// Include qpdf-config.h first so off_t is guaranteed to have the right size. #include <qpdf/qpdf-config.h> #include <qpdf/QUtil.hh> #include <qpdf/PointerHolder.hh> #include <qpdf/CryptoRandomDataProvider.hh> #include <qpdf/QPDFSystemError.hh> #include <qpdf/QTC.hh> #include <qpdf/QIntC.hh> #include <qpdf/Pipeline.hh> #include <cmath> #include <iomanip> #include <sstream> #include <fstream> #include <stdexcept> #include <set> #include <stdio.h> #include <errno.h> #include <ctype.h> #include <stdlib.h> #include <string.h> #include <fcntl.h> #include <memory> #include <locale> #include <regex> #ifndef QPDF_NO_WCHAR_T # include <cwchar> #endif #ifdef _WIN32 # define WIN32_LEAN_AND_MEAN # include <windows.h> # include <direct.h> # include <io.h> #else # include <unistd.h> # include <sys/stat.h> #endif // First element is 24 static unsigned short pdf_doc_low_to_unicode[] = { 0x02d8, // 0x18 BREVE 0x02c7, // 0x19 CARON 0x02c6, // 0x1a MODIFIER LETTER CIRCUMFLEX ACCENT 0x02d9, // 0x1b DOT ABOVE 0x02dd, // 0x1c DOUBLE ACUTE ACCENT 0x02db, // 0x1d OGONEK 0x02da, // 0x1e RING ABOVE 0x02dc, // 0x1f SMALL TILDE }; // First element is 127 static unsigned short pdf_doc_to_unicode[] = { 0xfffd, // 0x7f UNDEFINED 0x2022, // 0x80 BULLET 0x2020, // 0x81 DAGGER 0x2021, // 0x82 DOUBLE DAGGER 0x2026, // 0x83 HORIZONTAL ELLIPSIS 0x2014, // 0x84 EM DASH 0x2013, // 0x85 EN DASH 0x0192, // 0x86 SMALL LETTER F WITH HOOK 0x2044, // 0x87 FRACTION SLASH (solidus) 0x2039, // 0x88 SINGLE LEFT-POINTING ANGLE QUOTATION MARK 0x203a, // 0x89 SINGLE RIGHT-POINTING ANGLE QUOTATION MARK 0x2212, // 0x8a MINUS SIGN 0x2030, // 0x8b PER MILLE SIGN 0x201e, // 0x8c DOUBLE LOW-9 QUOTATION MARK (quotedblbase) 0x201c, // 0x8d LEFT DOUBLE QUOTATION MARK (double quote left) 0x201d, // 0x8e RIGHT DOUBLE QUOTATION MARK (quotedblright) 0x2018, // 0x8f LEFT SINGLE QUOTATION MARK (quoteleft) 0x2019, // 0x90 RIGHT SINGLE QUOTATION MARK (quoteright) 0x201a, // 0x91 SINGLE LOW-9 QUOTATION MARK (quotesinglbase) 0x2122, // 0x92 TRADE MARK SIGN 0xfb01, // 0x93 LATIN SMALL LIGATURE FI 0xfb02, // 0x94 LATIN SMALL LIGATURE FL 0x0141, // 0x95 LATIN CAPITAL LETTER L WITH STROKE 0x0152, // 0x96 LATIN CAPITAL LIGATURE OE 0x0160, // 0x97 LATIN CAPITAL LETTER S WITH CARON 0x0178, // 0x98 LATIN CAPITAL LETTER Y WITH DIAERESIS 0x017d, // 0x99 LATIN CAPITAL LETTER Z WITH CARON 0x0131, // 0x9a LATIN SMALL LETTER DOTLESS I 0x0142, // 0x9b LATIN SMALL LETTER L WITH STROKE 0x0153, // 0x9c LATIN SMALL LIGATURE OE 0x0161, // 0x9d LATIN SMALL LETTER S WITH CARON 0x017e, // 0x9e LATIN SMALL LETTER Z WITH CARON 0xfffd, // 0x9f UNDEFINED 0x20ac, // 0xa0 EURO SIGN }; static unsigned short win_ansi_to_unicode[] = { 0x20ac, // 0x80 0xfffd, // 0x81 0x201a, // 0x82 0x0192, // 0x83 0x201e, // 0x84 0x2026, // 0x85 0x2020, // 0x86 0x2021, // 0x87 0x02c6, // 0x88 0x2030, // 0x89 0x0160, // 0x8a 0x2039, // 0x8b 0x0152, // 0x8c 0xfffd, // 0x8d 0x017d, // 0x8e 0xfffd, // 0x8f 0xfffd, // 0x90 0x2018, // 0x91 0x2019, // 0x92 0x201c, // 0x93 0x201d, // 0x94 0x2022, // 0x95 0x2013, // 0x96 0x2014, // 0x97 0x0303, // 0x98 0x2122, // 