1
0
mirror of https://github.com/octoleo/plantuml.git synced 2024-06-01 08:00:48 +00:00
plantuml/src/com/google/zxing/ResultPoint.java
2011-04-19 18:50:40 +02:00

128 lines
3.7 KiB
Java

/*
* Copyright 2007 ZXing authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.zxing;
/**
* <p>Encapsulates a point of interest in an image containing a barcode. Typically, this
* would be the location of a finder pattern or the corner of the barcode, for example.</p>
*
* @author Sean Owen
*/
public class ResultPoint {
private final float x;
private final float y;
public ResultPoint(float x, float y) {
this.x = x;
this.y = y;
}
public final float getX() {
return x;
}
public final float getY() {
return y;
}
public boolean equals(Object other) {
if (other instanceof ResultPoint) {
ResultPoint otherPoint = (ResultPoint) other;
return x == otherPoint.x && y == otherPoint.y;
}
return false;
}
public int hashCode() {
return 31 * Float.floatToIntBits(x) + Float.floatToIntBits(y);
}
public String toString() {
StringBuffer result = new StringBuffer(25);
result.append('(');
result.append(x);
result.append(',');
result.append(y);
result.append(')');
return result.toString();
}
/**
* <p>Orders an array of three ResultPoints in an order [A,B,C] such that AB < AC and
* BC < AC and the angle between BC and BA is less than 180 degrees.
*/
public static void orderBestPatterns(ResultPoint[] patterns) {
// Find distances between pattern centers
float zeroOneDistance = distance(patterns[0], patterns[1]);
float oneTwoDistance = distance(patterns[1], patterns[2]);
float zeroTwoDistance = distance(patterns[0], patterns[2]);
ResultPoint pointA, pointB, pointC;
// Assume one closest to other two is B; A and C will just be guesses at first
if (oneTwoDistance >= zeroOneDistance && oneTwoDistance >= zeroTwoDistance) {
pointB = patterns[0];
pointA = patterns[1];
pointC = patterns[2];
} else if (zeroTwoDistance >= oneTwoDistance && zeroTwoDistance >= zeroOneDistance) {
pointB = patterns[1];
pointA = patterns[0];
pointC = patterns[2];
} else {
pointB = patterns[2];
pointA = patterns[0];
pointC = patterns[1];
}
// Use cross product to figure out whether A and C are correct or flipped.
// This asks whether BC x BA has a positive z component, which is the arrangement
// we want for A, B, C. If it's negative, then we've got it flipped around and
// should swap A and C.
if (crossProductZ(pointA, pointB, pointC) < 0.0f) {
ResultPoint temp = pointA;
pointA = pointC;
pointC = temp;
}
patterns[0] = pointA;
patterns[1] = pointB;
patterns[2] = pointC;
}
/**
* @return distance between two points
*/
public static float distance(ResultPoint pattern1, ResultPoint pattern2) {
float xDiff = pattern1.getX() - pattern2.getX();
float yDiff = pattern1.getY() - pattern2.getY();
return (float) Math.sqrt((double) (xDiff * xDiff + yDiff * yDiff));
}
/**
* Returns the z component of the cross product between vectors BC and BA.
*/
private static float crossProductZ(ResultPoint pointA, ResultPoint pointB, ResultPoint pointC) {
float bX = pointB.x;
float bY = pointB.y;
return ((pointC.x - bX) * (pointA.y - bY)) - ((pointC.y - bY) * (pointA.x - bX));
}
}