2
1
mirror of https://github.com/qpdf/qpdf.git synced 2024-11-16 09:37:08 +00:00
qpdf/libqpdf/QPDF_encryption.cc

913 lines
23 KiB
C++
Raw Normal View History

// This file implements methods from the QPDF class that involve
// encryption.
#include <qpdf/QPDF.hh>
#include <qpdf/QPDFExc.hh>
#include <qpdf/QTC.hh>
#include <qpdf/QUtil.hh>
#include <qpdf/Pl_RC4.hh>
#include <qpdf/Pl_AES_PDF.hh>
#include <qpdf/Pl_Buffer.hh>
#include <qpdf/RC4.hh>
#include <qpdf/MD5.hh>
#include <assert.h>
#include <string.h>
static char const padding_string[] = {
0x28, 0xbf, 0x4e, 0x5e, 0x4e, 0x75, 0x8a, 0x41,
0x64, 0x00, 0x4e, 0x56, 0xff, 0xfa, 0x01, 0x08,
0x2e, 0x2e, 0x00, 0xb6, 0xd0, 0x68, 0x3e, 0x80,
0x2f, 0x0c, 0xa9, 0xfe, 0x64, 0x53, 0x69, 0x7a
};
static unsigned int const O_key_bytes = sizeof(MD5::Digest);
static unsigned int const id_bytes = 16;
static unsigned int const key_bytes = 32;
void
pad_or_truncate_password(std::string const& password, char k1[key_bytes])
{
int password_bytes = std::min((size_t) key_bytes, password.length());
int pad_bytes = key_bytes - password_bytes;
memcpy(k1, password.c_str(), password_bytes);
memcpy(k1 + password_bytes, padding_string, pad_bytes);
}
void
QPDF::trim_user_password(std::string& user_password)
{
// Although unnecessary, this routine trims the padding string
// from the end of a user password. Its only purpose is for
// recovery of user passwords which is done in the test suite.
char const* cstr = user_password.c_str();
size_t len = user_password.length();
if (len < key_bytes)
{
return;
}
char const* p = 0;
while ((p = strchr(cstr, '\x28')) != 0)
{
if (memcmp(p, padding_string, len - (p - cstr)) == 0)
{
user_password = user_password.substr(0, p - cstr);
return;
}
}
}
static std::string
pad_or_truncate_password(std::string const& password)
{
char k1[key_bytes];
pad_or_truncate_password(password, k1);
return std::string(k1, key_bytes);
}
static void
iterate_md5_digest(MD5& md5, MD5::Digest& digest, int iterations)
{
md5.digest(digest);
for (int i = 0; i < iterations; ++i)
{
MD5 m;
m.encodeDataIncrementally((char*)digest, sizeof(digest));
m.digest(digest);
}
}
static void
iterate_rc4(unsigned char* data, int data_len,
unsigned char* okey, int key_len,
int iterations, bool reverse)
{
unsigned char* key = new unsigned char[key_len];
for (int i = 0; i < iterations; ++i)
{
int const xor_value = (reverse ? iterations - 1 - i : i);
for (int j = 0; j < key_len; ++j)
{
key[j] = okey[j] ^ xor_value;
}
RC4 rc4(key, key_len);
rc4.process(data, data_len);
}
delete [] key;
}
std::string
QPDF::compute_data_key(std::string const& encryption_key,
int objid, int generation,
bool use_aes)
{
// Algorithm 3.1 from the PDF 1.7 Reference Manual
std::string result = encryption_key;
// Append low three bytes of object ID and low two bytes of generation
result += (char) (objid & 0xff);
result += (char) ((objid >> 8) & 0xff);
result += (char) ((objid >> 16) & 0xff);
result += (char) (generation & 0xff);
result += (char) ((generation >> 8) & 0xff);
if (use_aes)
{
result += "sAlT";
}
MD5 md5;
md5.encodeDataIncrementally(result.c_str(), result.length());
MD5::Digest digest;
md5.digest(digest);
return std::string((char*) digest,
std::min(result.length(), (size_t) 16));
}
std::string
QPDF::compute_encryption_key(
std::string const& password, EncryptionData const& data)
{
// Algorithm 3.2 from the PDF 1.7 Reference Manual
MD5 md5;
md5.encodeDataIncrementally(
pad_or_truncate_password(password).c_str(), key_bytes);
md5.encodeDataIncrementally(data.O.c_str(), key_bytes);
char pbytes[4];
pbytes[0] = (char) (data.P & 0xff);
pbytes[1] = (char) ((data.P >> 8) & 0xff);
pbytes[2] = (char) ((data.P >> 16) & 0xff);
