repeatedly combining the least two + * frequent nodes. + */ + do { + n = zip_heap[zip_SMALLEST]; + zip_heap[zip_SMALLEST] = zip_heap[zip_heap_len--]; + zip_pqdownheap(tree, zip_SMALLEST); + + m = zip_heap[zip_SMALLEST]; // m = node of next least frequency + + // keep the nodes sorted by frequency + zip_heap[--zip_heap_max] = n; + zip_heap[--zip_heap_max] = m; + + // Create a new node father of n and m + tree[node].fc = tree[n].fc + tree[m].fc; +// depth[node] = (char)(MAX(depth[n], depth[m]) + 1); + if(zip_depth[n] > zip_depth[m] + 1) + zip_depth[node] = zip_depth[n]; + else + zip_depth[node] = zip_depth[m] + 1; + tree[n].dl = tree[m].dl = node; + + // and insert the new node in the heap + zip_heap[zip_SMALLEST] = node++; + zip_pqdownheap(tree, zip_SMALLEST); + + } while(zip_heap_len >= 2); + + zip_heap[--zip_heap_max] = zip_heap[zip_SMALLEST]; + + /* At this point, the fields freq and dad are set. We can now + * generate the bit lengths. + */ + zip_gen_bitlen(desc); + + // The field len is now set, we can generate the bit codes + zip_gen_codes(tree, max_code); +} + +/* ========================================================================== + * Scan a literal or distance tree to determine the frequencies of the codes + * in the bit length tree. Updates opt_len to take into account the repeat + * counts. (The contribution of the bit length codes will be added later + * during the construction of bl_tree.) + */ +function zip_scan_tree(tree,// the tree to be scanned + max_code) { // and its largest code of non zero frequency + var n; // iterates over all tree elements + var prevlen = -1; // last emitted length + var curlen; // length of current code + var nextlen = tree[0].dl; // length of next code + var count = 0; // repeat count of the current code + var max_count = 7; // max repeat count + var min_count = 4; // min repeat count + + if(nextlen == 0) { + max_count = 138; + min_count = 3; + } + tree[max_code + 1].dl = 0xffff; // guard + + for(n = 0; n <= max_code; n++) { + curlen = nextlen; + nextlen = tree[n + 1].dl; + if(++count < max_count && curlen == nextlen) + continue; + else if(count < min_count) + zip_bl_tree[curlen].fc += count; + else if(curlen != 0) { + if(curlen != prevlen) + zip_bl_tree[curlen].fc++; + zip_bl_tree[zip_REP_3_6].fc++; + } else if(count <= 10) + zip_bl_tree[zip_REPZ_3_10].fc++; + else + zip_bl_tree[zip_REPZ_11_138].fc++; + count = 0; prevlen = curlen; + if(nextlen == 0) { + max_count = 138; + min_count = 3; + } else if(curlen == nextlen) { + max_count = 6; + min_count = 3; + } else { + max_count = 7; + min_count = 4; + } + } +} + + /* ========================================================================== + * Send a literal or distance tree in compressed form, using the codes in + * bl_tree. + */ +function zip_send_tree(tree, // the tree to be scanned + max_code) { // and its largest code of non zero frequency + var n; // iterates over all tree elements + var prevlen = -1; // last emitted length + var curlen; // length of current code + var nextlen = tree[0].dl; // length of next code + var count = 0; // repeat count of the current code + var max_count = 7; // max repeat count + var min_count = 4; // min repeat count + + /* tree[max_code+1].dl = -1; */ /* guard already set */ + if(nextlen == 0) { + max_count = 138; + min_count = 3; + } + + for(n = 0; n <= max_code; n++) { + curlen = nextlen; + nextlen = tree[n+1].dl; + if(++count < max_count && curlen == nextlen) { + continue; + } else if(count < min_count) { + do { zip_SEND_CODE(curlen, zip_bl_tree); } while(--count != 0); + } else if(curlen != 0) { + if(curlen != prevlen) { + zip_SEND_CODE(curlen, zip_bl_tree); + count--; + } + // Assert(count >= 3 && count <= 6, " 3_6?"); + zip_SEND_CODE(zip_REP_3_6, zip_bl_tree); + zip_send_bits(count - 3, 2); + } else if(count <= 10) { + zip_SEND_CODE(zip_REPZ_3_10, zip_bl_tree); + zip_send_bits(count-3, 3); + } else { + zip_SEND_CODE(zip_REPZ_11_138, zip_bl_tree); + zip_send_bits(count-11, 7); + } + count = 0; + prevlen = curlen; + if(nextlen == 0) { + max_count = 138; + min_count = 3; + } else if(curlen == nextlen) { + max_count = 6; + min_count = 3; + } else { + max_count = 7; + min_count = 4; + } + } +} + +/* ========================================================================== + * Construct the Huffman tree for the bit lengths and return the index in + * bl_order of the last bit length code to send. + */ +function zip_build_bl_tree() { + var max_blindex; // index of last bit length code of non zero freq + + // Determine the bit length frequencies for literal and distance trees + zip_scan_tree(zip_dyn_ltree, zip_l_desc.max_code); + zip_scan_tree(zip_dyn_dtree, zip_d_desc.max_code); + + // Build the bit length tree: + zip_build_tree(zip_bl_desc); + /* opt_len now includes the length of the tree representations, except + * the lengths of the bit lengths codes and the 5+5+4 bits for the counts. + */ + + /* Determine the number of bit length codes to send. The pkzip format + * requires that at least 4 bit length codes be sent. (appnote.txt says + * 3 but the actual value used is 4.) + */ + for(max_blindex = zip_BL_CODES-1; max_blindex >= 3; max_blindex--) { + if(zip_bl_tree[zip_bl_order[max_blindex]].dl != 0) break; + } + /* Update opt_len to include the bit length tree and counts */ + zip_opt_len += 3*(max_blindex+1) + 5+5+4; +// Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", +// encoder->opt_len, encoder->static_len)); + + return max_blindex; +} + +/* ========================================================================== + * Send the header for a block using dynamic Huffman trees: the counts, the + * lengths of the bit length codes, the literal tree and the distance tree. + * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. + */ +function zip_send_all_trees(lcodes, dcodes, blcodes) { // number of codes for each tree + var rank; // index in bl_order + +// Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes"); +// Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, +// "too many codes"); +// Tracev((stderr, "\nbl counts: ")); + zip_send_bits(lcodes-257, 5); // not +255 as stated in appnote.txt + zip_send_bits(dcodes-1, 5); + zip_send_bits(blcodes-4, 4); // not -3 as stated in appnote.txt + for(rank = 0; rank < blcodes; rank++) { +// Tracev((stderr, "\nbl code %2d ", bl_order[rank])); + zip_send_bits(zip_bl_tree[zip_bl_order[rank]].dl, 3); + } + + // send the literal tree + zip_send_tree(zip_dyn_ltree,lcodes-1); + + // send the distance tree + zip_send_tree(zip_dyn_dtree,dcodes-1); +} + +/* ========================================================================== + * Determine the best encoding for the current block: dynamic trees, static + * trees or store, and output the encoded block to the zip file. + */ +function zip_flush_block(eof) { // true if this is the last block for a file + var opt_lenb, static_lenb; // opt_len and static_len in bytes + var max_blindex; // index of last bit length code of non zero freq + var stored_len; // length of input block + + stored_len = zip_strstart - zip_block_start; + zip_flag_buf[zip_last_flags] = zip_flags; // Save the flags for the last 8 items + + // Construct the literal and distance trees + zip_build_tree(zip_l_desc); +// Tracev((stderr, "\nlit data: dyn %ld, stat %ld", +// encoder->opt_len, encoder->static_len)); + + zip_build_tree(zip_d_desc); +// Tracev((stderr, "\ndist data: dyn %ld, stat %ld", +// encoder->opt_len, encoder->static_len)); + /* At this point, opt_len and static_len are the total bit lengths of + * the compressed block data, excluding the tree representations. + */ + + /* Build the bit length tree for the above two trees, and get the index + * in bl_order of the last bit length code to send. + */ + max_blindex = zip_build_bl_tree(); + + // Determine the best encoding. Compute first the block length in bytes + opt_lenb = (zip_opt_len +3+7)>>3; + static_lenb = (zip_static_len+3+7)>>3; + +// Trace((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u dist %u ", +// opt_lenb, encoder->opt_len, +// static_lenb, encoder->static_len, stored_len, +// encoder->last_lit, encoder->last_dist)); + + if(static_lenb <= opt_lenb) + opt_lenb = static_lenb; + if(stored_len + 4 <= opt_lenb // 4: two words for the lengths + && zip_block_start >= 0) { + var