// This file implements methods from the QPDF class that involve // encryption. #include #include #include #include #include #include #include static char const padding_string[] = { 0x28, 0xbf, 0x4e, 0x5e, 0x4e, 0x75, 0x8a, 0x41, 0x64, 0x00, 0x4e, 0x56, 0xff, 0xfa, 0x01, 0x08, 0x2e, 0x2e, 0x00, 0xb6, 0xd0, 0x68, 0x3e, 0x80, 0x2f, 0x0c, 0xa9, 0xfe, 0x64, 0x53, 0x69, 0x7a }; static unsigned int const O_key_bytes = sizeof(MD5::Digest); static unsigned int const id_bytes = 16; static unsigned int const key_bytes = 32; void pad_or_truncate_password(std::string const& password, char k1[key_bytes]) { int password_bytes = std::min((size_t) key_bytes, password.length()); int pad_bytes = key_bytes - password_bytes; memcpy(k1, password.c_str(), password_bytes); memcpy(k1 + password_bytes, padding_string, pad_bytes); } DLL_EXPORT void QPDF::trim_user_password(std::string& user_password) { // Although unnecessary, this routine trims the padding string // from the end of a user password. Its only purpose is for // recovery of user passwords which is done in the test suite. char const* cstr = user_password.c_str(); size_t len = user_password.length(); if (len < key_bytes) { return; } char const* p = 0; while ((p = strchr(cstr, '\x28')) != 0) { if (memcmp(p, padding_string, len - (p - cstr)) == 0) { user_password = user_password.substr(0, p - cstr); return; } } } static std::string pad_or_truncate_password(std::string const& password) { char k1[key_bytes]; pad_or_truncate_password(password, k1); return std::string(k1, key_bytes); } static void iterate_md5_digest(MD5& md5, MD5::Digest& digest, int iterations) { md5.digest(digest); for (int i = 0; i < iterations; ++i) { MD5 m; m.encodeDataIncrementally((char*)digest, sizeof(digest)); m.digest(digest); } } static void iterate_rc4(unsigned char* data, int data_len, unsigned char* okey, int key_len, int iterations, bool reverse) { unsigned char* key = new unsigned char[key_len]; for (int i = 0; i < iterations; ++i) { int const xor_value = (reverse ? iterations - 1 - i : i); for (int j = 0; j < key_len; ++j) { key[j] = okey[j] ^ xor_value; } RC4 rc4(key, key_len); rc4.process(data, data_len); } delete [] key; } DLL_EXPORT std::string QPDF::compute_data_key(std::string const& encryption_key, int objid, int generation) { // Algorithm 3.1 from the PDF 1.4 Reference Manual std::string result = encryption_key; // Append low three bytes of object ID and low two bytes of generation result += (char) (objid & 0xff); result += (char) ((objid >> 8) & 0xff); result += (char) ((objid >> 16) & 0xff); result += (char) (generation & 0xff); result += (char) ((generation >> 8) & 0xff); MD5 md5; md5.encodeDataIncrementally(result.c_str(), result.length()); MD5::Digest digest; md5.digest(digest); return std::string((char*) digest, std::min(result.length(), (size_t) 16)); } DLL_EXPORT std::string QPDF::compute_encryption_key( std::string const& password, EncryptionData const& data) { // Algorithm 3.2 from the PDF 1.4 Reference Manual MD5 md5; md5.encodeDataIncrementally( pad_or_truncate_password(password).c_str(), key_bytes); md5.encodeDataIncrementally(data.O.c_str(), key_bytes); char pbytes[4]; pbytes[0] = (char) (data.P & 0xff); pbytes[1] = (char) ((data.P >> 8) & 0xff); pbytes[2] = (char) ((data.P >> 16) & 0xff); pbytes[3] = (char) ((data.P >> 24) & 0xff); md5.encodeDataIncrementally(pbytes, 4); md5.encodeDataIncrementally(data.id1.c_str(), id_bytes); MD5::Digest digest; iterate_md5_digest(md5, digest, ((data.R == 3) ? 50 : 0)); return std::string((char*)digest, data.Length_bytes); } static void compute_O_rc4_key(std::string const& user_password, std::string const& owner_password, QPDF::EncryptionData const& data, unsigned char key[O_key_bytes]) { std::string password = owner_password; if (password.empty()) { password = user_password; } MD5 md5; md5.encodeDataIncrementally( pad_or_truncate_password(password).c_str(), key_bytes); MD5::Digest digest; iterate_md5_digest(md5, digest, ((data.R == 3) ? 