pbytes[3] = (char) ((data.P >> 24) & 0xff);
md5.encodeDataIncrementally(pbytes, 4);
md5.encodeDataIncrementally(data.id1.c_str(), id_bytes);
if ((data.R >= 4) && (! data.encrypt_metadata))
{
char bytes[4];
memset(bytes, 0xff, 4);
md5.encodeDataIncrementally(bytes, 4);
}
MD5::Digest digest;
iterate_md5_digest(md5, digest, ((data.R >= 3) ? 50 : 0));
return std::string((char*)digest, data.Length_bytes);
}
static void
compute_O_rc4_key(std::string const& user_password,
std::string const& owner_password,
QPDF::EncryptionData const& data,
unsigned char key[O_key_bytes])
{
std::string password = owner_password;
if (password.empty())
{
password = user_password;
}
MD5 md5;
md5.encodeDataIncrementally(
pad_or_truncate_password(password).c_str(), key_bytes);
MD5::Digest digest;
iterate_md5_digest(md5, digest, ((data.R >= 3) ? 50 : 0));
memcpy(key, digest, O_key_bytes);
}
static std::string
compute_O_value(std::string const& user_password,
std::string const& owner_password,
QPDF::EncryptionData const& data)
{
// Algorithm 3.3 from the PDF 1.7 Reference Manual
unsigned char O_key[O_key_bytes];
compute_O_rc4_key(user_password, owner_password, data, O_key);
char upass[key_bytes];
pad_or_truncate_password(user_password, upass);
iterate_rc4((unsigned char*) upass, key_bytes,
O_key, data.Length_bytes, (data.R >= 3) ? 20 : 1, false);
return std::string(upass, key_bytes);
}
static
std::string
compute_U_value_R2(std::string const& user_password,
QPDF::EncryptionData const& data)
{
// Algorithm 3.4 from the PDF 1.7 Reference Manual
std::string k1 = QPDF::compute_encryption_key(user_password, data);
char udata[key_bytes];
pad_or_truncate_password("", udata);
iterate_rc4((unsigned char*) udata, key_bytes,
(unsigned char*)k1.c_str(), data.Length_bytes, 1, false);
return std::string(udata, key_bytes);
}
static
std::string
compute_U_value_R3(std::string const& user_password,
QPDF::EncryptionData const& data)
{
// Algorithm 3.5 from the PDF 1.7 Reference Manual
std::string k1 = QPDF::compute_encryption_key(user_password, data);
MD5 md5;
md5.encodeDataIncrementally(
pad_or_truncate_password("").c_str(), key_bytes);
md5.encodeDataIncrementally(data.id1.c_str(), data.id1.length());
MD5::Digest digest;
md5.digest(digest);
iterate_rc4(digest, sizeof(MD5::Digest),
(unsigned char*) k1.c_str(), data.Length_bytes, 20, false);
char result[key_bytes];
memcpy(result, digest, sizeof(MD5::Digest));
// pad with arbitrary data -- make it consistent for the sake of
// testing
for (unsigned int i = sizeof(MD5::Digest); i < key_bytes; ++i)
{
result[i] = (char)((i * i) % 0xff);
}
return std::string(result, key_bytes);
}
static std::string
compute_U_value(std::string const& user_password,
QPDF::EncryptionData const& data)
{
if (data.R >= 3)
{
return compute_U_value_R3(user_password, data);
}
return compute_U_value_R2(user_password, data);
}
static bool
check_user_password(std::string const& user_password,
QPDF::EncryptionData const& data)
{
// Algorithm 3.6 from the PDF 1.7 Reference Manual
std::string u_value = compute_U_value(user_password, data);
int to_compare = ((data.R >= 3) ? sizeof(MD5::Digest) : key_bytes);
return (memcmp(data.U.c_str(), u_value.c_str(), to_compare) == 0);
}
static bool
check_owner_password(std::string& user_password,
std::string const& owner_password,
QPDF::EncryptionData const& data)
{
// Algorithm 3.7 from the PDF 1.7 Reference Manual
unsigned char key[O_key_bytes];
compute_O_rc4_key(user_password, owner_password, data, key);
unsigned char O_data[key_bytes];
memcpy(O_data, (unsigned char*) data.O.c_str(), key_bytes);
iterate_rc4(O_data, key_bytes, key, data.Length_bytes,
(data.R >= 3) ? 20 : 1, true);