i; + + /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. + * Otherwise we can't have processed more than WSIZE input bytes since + * the last block flush, because compression would have been + * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to + * transform a block into a stored block. + */ + zip_send_bits((zip_STORED_BLOCK<<1)+eof, 3); /* send block type */ + zip_bi_windup(); /* align on byte boundary */ + zip_put_short(stored_len); + zip_put_short(~stored_len); + + // copy block +/* + p = &window[block_start]; + for(i = 0; i < stored_len; i++) + put_byte(p[i]); +*/ + for(i = 0; i < stored_len; i++) + zip_put_byte(zip_window[zip_block_start + i]); + + } else if(static_lenb == opt_lenb) { + zip_send_bits((zip_STATIC_TREES<<1)+eof, 3); + zip_compress_block(zip_static_ltree, zip_static_dtree); + } else { + zip_send_bits((zip_DYN_TREES<<1)+eof, 3); + zip_send_all_trees(zip_l_desc.max_code+1, + zip_d_desc.max_code+1, + max_blindex+1); + zip_compress_block(zip_dyn_ltree, zip_dyn_dtree); + } + + zip_init_block(); + + if(eof != 0) + zip_bi_windup(); +} + +/* ========================================================================== + * Save the match info and tally the frequency counts. Return true if + * the current block must be flushed. + */ +function zip_ct_tally( + dist, // distance of matched string + lc) { // match length-MIN_MATCH or unmatched char (if dist==0) + zip_l_buf[zip_last_lit++] = lc; + if(dist == 0) { + // lc is the unmatched char + zip_dyn_ltree[lc].fc++; + } else { + // Here, lc is the match length - MIN_MATCH + dist--; // dist = match distance - 1 +// Assert((ush)dist < (ush)MAX_DIST && +// (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) && +// (ush)D_CODE(dist) < (ush)D_CODES, "ct_tally: bad match"); + + zip_dyn_ltree[zip_length_code[lc]+zip_LITERALS+1].fc++; + zip_dyn_dtree[zip_D_CODE(dist)].fc++; + + zip_d_buf[zip_last_dist++] = dist; + zip_flags |= zip_flag_bit; + } + zip_flag_bit <<= 1; + + // Output the flags if they fill a byte + if((zip_last_lit & 7) == 0) { + zip_flag_buf[zip_last_flags++] = zip_flags; + zip_flags = 0; + zip_flag_bit = 1; + } + // Try to guess if it is profitable to stop the current block here + if(zip_compr_level > 2 && (zip_last_lit & 0xfff) == 0) { + // Compute an upper bound for the compressed length + var out_length = zip_last_lit * 8; + var in_length = zip_strstart - zip_block_start; + var dcode; + + for(dcode = 0; dcode < zip_D_CODES; dcode++) { + out_length += zip_dyn_dtree[dcode].fc * (5 + zip_extra_dbits[dcode]); + } + out_length >>= 3; +// Trace((stderr,"\nlast_lit %u, last_dist %u, in %ld, out ~%ld(%ld%%) ", +// encoder->last_lit, encoder->last_dist, in_length, out_length, +// 100L - out_length*100L/in_length)); + if(zip_last_dist < parseInt(zip_last_lit/2) && + out_length < parseInt(in_length/2)) + return true; + } + return (zip_last_lit == zip_LIT_BUFSIZE-1 || + zip_last_dist == zip_DIST_BUFSIZE); + /* We avoid equality with LIT_BUFSIZE because of wraparound at 64K + * on 16 bit machines and because stored blocks are restricted to + * 64K-1 bytes. + */ +} + + /* ========================================================================== + * Send the block data compressed using the given Huffman trees + */ +function zip_compress_block( + ltree, // literal tree + dtree) { // distance tree + var dist; // distance of matched string + var lc; // match length or unmatched char (if dist == 0) + var lx = 0; // running index in l_buf + var dx = 0; // running index in d_buf + var fx = 0; // running index in flag_buf + var flag = 0; // current flags + var code; // the code to send + var extra; // number of extra bits to send + + if(zip_last_lit != 0) do { + if((lx & 7) == 0) + flag = zip_flag_buf[fx++]; + lc = zip_l_buf[lx++] & 0xff; + if((flag & 1) == 0) { + zip_SEND_CODE(lc, ltree); /* send a literal byte */ +// Tracecv(isgraph(lc), (stderr," '%c' ", lc)); + } else { + // Here, lc is the match length - MIN_MATCH + code = zip_length_code[lc]; + zip_SEND_CODE(code+zip_LITERALS+1, ltree); // send the length code + extra = zip_extra_lbits[code]; + if(extra != 0) { + lc -= zip_base_length[code]; + zip_send_bits(lc, extra); // send the