50 : 0)); memcpy(key, digest, O_key_bytes); } static std::string compute_O_value(std::string const& user_password, std::string const& owner_password, QPDF::EncryptionData const& data) { // Algorithm 3.3 from the PDF 1.4 Reference Manual unsigned char O_key[O_key_bytes]; compute_O_rc4_key(user_password, owner_password, data, O_key); char upass[key_bytes]; pad_or_truncate_password(user_password, upass); iterate_rc4((unsigned char*) upass, key_bytes, O_key, data.Length_bytes, (data.R == 3) ? 20 : 1, false); return std::string(upass, key_bytes); } static std::string compute_U_value_R2(std::string const& user_password, QPDF::EncryptionData const& data) { // Algorithm 3.4 from the PDF 1.4 Reference Manual std::string k1 = QPDF::compute_encryption_key(user_password, data); char udata[key_bytes]; pad_or_truncate_password("", udata); iterate_rc4((unsigned char*) udata, key_bytes, (unsigned char*)k1.c_str(), data.Length_bytes, 1, false); return std::string(udata, key_bytes); } static std::string compute_U_value_R3(std::string const& user_password, QPDF::EncryptionData const& data) { // Algorithm 3.5 from the PDF 1.4 Reference Manual std::string k1 = QPDF::compute_encryption_key(user_password, data); MD5 md5; md5.encodeDataIncrementally( pad_or_truncate_password("").c_str(), key_bytes); md5.encodeDataIncrementally(data.id1.c_str(), data.id1.length()); MD5::Digest digest; md5.digest(digest); iterate_rc4(digest, sizeof(MD5::Digest), (unsigned char*) k1.c_str(), data.Length_bytes, 20, false); char result[key_bytes]; memcpy(result, digest, sizeof(MD5::Digest)); // pad with arbitrary data -- make it consistent for the sake of // testing for (unsigned int i = sizeof(MD5::Digest); i < key_bytes; ++i) { result[i] = (char)((i * i) % 0xff); } return std::string(result, key_bytes); } static std::string compute_U_value(std::string const& user_password, QPDF::EncryptionData const& data) { if (data.R == 3) { return compute_U_value_R3(user_password, data); } return compute_U_value_R2(user_password, data); } static bool check_user_password(std::string const& user_password, QPDF::EncryptionData const& data) { // Algorithm 3.6 from the PDF 1.4 Reference Manual std::string u_value = compute_U_value(user_password, data); int to_compare = ((data.R == 3) ? sizeof(MD5::Digest) : key_bytes); return (memcmp(data.U.c_str(), u_value.c_str(), to_compare) == 0); } static bool check_owner_password(std::string& user_password, std::string const& owner_password, QPDF::EncryptionData const& data) { // Algorithm 3.7 from the PDF 1.4 Reference Manual unsigned char key[O_key_bytes]; compute_O_rc4_key(user_password, owner_password, data, key); unsigned char O_data[key_bytes]; memcpy(O_data, (unsigned char*) data.O.c_str(), key_bytes); iterate_rc4(O_data, key_bytes, key, data.Length_bytes, (data.R == 3) ? 20 : 1, true); std::string new_user_password = std::string((char*)O_data, key_bytes); bool result = false; if (check_user_password(new_user_password, data)) { result = true; user_password = new_user_password; } return result; } void QPDF::initializeEncryption() { if (this->encryption_initialized) { return; } this->encryption_initialized = true; // After we initialize encryption parameters, we must used stored // key information and never look at /Encrypt again. Otherwise, // things could go wrong if someone mutates the encryption // dictionary. if (! this->trailer.hasKey("/Encrypt")) { return; } QPDFObjectHandle id_obj = this->trailer.getKey("/ID"); if (! (id_obj.isArray() && (id_obj.getArrayNItems() == 2) && id_obj.getArrayItem(0).isString())) { throw QPDFExc(this->file.getName(), this->file.getLastOffset(), "invalid /ID in trailer dictionary"); } std::string id1 = id_obj.getArrayItem(0).getStringValue(); if (id1.length() != id_bytes) { throw QPDFExc(this->file.getName(), this->file.getLastOffset(), "first /ID string in