std::string new_user_password =
std::string((char*)O_data, key_bytes);
bool result = false;
if (check_user_password(new_user_password, data))
{
result = true;
user_password = new_user_password;
}
return result;
}
QPDF::encryption_method_e
QPDF::interpretCF(QPDFObjectHandle cf)
{
if (cf.isName())
{
std::string filter = cf.getName();
if (this->crypt_filters.count(filter) != 0)
{
return this->crypt_filters[filter];
}
else if (filter == "/Identity")
{
return e_none;
}
else
{
return e_unknown;
}
}
else
{
// Default: /Identity
return e_none;
}
}
void
QPDF::initializeEncryption()
{
if (this->encryption_initialized)
{
return;
}
this->encryption_initialized = true;
// After we initialize encryption parameters, we must used stored
// key information and never look at /Encrypt again. Otherwise,
// things could go wrong if someone mutates the encryption
// dictionary.
if (! this->trailer.hasKey("/Encrypt"))
{
return;
}
// Go ahead and set this->encryption here. That way, isEncrypted
// will return true even if there were errors reading the
// encryption dictionary.
this->encrypted = true;
QPDFObjectHandle id_obj = this->trailer.getKey("/ID");
if (! (id_obj.isArray() &&
(id_obj.getArrayNItems() == 2) &&
id_obj.getArrayItem(0).isString()))
{
throw QPDFExc(qpdf_e_damaged_pdf, this->file.getName(),
"trailer", this->file.getLastOffset(),
"invalid /ID in trailer dictionary");
}
std::string id1 = id_obj.getArrayItem(0).getStringValue();
if (id1.length() != id_bytes)
{
throw QPDFExc(qpdf_e_damaged_pdf, this->file.getName(),
"trailer", this->file.getLastOffset(),
"first /ID string in trailer dictionary has "
"incorrect length");
}
QPDFObjectHandle encryption_dict = this->trailer.getKey("/Encrypt");
if (! encryption_dict.isDictionary())
{
throw QPDFExc(qpdf_e_damaged_pdf, this->file.getName(),
this->last_object_description,
this->file.getLastOffset(),
"/Encrypt in trailer dictionary is not a dictionary");
}
if (! (encryption_dict.getKey("/Filter").isName() &&
(encryption_dict.getKey("/Filter").getName() == "/Standard")))
{
throw QPDFExc(qpdf_e_damaged_pdf, this->file.getName(),
"encryption dictionary", this->file.getLastOffset(),
"unsupported encryption filter");
}
if (! encryption_dict.getKey("/SubFilter").isNull())
{
warn(QPDFExc(qpdf_e_unsupported, this->file.getName(),
"encryption dictionary", this->file.getLastOffset(),
"file uses encryption SubFilters,"
" which qpdf does not support"));
}
if (! (encryption_dict.getKey("/V").isInteger() &&
encryption_dict.getKey("/R").isInteger() &&
encryption_dict.getKey("/O").isString() &&
encryption_dict.getKey("/U").isString() &&
encryption_dict.getKey("/P").isInteger()))
{
throw QPDFExc(qpdf_e_damaged_pdf, this->file.getName(),
"encryption dictionary", this->file.getLastOffset(),
"some encryption dictionary parameters are missing "
"or the wrong type");
}
int V = encryption_dict.getKey("/V").getIntValue();
int R = encryption_dict.getKey("/R").getIntValue();
std::string O = encryption_dict.getKey("/O").getStringValue();
std::string U = encryption_dict.getKey("/U").getStringValue();
unsigned int P = (unsigned int) encryption_dict.getKey("/P").getIntValue();
if (! (((R == 2) || (R == 3) || (R == 4)) &&
((V == 1) || (V == 2) || (V == 4))))
{
throw QPDFExc(qpdf_e_unsupported, this->file.getName(),
"encryption dictionary", this->file.getLastOffset(),
"Unsupported /R or /V in encryption dictionary");
}
this->encryption_V = V;
if (! ((O.length() == key_bytes) && (U.length() == key_bytes)))
{
throw QPDFExc(qpdf_e_damaged_pdf, this->file.getName(),
"encryption dictionary", this->file.getLastOffset(),
"incorrect length for /O and/or /P in "
"encryption dictionary");