0x99 0x0161, // 0x9a 0x203a, // 0x9b 0x0153, // 0x9c 0xfffd, // 0x9d 0x017e, // 0x9e 0x0178, // 0x9f 0x00a0, // 0xa0 }; static unsigned short mac_roman_to_unicode[] = { 0x00c4, // 0x80 0x00c5, // 0x81 0x00c7, // 0x82 0x00c9, // 0x83 0x00d1, // 0x84 0x00d6, // 0x85 0x00dc, // 0x86 0x00e1, // 0x87 0x00e0, // 0x88 0x00e2, // 0x89 0x00e4, // 0x8a 0x00e3, // 0x8b 0x00e5, // 0x8c 0x00e7, // 0x8d 0x00e9, // 0x8e 0x00e8, // 0x8f 0x00ea, // 0x90 0x00eb, // 0x91 0x00ed, // 0x92 0x00ec, // 0x93 0x00ee, // 0x94 0x00ef, // 0x95 0x00f1, // 0x96 0x00f3, // 0x97 0x00f2, // 0x98 0x00f4, // 0x99 0x00f6, // 0x9a 0x00f5, // 0x9b 0x00fa, // 0x9c 0x00f9, // 0x9d 0x00fb, // 0x9e 0x00fc, // 0x9f 0x2020, // 0xa0 0x00b0, // 0xa1 0x00a2, // 0xa2 0x00a3, // 0xa3 0x00a7, // 0xa4 0x2022, // 0xa5 0x00b6, // 0xa6 0x00df, // 0xa7 0x00ae, // 0xa8 0x00a9, // 0xa9 0x2122, // 0xaa 0x0301, // 0xab 0x0308, // 0xac 0xfffd, // 0xad 0x00c6, // 0xae 0x00d8, // 0xaf 0xfffd, // 0xb0 0x00b1, // 0xb1 0xfffd, // 0xb2 0xfffd, // 0xb3 0x00a5, // 0xb4 0x03bc, // 0xb5 0xfffd, // 0xb6 0xfffd, // 0xb7 0xfffd, // 0xb8 0xfffd, // 0xb9 0xfffd, // 0xba 0x1d43, // 0xbb 0x1d52, // 0xbc 0xfffd, // 0xbd 0x00e6, // 0xbe 0x00f8, // 0xbf 0x00bf, // 0xc0 0x00a1, // 0xc1 0x00ac, // 0xc2 0xfffd, // 0xc3 0x0192, // 0xc4 0xfffd, // 0xc5 0xfffd, // 0xc6 0x00ab, // 0xc7 0x00bb, // 0xc8 0x2026, // 0xc9 0xfffd, // 0xca 0x00c0, // 0xcb 0x00c3, // 0xcc 0x00d5, // 0xcd 0x0152, // 0xce 0x0153, // 0xcf 0x2013, // 0xd0 0x2014, // 0xd1 0x201c, // 0xd2 0x201d, // 0xd3 0x2018, // 0xd4 0x2019, // 0xd5 0x00f7, // 0xd6 0xfffd, // 0xd7 0x00ff, // 0xd8 0x0178, // 0xd9 0x2044, // 0xda 0x00a4, // 0xdb 0x2039, // 0xdc 0x203a, // 0xdd 0xfb01, // 0xde 0xfb02, // 0xdf 0x2021, // 0xe0 0x00b7, // 0xe1 0x201a, // 0xe2 0x201e, // 0xe3 0x2030, // 0xe4 0x00c2, // 0xe5 0x00ca, // 0xe6 0x00c1, // 0xe7 0x00cb, // 0xe8 0x00c8, // 0xe9 0x00cd, // 0xea 0x00ce, // 0xeb 0x00cf, // 0xec 0x00cc, // 0xed 0x00d3, // 0xee 0x00d4, // 0xef 0xfffd, // 0xf0 0x00d2, // 0xf1 0x00da, // 0xf2 0x00db, // 0xf3 0x00d9, // 0xf4 0x0131, // 0xf5 0x02c6, // 0xf6 0x0303, // 0xf7 0x0304, // 0xf8 0x0306, // 0xf9 0x0307, // 0xfa 0x030a, // 0xfb 0x0327, // 0xfc 0x030b, // 0xfd 0x0328, // 0xfe 0x02c7, // 0xff }; class FileCloser { public: FileCloser(FILE* f) : f(f) { } ~FileCloser() { fclose(f); } private: FILE* f; }; template <typename T> static std::string int_to_string_base_internal(T num, int base, int length) { // Backward compatibility -- int_to_string, which calls this // function, used to use sprintf with %0*d, so we interpret length // such that a negative value appends spaces and a positive value // prepends zeroes. if (! ((base == 8) || (base == 10) || (base == 16))) { throw std::logic_error( "int_to_string_base called with unsupported base"); } std::string cvt; if (base == 10) { // Use the more efficient std::to_string when possible cvt = std::to_string(num); } else { std::ostringstream buf; buf.imbue(std::locale::classic()); buf << std::setbase(base) << std::nouppercase << num; cvt = buf.str(); } std::string result; int str_length = QIntC::to_int(cvt.length()); if ((length > 0) && (str_length < length)) { result.append(QIntC::to_size(length - str_length), '0'); } result += cvt; if ((length < 0) && (str_length < -length)) { result.append(QIntC::to_size(-length - str_length), ' '); } return result; } std::string QUtil::int_to_string(long long num, int length) { return int_to_string_base(num, 10, length); } std::string QUtil::uint_to_string(unsigned long long num, int length) { return uint_to_string_base(num, 10, length); } std::string QUtil::int_to_string_base(long long num, int base, int length) { return int_to_string_base_internal(num, base, length); } std::string QUtil::uint_to_string_base(unsigned long long num, int base, int length) { return int_to_string_base_internal(num, base, length); } std::string QUtil::double_to_string(double num, int decimal_places) { return double_to_string(num, decimal_places, true); } std::string QUtil::double_to_string(double num, int decimal_places, bool trim_trailing_zeroes) { // Backward compatibility -- this code used to use sprintf and // treated decimal_places <= 0 to mean to use the default, which // was six decimal places. Starting in 10.2, we trim trailing // zeroes by default. if (decimal_places <= 0) { decimal_places = 6; } std::ostringstream buf; buf.imbue(std::locale::classic()); buf << std::setprecision(decimal_places) << std::fixed << num; std::string result = buf.str(); if (trim_trailing_zeroes) { while ((result.length() > 1) && (result.back() == '0')) { result.pop_back(); } if ((result.length() > 1) && (result.back() == '.')) { result.pop_back(); } } return result; } long long QUtil::string_to_ll(char const* str) { errno = 0; #ifdef _MSC_VER long long result = _strtoi64(str, 0, 10); #else long long result = strtoll(str, 0, 10); #endif if (errno == ERANGE) { throw std::range_error( std::string("overflow/underflow converting ") + str + " to 64-bit integer"); } return result; } int QUtil::string_to_int(char const* str) { // QIntC::to_int does range checking return QIntC::to_int(string_to_ll(str)); } unsigned long long QUtil::string_to_ull(char const* str) { char const* p = str; while (*p && is_space(*p)) { ++p; } if (*p == '-') { throw std::runtime_error( std::string("underflow converting ") + str + " to 64-bit unsigned integer"); } errno = 0; #ifdef _MSC_VER unsigned long long result = _strtoui64(str, 0, 10); #else unsigned long long result = strtoull(str, 0, 10); #endif if (errno == ERANGE) { throw std::runtime_error( std::string("overflow converting ") + str + " to 64-bit unsigned integer"); } return result; } unsigned int QUtil::string_to_uint(char const* str) { // QIntC::to_uint does range checking return QIntC::to_uint(string_to_ull(str)); } unsigned char* QUtil::unsigned_char_pointer(std::string const& str) { return reinterpret_cast<unsigned char*>(const_cast<char*>(str.c_str())); } unsigned char* QUtil::unsigned_char_pointer(char const* str) { return reinterpret_cast<unsigned char*>(const_cast<char*>(str)); } void QUtil::throw_system_error(std::string const& description) { throw QPDFSystemError(description, errno); } int