trailer dictionary has " "incorrect length"); } QPDFObjectHandle encryption_dict = this->trailer.getKey("/Encrypt"); if (! encryption_dict.isDictionary()) { throw QPDFExc(this->file.getName(), this->file.getLastOffset(), "/Encrypt in trailer dictionary is not a dictionary"); } if (! (encryption_dict.getKey("/Filter").isName() && (encryption_dict.getKey("/Filter").getName() == "/Standard"))) { throw QPDFExc(this->file.getName(), this->file.getLastOffset(), "unsupported encryption filter"); } if (! (encryption_dict.getKey("/V").isInteger() && encryption_dict.getKey("/R").isInteger() && encryption_dict.getKey("/O").isString() && encryption_dict.getKey("/U").isString() && encryption_dict.getKey("/P").isInteger())) { throw QPDFExc(this->file.getName(), this->file.getLastOffset(), "some encryption dictionary parameters are missing " "or the wrong type"); } int V = encryption_dict.getKey("/V").getIntValue(); int R = encryption_dict.getKey("/R").getIntValue(); std::string O = encryption_dict.getKey("/O").getStringValue(); std::string U = encryption_dict.getKey("/U").getStringValue(); unsigned int P = (unsigned int) encryption_dict.getKey("/P").getIntValue(); if (! (((R == 2) || (R == 3)) && ((V == 1) || (V == 2)))) { throw QPDFExc(this->file.getName(), this->file.getLastOffset(), "Unsupported /R or /V in encryption dictionary"); } if (! ((O.length() == key_bytes) && (U.length() == key_bytes))) { throw QPDFExc(this->file.getName(), this->file.getLastOffset(), "incorrect length for /O and/or /P in " "encryption dictionary"); } int Length = 40; if (encryption_dict.getKey("/Length").isInteger()) { Length = encryption_dict.getKey("/Length").getIntValue(); if ((Length % 8) || (Length < 40) || (Length > 128)) { throw QPDFExc(this->file.getName(), this->file.getLastOffset(), "invalid /Length value in encryption dictionary"); } } EncryptionData data(V, R, Length / 8, P, O, U, id1); if (check_owner_password(this->user_password, this->provided_password, data)) { // password supplied was owner password; user_password has // been initialized } else if (check_user_password(this->provided_password, data)) { this->user_password = this->provided_password; } else { throw QPDFExc(this->file.getName() + ": invalid password"); } this->encrypted = true; this->encryption_key = compute_encryption_key(this->user_password, data); } std::string QPDF::getKeyForObject(int objid, int generation) { if (! this->encrypted) { throw std::logic_error( "request for encryption key in non-encrypted PDF"); } if (! ((objid == this->cached_key_objid) && (generation == this->cached_key_generation))) { this->cached_object_encryption_key = compute_data_key(this->encryption_key, objid, generation); this->cached_key_objid = objid; this->cached_key_generation = generation; } return this->cached_object_encryption_key; } void QPDF::decryptString(std::string& str, int objid, int generation) { if (objid == 0) { return; } std::string key = getKeyForObject(objid, generation); char* tmp = QUtil::copy_string(str); unsigned int vlen = str.length(); RC4 rc4((unsigned char const*)key.c_str(), key.length()); rc4.process((unsigned char*)tmp, vlen); str = std::string(tmp, vlen); delete [] tmp; } void QPDF::decryptStream(Pipeline*& pipeline, int objid, int generation, std::vector >& heap) { std::string key = getKeyForObject(objid, generation); pipeline = new Pl_RC4("stream decryption", pipeline, (unsigned char*) key.c_str(), key.length()); heap.push_back(pipeline); } DLL_EXPORT void QPDF::compute_encryption_O_U( char const* user_password, char const* owner_password, int V, int R, int key_len, int P, std::string const& id1, std::string& O, std::string& U) { EncryptionData data(V, R, key_len, P, "", "", id1); data.O = compute_O_value(user_password, owner_password, data); O = data.O; U = compute_U_value(user_password, data); } DLL_EXPORT std::string const& QPDF::getUserPassword() const { return this->user_password; }