}
int Length = 40;
if (encryption_dict.getKey("/Length").isInteger())
{
Length = encryption_dict.getKey("/Length").getIntValue();
if ((Length % 8) || (Length < 40) || (Length > 128))
{
throw QPDFExc(qpdf_e_damaged_pdf, this->file.getName(),
"encryption dictionary", this->file.getLastOffset(),
"invalid /Length value in encryption dictionary");
}
}
this->encrypt_metadata = true;
if ((V >= 4) && (encryption_dict.getKey("/EncryptMetadata").isBool()))
{
this->encrypt_metadata =
encryption_dict.getKey("/EncryptMetadata").getBoolValue();
}
if (V == 4)
{
QPDFObjectHandle CF = encryption_dict.getKey("/CF");
std::set<std::string> keys = CF.getKeys();
for (std::set<std::string>::iterator iter = keys.begin();
iter != keys.end(); ++iter)
{
std::string const& filter = *iter;
QPDFObjectHandle cdict = CF.getKey(filter);
if (cdict.isDictionary())
{
encryption_method_e method = e_none;
if (cdict.getKey("/CFM").isName())
{
std::string method_name = cdict.getKey("/CFM").getName();
if (method_name == "/V2")
{
QTC::TC("qpdf", "QPDF_encryption CFM V2");
method = e_rc4;
}
else if (method_name == "/AESV2")
{
QTC::TC("qpdf", "QPDF_encryption CFM AESV2");
method = e_aes;
}
else
{
// Don't complain now -- maybe we won't need
// to reference this type.
method = e_unknown;
}
}
this->crypt_filters[filter] = method;
}
}
QPDFObjectHandle StmF = encryption_dict.getKey("/StmF");
QPDFObjectHandle StrF = encryption_dict.getKey("/StrF");
QPDFObjectHandle EFF = encryption_dict.getKey("/EFF");
this->cf_stream = interpretCF(StmF);
this->cf_string = interpretCF(StrF);
if (EFF.isName())
{
this->cf_file = interpretCF(EFF);
}
else
{
this->cf_file = this->cf_stream;
}
if (this->cf_file != this->cf_stream)
{
throw QPDFExc(qpdf_e_unsupported, this->file.getName(),
"encryption dictionary", this->file.getLastOffset(),
"This document has embedded files that are"
" encrypted differently from the rest of the file."
" qpdf does not presently support this due to"
" lack of test data; if possible, please submit"
" a bug report that includes this file.");
}
}
EncryptionData data(V, R, Length / 8, P, O, U, id1, this->encrypt_metadata);
if (check_owner_password(
this->user_password, this->provided_password, data))
{
// password supplied was owner password; user_password has
// been initialized
}
else if (check_user_password(this->provided_password, data))
{
this->user_password = this->provided_password;
}
else
{
throw QPDFExc(qpdf_e_password, this->file.getName(),
"", 0, "invalid password");
}
this->encryption_key = compute_encryption_key(this->user_password, data);
}
std::string
QPDF::getKeyForObject(int objid, int generation, bool use_aes)
{
if (! this->encrypted)
{
throw std::logic_error(
"request for encryption key in non-encrypted PDF");
}
if (! ((objid == this->cached_key_objid) &&
(generation == this->cached_key_generation)))
{
this->cached_object_encryption_key =
compute_data_key(this->encryption_key, objid, generation, use_aes);
this->cached_key_objid = objid;
this->cached_key_generation = generation;
}
return this->cached_object_encryption_key;
}
void
QPDF::decryptString(std::string& str, int objid, int generation)
{
if (objid == 0)
{
return;
}
bool use_aes = false;
if (this->encryption_V == 4)
{
switch (this->cf_string)
{
case e_none:
return;
case e_aes:
use_aes = true;
break;
case e_rc4:
break;
default:
warn(QPDFExc(qpdf_e_damaged_pdf, this->file.getName(),
this->last_object_description,
this->file.getLastOffset(),
"unknown encryption filter for strings"
" (check /StrF in /Encrypt dictionary);"
" strings may be decrypted improperly"));
// To avoid repeated warnings, reset cf_string. Assume
// we'd want to use AES if V == 4.