QUtil::os_wrapper(std::string const& description, int status) { if (status == -1) { throw_system_error(description); } return status; } #ifdef _WIN32 static PointerHolder<wchar_t> win_convert_filename(char const* filename) { // Convert the utf-8 encoded filename argument to wchar_t*. First, // convert to utf16, then to wchar_t*. Note that u16 will start // with the UTF16 marker, which we skip. std::string u16 = QUtil::utf8_to_utf16(filename); size_t len = u16.length(); size_t wlen = (len / 2) - 1; PointerHolder<wchar_t> wfilenamep(true, new wchar_t[wlen + 1]); wchar_t* wfilename = wfilenamep.get(); wfilename[wlen] = 0; for (unsigned int i = 2; i < len; i += 2) { wfilename[(i/2) - 1] = static_cast<wchar_t>( (static_cast<unsigned char>(u16.at(i)) << 8) + static_cast<unsigned char>(u16.at(i+1))); } return wfilenamep; } #endif FILE* QUtil::safe_fopen(char const* filename, char const* mode) { FILE* f = 0; #ifdef _WIN32 PointerHolder<wchar_t> wfilenamep = win_convert_filename(filename); wchar_t* wfilename = wfilenamep.get(); PointerHolder<wchar_t> wmodep(true, new wchar_t[strlen(mode) + 1]); wchar_t* wmode = wmodep.get(); wmode[strlen(mode)] = 0; for (size_t i = 0; i < strlen(mode); ++i) { wmode[i] = static_cast<wchar_t>(mode[i]); } #ifdef _MSC_VER errno_t err = _wfopen_s(&f, wfilename, wmode); if (err != 0) { errno = err; } #else f = _wfopen(wfilename, wmode); #endif if (f == 0) { throw_system_error(std::string("open ") + filename); } #else f = fopen_wrapper(std::string("open ") + filename, fopen(filename, mode)); #endif return f; } FILE* QUtil::fopen_wrapper(std::string const& description, FILE* f) { if (f == 0) { throw_system_error(description); } return f; } bool QUtil::file_can_be_opened(char const* filename) { try { fclose(safe_fopen(filename, "rb")); return true; } catch (std::runtime_error&) { // can't open the file } return false; } int QUtil::seek(FILE* stream, qpdf_offset_t offset, int whence) { #if HAVE_FSEEKO return fseeko(stream, QIntC::IntConverter<qpdf_offset_t, off_t>::convert(offset), whence); #elif HAVE_FSEEKO64 return fseeko64(stream, offset, whence); #else # if defined _MSC_VER || defined __BORLANDC__ return _fseeki64(stream, offset, whence); # else return fseek(stream, QIntC::to_long(offset), whence); # endif #endif } qpdf_offset_t QUtil::tell(FILE* stream) { #if HAVE_FSEEKO return QIntC::to_offset(ftello(stream)); #elif HAVE_FSEEKO64 return QIntC::to_offset(ftello64(stream)); #else # if defined _MSC_VER || defined __BORLANDC__ return _ftelli64(stream); # else return QIntC::to_offset(ftell(stream)); # endif #endif } bool QUtil::same_file(char const* name1, char const* name2) { if ((name1 == 0) || (strlen(name1) == 0) || (name2 == 0) || (strlen(name2) == 0)) { return false; } #ifdef _WIN32 bool same = false; # ifndef AVOID_WINDOWS_HANDLE HANDLE fh1 = CreateFile(name1, GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL); HANDLE fh2 = CreateFile(name2, GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL); BY_HANDLE_FILE_INFORMATION fi1; BY_HANDLE_FILE_INFORMATION fi2; if ((fh1 != INVALID_HANDLE_VALUE) && (fh2 != INVALID_HANDLE_VALUE) && GetFileInformationByHandle(fh1, &fi1) && GetFileInformationByHandle(fh2, &fi2) && (fi1.dwVolumeSerialNumber == fi2.dwVolumeSerialNumber) && (fi1.nFileIndexLow == fi2.nFileIndexLow) && (fi1.nFileIndexHigh == fi2.nFileIndexHigh)) { same = true; } if (fh1 != INVALID_HANDLE_VALUE) { CloseHandle(fh1); } if (fh2 != INVALID_HANDLE_VALUE) { CloseHandle(fh2); } # endif return same; #else struct stat st1; struct stat st2; if ((stat(name1, &st1) == 0) && (stat(name2, &st2) == 0) && (st1.st_ino == st2.st_ino) && (st1.st_dev == st2.st_dev)) { return true; } #endif return false; } void QUtil::remove_file(char const* path) { #ifdef _WIN32 PointerHolder<wchar_t> wpath = win_convert_filename(path); os_wrapper(std::string("remove ") + path, _wunlink(wpath.get())); #else os_wrapper(std::string("remove ") + path, unlink(path)); #endif } void QUtil::rename_file(char const* oldname, char const* newname) { #ifdef _WIN32 try { remove_file(newname); } catch (QPDFSystemError&) { // ignore } PointerHolder<wchar_t> wold = win_convert_filename(oldname); PointerHolder<wchar_t> wnew = win_convert_filename(newname); os_wrapper(std::string("rename ") + oldname + " " + newname, _wrename(wold.get(), wnew.get())); #else os_wrapper(std::string("rename ") + oldname + " " + newname, rename(oldname, newname)); #endif } void QUtil::pipe_file(char const* filename, Pipeline* p) { // Exercised in test suite by testing file_provider. FILE* f = safe_fopen(filename, "rb"); FileCloser fc(f); size_t len = 0; int constexpr size = 8192; unsigned char buf[size]; while ((len = fread(buf, 1, size, f)) > 0) { p->write(buf, len); } p->finish(); if (ferror(f)) { throw std::runtime_error( std::string("failure reading file ") + filename); } } std::function<void(Pipeline*)> QUtil::file_provider(std::string const& filename) { return [filename](Pipeline* p) { pipe_file(filename.c_str(), p); }; } std::string QUtil::path_basename(std::string const& filename) { #ifdef _WIN32 char const* pathsep = "/\\"; #else char const* pathsep = "/"; #endif std::string last = filename; auto len = last.length(); while (len > 1) { auto pos = last.find_last_of(pathsep); if (pos == len - 1) { last.pop_back(); --len; } else if (pos == std::string::npos) { break; } else { last = last.substr(pos + 1); break; } } return last; } char* QUtil::copy_string(std::string const& str) { char* result = new char[str.length() + 1]; // Use memcpy in case string contains nulls result[str.length()] = '\0'; memcpy(result, str.c_str(), str.length()); return result; } std::shared_ptr<char> QUtil::make_shared_cstr(std::string const& str) { auto result = QUtil::make_shared_array<char>(str.length() + 1); // Use memcpy in case string contains nulls result.get()[str.length()] = '\0'; memcpy(result.get(), str.c_str(), str.length()); return result; } std::unique_ptr<char[]> QUtil::make_unique_cstr(std::string const& str) { auto result = std::make_unique<char[]>(str.length() + 1); // Use memcpy in case string contains nulls result.get()[str.length()] = '\0'; memcpy(result.get(), str.c_str(), str.length()); return result; } std::string