extra length bits + } + dist = zip_d_buf[dx++]; + // Here, dist is the match distance - 1 + code = zip_D_CODE(dist); +// Assert (code < D_CODES, "bad d_code"); + + zip_SEND_CODE(code, dtree); // send the distance code + extra = zip_extra_dbits[code]; + if(extra != 0) { + dist -= zip_base_dist[code]; + zip_send_bits(dist, extra); // send the extra distance bits + } + } // literal or match pair ? + flag >>= 1; + } while(lx < zip_last_lit); + + zip_SEND_CODE(zip_END_BLOCK, ltree); +} + +/* ========================================================================== + * Send a value on a given number of bits. + * IN assertion: length <= 16 and value fits in length bits. + */ +var zip_Buf_size = 16; // bit size of bi_buf +function zip_send_bits( + value, // value to send + length) { // number of bits + /* If not enough room in bi_buf, use (valid) bits from bi_buf and + * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid)) + * unused bits in value. + */ + if(zip_bi_valid > zip_Buf_size - length) { + zip_bi_buf |= (value << zip_bi_valid); + zip_put_short(zip_bi_buf); + zip_bi_buf = (value >> (zip_Buf_size - zip_bi_valid)); + zip_bi_valid += length - zip_Buf_size; + } else { + zip_bi_buf |= value << zip_bi_valid; + zip_bi_valid += length; + } +} + +/* ========================================================================== + * Reverse the first len bits of a code, using straightforward code (a faster + * method would use a table) + * IN assertion: 1 <= len <= 15 + */ +function zip_bi_reverse( + code, // the value to invert + len) { // its bit length + var res = 0; + do { + res |= code & 1; + code >>= 1; + res <<= 1; + } while(--len > 0); + return res >> 1; +} + +/* ========================================================================== + * Write out any remaining bits in an incomplete byte. + */ +function zip_bi_windup() { + if(zip_bi_valid > 8) { + zip_put_short(zip_bi_buf); + } else if(zip_bi_valid > 0) { + zip_put_byte(zip_bi_buf); + } + zip_bi_buf = 0; + zip_bi_valid = 0; +} + +function zip_qoutbuf() { + if(zip_outcnt != 0) { + var q, i; + q = zip_new_queue(); + if(zip_qhead == null) + zip_qhead = zip_qtail = q; + else + zip_qtail = zip_qtail.next = q; + q.len = zip_outcnt - zip_outoff; +// System.arraycopy(zip_outbuf, zip_outoff, q.ptr, 0, q.len); + for(i = 0; i < q.len; i++) + q.ptr[i] = zip_outbuf[zip_outoff + i]; + zip_outcnt = zip_outoff = 0; + } +} + +function zip_deflate(str, level) { + var out, buff; + var i, j; + + zip_deflate_data = str; + zip_deflate_pos = 0; + if(typeof level == "undefined") + level = zip_DEFAULT_LEVEL; + zip_deflate_start(level); + + buff = new Array(1024); + out = ""; + while((i = zip_deflate_internal(buff, 0, buff.length)) > 0) { + for(j = 0; j < i; j++) + out += String.fromCharCode(buff[j]); + } + zip_deflate_data = null; // G.C. + return out; +} diff --git a/encode.js b/encode.js new file mode 100644 index 0000000..1185541 --- /dev/null +++ b/encode.js @@ -0,0 +1,52 @@ +/** Functions from https://plantuml.com/code-javascript-synchronous + */ + +function encode64(data) { + r = ""; + for (i=0; i> 2; + c2 = ((b1 & 0x3) << 4) | (b2 >> 4); + c3 = ((b2 & 0xF) << 2) | (b3 >> 6); + c4 = b3 & 0x3F; + r = ""; + r += encode6bit(c1 & 0x3F); + r += encode6bit(c2 & 0x3F); + r += encode6bit(c3 & 0x3F); + r += encode6bit(c4 & 0x3F); + return r; +} + +function encode6bit(b) { + if (b < 10) { + return String.fromCharCode(48 + b); + } + b -= 10; + if (b < 26) { + return String.fromCharCode(65 + b); + } + b -= 26; + if (b < 26) { + return String.fromCharCode(97 + b); + } + b -= 26; + if (b == 0) { + return '-'; + } + if (b == 1) { + return '_'; + } + return '?'; +} \ No newline at end of file diff --git a/plantuml_codeblock_parse.js b/plantuml_codeblock_parse.js new file mode 100644 index 0000000..19dc95d --- /dev/null +++ b/plantuml_codeblock_parse.js @@ -0,0 +1,11 @@ + +var plantumlBasePath = "http://www.plantuml.com/plantuml/img/" + +var codeBlocks = document.getElementsByClassName("language-plantuml"); + +for (var i = 0; i < codeBlocks.length; i++) { + s = codeBlocks[i].innerHTML + //UTF8 + s = unescape(encodeURIComponent(s)); + codeBlocks[i].innerHTML = ""; +}