this->cf_string = e_aes;
break;
}
}
std::string key = getKeyForObject(objid, generation, use_aes);
try
{
if (use_aes)
{
QTC::TC("qpdf", "QPDF_encryption aes decode string");
assert(key.length() == Pl_AES_PDF::key_size);
Pl_Buffer bufpl("decrypted string");
Pl_AES_PDF pl("aes decrypt string", &bufpl, false,
(unsigned char const*)key.c_str());
pl.write((unsigned char*)str.c_str(), str.length());
pl.finish();
PointerHolder<Buffer> buf = bufpl.getBuffer();
str = std::string((char*)buf.getPointer()->getBuffer(),
(size_t)buf.getPointer()->getSize());
}
else
{
QTC::TC("qpdf", "QPDF_encryption rc4 decode string");
unsigned int vlen = str.length();
// Using PointerHolder will cause a new char[] to be deleted
// with delete instead of delete [], but it's okay since the
// array is of a fundamental type, so there is no destructor
// to be called. Using PointerHolder guarantees that tmp will
// be freed even if rc4.process throws an exception.
PointerHolder<char> tmp = QUtil::copy_string(str);
RC4 rc4((unsigned char const*)key.c_str(), key.length());
rc4.process((unsigned char*)tmp.getPointer(), vlen);
str = std::string(tmp.getPointer(), vlen);
}
}
catch (QPDFExc& e)
{
throw;
}
catch (std::runtime_error& e)
{
throw QPDFExc(qpdf_e_damaged_pdf, this->file.getName(),
this->last_object_description, this->file.getLastOffset(),
"error decrypting string for object " +
QUtil::int_to_string(objid) + " " +
QUtil::int_to_string(generation) + ": " + e.what());
}
}
void
QPDF::decryptStream(Pipeline*& pipeline, int objid, int generation,
QPDFObjectHandle& stream_dict,
std::vector<PointerHolder<Pipeline> >& heap)
{
std::string type;
if (stream_dict.getKey("/Type").isName())
{
type = stream_dict.getKey("/Type").getName();
}
if (type == "/XRef")
{
QTC::TC("qpdf", "QPDF_encryption xref stream from encrypted file");
return;
}
bool use_aes = false;
if (this->encryption_V == 4)
{
encryption_method_e method = e_unknown;
std::string method_source = "/StmF from /Encrypt dictionary";
if (stream_dict.getKey("/Filter").isOrHasName("/Crypt") &&
stream_dict.getKey("/DecodeParms").isDictionary())
{
QPDFObjectHandle decode_parms = stream_dict.getKey("/DecodeParms");
if (decode_parms.getKey("/Type").isName() &&
(decode_parms.getKey("/Type").getName() ==
"/CryptFilterDecodeParms"))
{
QTC::TC("qpdf", "QPDF_encryption stream crypt filter");
method = interpretCF(decode_parms.getKey("/Name"));
method_source = "stream's Crypt decode parameters";
}
}
if (method == e_unknown)
{
if ((! this->encrypt_metadata) && (type == "/Metadata"))
{
QTC::TC("qpdf", "QPDF_encryption cleartext metadata");
method = e_none;
}
else
{
// NOTE: We should should use cf_file if this is an
// embedded file, but we can't yet detect embedded
// file streams as such.
method = this->cf_stream;
}
}
use_aes = false;
switch (method)
{
case e_none:
return;
break;
case e_aes:
use_aes = true;
break;
case e_rc4:
break;
default:
// filter local to this stream.
warn(QPDFExc(qpdf_e_damaged_pdf, this->file.getName(),
this->last_object_description,
this->file.getLastOffset(),
"unknown encryption filter for streams"
" (check " + method_source + ");"
" streams may be decrypted improperly"));
// To avoid repeated warnings, reset cf_stream. Assume
// we'd want to use AES if V == 4.