QUtil::hex_encode(std::string const& input) { std::string result; for (unsigned int i = 0; i < input.length(); ++i) { result += QUtil::int_to_string_base( QIntC::to_int(static_cast<unsigned char>(input.at(i))), 16, 2); } return result; } std::string QUtil::hex_decode(std::string const& input) { std::string result; size_t pos = 0; for (std::string::const_iterator p = input.begin(); p != input.end(); ++p) { char ch = *p; bool skip = false; if ((*p >= 'A') && (*p <= 'F')) { ch = QIntC::to_char(ch - 'A' + 10); } else if ((*p >= 'a') && (*p <= 'f')) { ch = QIntC::to_char(ch - 'a' + 10); } else if ((*p >= '0') && (*p <= '9')) { ch = QIntC::to_char(ch - '0'); } else { skip = true; } if (! skip) { if (pos == 0) { result.push_back(static_cast<char>(ch << 4)); pos = 1; } else { result[result.length()-1] |= ch; pos = 0; } } } return result; } void QUtil::binary_stdout() { #if defined(_WIN32) && defined(__BORLANDC__) setmode(_fileno(stdout), _O_BINARY); #elif defined(_WIN32) _setmode(_fileno(stdout), _O_BINARY); #endif } void QUtil::binary_stdin() { #if defined(_WIN32) && defined(__BORLANDC__) setmode(_fileno(stdin), _O_BINARY); #elif defined(_WIN32) _setmode(_fileno(stdin), _O_BINARY); #endif } void QUtil::setLineBuf(FILE* f) { #ifndef _WIN32 setvbuf(f, reinterpret_cast<char *>(0), _IOLBF, 0); #endif } char* QUtil::getWhoami(char* argv0) { char* whoami = 0; if (((whoami = strrchr(argv0, '/')) == NULL) && ((whoami = strrchr(argv0, '\\')) == NULL)) { whoami = argv0; } else { ++whoami; } if ((strlen(whoami) > 4) && (strcmp(whoami + strlen(whoami) - 4, ".exe") == 0)) { whoami[strlen(whoami) - 4] = '\0'; } return whoami; } bool QUtil::get_env(std::string const& var, std::string* value) { // This was basically ripped out of wxWindows. #ifdef _WIN32 # ifdef NO_GET_ENVIRONMENT return false; # else // first get the size of the buffer DWORD len = ::GetEnvironmentVariable(var.c_str(), NULL, 0); if (len == 0) { // this means that there is no such variable return false; } if (value) { PointerHolder<char> t = PointerHolder<char>(true, new char[len + 1]); ::GetEnvironmentVariable(var.c_str(), t.get(), len); *value = t.get(); } return true; # endif #else char* p = getenv(var.c_str()); if (p == 0) { return false; } if (value) { *value = p; } return true; #endif } time_t QUtil::get_current_time() { #ifdef _WIN32 // The procedure to get local time at this resolution comes from // the Microsoft documentation. It says to convert a SYSTEMTIME // to a FILETIME, and to copy the FILETIME to a ULARGE_INTEGER. // The resulting number is the number of 100-nanosecond intervals // between January 1, 1601 and now. POSIX threads wants a time // based on January 1, 1970, so we adjust by subtracting the // number of seconds in that time period from the result we get // here. SYSTEMTIME sysnow; GetSystemTime(&sysnow); FILETIME filenow; SystemTimeToFileTime(&sysnow, &filenow); ULARGE_INTEGER uinow; uinow.LowPart = filenow.dwLowDateTime; uinow.HighPart = filenow.dwHighDateTime; ULONGLONG now = uinow.QuadPart; return static_cast<time_t>((now / 10000000ULL) - 11644473600ULL); #else