this->cf_stream = e_aes;
break;
}
}
std::string key = getKeyForObject(objid, generation, use_aes);
if (use_aes)
{
QTC::TC("qpdf", "QPDF_encryption aes decode stream");
assert(key.length() == Pl_AES_PDF::key_size);
pipeline = new Pl_AES_PDF("AES stream decryption", pipeline,
false, (unsigned char*) key.c_str());
}
else
{
QTC::TC("qpdf", "QPDF_encryption rc4 decode stream");
pipeline = new Pl_RC4("RC4 stream decryption", pipeline,
(unsigned char*) key.c_str(), key.length());
}
heap.push_back(pipeline);
}
void
QPDF::compute_encryption_O_U(
char const* user_password, char const* owner_password,
int V, int R, int key_len, int P, bool encrypt_metadata,
std::string const& id1, std::string& O, std::string& U)
{
EncryptionData data(V, R, key_len, P, "", "", id1, encrypt_metadata);
data.O = compute_O_value(user_password, owner_password, data);
O = data.O;
U = compute_U_value(user_password, data);
}
std::string const&
QPDF::getPaddedUserPassword() const
{
return this->user_password;
}
std::string
QPDF::getTrimmedUserPassword() const
{
std::string result = this->user_password;
trim_user_password(result);
return result;
}
bool
QPDF::isEncrypted() const
{
return this->encrypted;
}
bool
QPDF::isEncrypted(int& R, int& P)
{
if (this->encrypted)
{
QPDFObjectHandle trailer = getTrailer();
QPDFObjectHandle encrypt = trailer.getKey("/Encrypt");
QPDFObjectHandle Pkey = encrypt.getKey("/P");
QPDFObjectHandle Rkey = encrypt.getKey("/R");
P = Pkey.getIntValue();
R = Rkey.getIntValue();
return true;
}
else
{
return false;
}
}
static bool
is_bit_set(int P, int bit)
{
// Bits in P are numbered from 1 in the spec
return (P & (1 << (bit - 1)));
}
bool
QPDF::allowAccessibility()
{
int R = 0;
int P = 0;
bool status = true;
if (isEncrypted(R, P))
{
if (R < 3)
{
status = is_bit_set(P, 5);
}
else
{
status = is_bit_set(P, 10);
}
}
return status;
}
bool
QPDF::allowExtractAll()
{
int R = 0;
int P = 0;
bool status = true;
if (isEncrypted(R, P))
{
status = is_bit_set(P, 5);
}
return status;
}
bool
QPDF::allowPrintLowRes()
{
int R = 0;
int P = 0;
bool status = true;
if (isEncrypted(R, P))
{
status = is_bit_set(P, 3);
}
return status;
}
bool
QPDF::allowPrintHighRes()
{
int R = 0;
int P = 0;
bool status = true;
if (isEncrypted(R, P))
{
status = is_bit_set(P, 3);
if ((R >= 3) && (! is_bit_set(P, 12)))
{
status = false;
}
}
return status;
}
bool
QPDF::allowModifyAssembly()
{
int R = 0;
int P = 0;
bool status = true;
if (isEncrypted(R, P))
{
if (R < 3)
{
status = is_bit_set(P, 4);
}
else
{
status = is_bit_set(P, 11);
}
}
return status;
}
bool
QPDF::allowModifyForm()
{
int R = 0;
int P = 0;
bool status = true;
if (isEncrypted(R, P))
{
if (R < 3)
{
status = is_bit_set(P, 6);
}
else
{
status = is_bit_set(P, 9);
}
}
return status;
}
bool
QPDF::allowModifyAnnotation()
{
int R = 0;
int P = 0;
bool status = true;
if (isEncrypted(R, P))
{
status = is_bit_set(P, 6);
}
return status;
}
bool
QPDF::allowModifyOther()
{
int R = 0;
int P = 0;
bool status = true;
if (isEncrypted(R, P))
{
status = is_bit_set(P, 4);
}
return status;
}
bool
QPDF::allowModifyAll()
{
int R = 0;
int P = 0;
bool status = true;
if (isEncrypted(R, P))
{
status = (is_bit_set(P, 4) && is_bit_set(P, 6));
if (R >= 3)
{
status = status && (is_bit_set(P, 9) && is_bit_set(P, 11));
}
}
return status;
}