return time(0); #endif } QUtil::QPDFTime QUtil::get_current_qpdf_time() { #ifdef _WIN32 SYSTEMTIME ltime; GetLocalTime(<ime); TIME_ZONE_INFORMATION tzinfo; GetTimeZoneInformation(&tzinfo); return QPDFTime(static_cast<int>(ltime.wYear), static_cast<int>(ltime.wMonth), static_cast<int>(ltime.wDay), static_cast<int>(ltime.wHour), static_cast<int>(ltime.wMinute), static_cast<int>(ltime.wSecond), // tzinfo.Bias is minutes before UTC static_cast<int>(tzinfo.Bias)); #else struct tm ltime; time_t now = time(0); tzset(); #ifdef HAVE_LOCALTIME_R localtime_r(&now, <ime); #else ltime = *localtime(&now); #endif #if HAVE_TM_GMTOFF // tm_gmtoff is seconds after UTC int tzoff = -static_cast<int>(ltime.tm_gmtoff / 60); #elif HAVE_EXTERN_LONG_TIMEZONE // timezone is seconds before UTC, not adjusted for daylight saving time int tzoff = static_cast<int>(timezone / 60); #else // Don't know how to get timezone on this platform int tzoff = 0; #endif return QPDFTime(static_cast<int>(ltime.tm_year + 1900), static_cast<int>(ltime.tm_mon + 1), static_cast<int>(ltime.tm_mday), static_cast<int>(ltime.tm_hour), static_cast<int>(ltime.tm_min), static_cast<int>(ltime.tm_sec), tzoff); #endif } std::string QUtil::qpdf_time_to_pdf_time(QPDFTime const& qtm) { std::string tz_offset; int t = qtm.tz_delta; if (t == 0) { tz_offset = "Z"; } else { if (t < 0) { t = -t; tz_offset += "+"; } else { tz_offset += "-"; } tz_offset += QUtil::int_to_string(t / 60, 2) + "'" + QUtil::int_to_string(t % 60, 2) + "'"; } return ("D:" + QUtil::int_to_string(qtm.year, 4) + QUtil::int_to_string(qtm.month, 2) + QUtil::int_to_string(qtm.day, 2) + QUtil::int_to_string(qtm.hour, 2) + QUtil::int_to_string(qtm.minute, 2) + QUtil::int_to_string(qtm.second, 2) + tz_offset); } bool QUtil::pdf_time_to_qpdf_time(std::string const& str, QPDFTime* qtm) { static std::regex pdf_date("^D:([0-9]{4})([0-9]{2})([0-9]{2})" "([0-9]{2})([0-9]{2})([0-9]{2})" "(?:(Z?)|([\\+\\-])([0-9]{2})'([0-9]{2})')$"); std::smatch m; if (! std::regex_match(str, m, pdf_date)) { return false; } int tz_delta = 0; auto to_i = [](std::string const& s) { return QUtil::string_to_int(s.c_str()); }; if (m[8] != "") { tz_delta = ((to_i(m[9]) * 60) + to_i(m[10])); if (m[8] == "+") { tz_delta = -tz_delta; } } if (qtm) { *qtm = QPDFTime(to_i(m[1]), to_i(m[2]), to_i(m[3]), to_i(m[4]), to_i(m[5]), to_i(m[6]), tz_delta); } return true; } std::string QUtil::toUTF8(unsigned long uval) { std::string result; // A UTF-8 encoding of a Unicode value is a single byte for // Unicode values <= 127. For larger values, the first byte of // the UTF-8 encoding has '1' as each of its n highest bits and // '0' for its (n+1)th highest bit where n is the total number of // bytes required. Subsequent bytes start with '10' and have the // remaining 6 bits free for encoding. For example, an 11-bit // Unicode value can be stored in two bytes where the first is // 110zzzzz, the second is 10zzzzzz, and the z's represent the // remaining bits. if (uval > 0x7fffffff) { throw std::runtime_error("bounds error in QUtil::toUTF8"); } else if (uval < 128) { result += static_cast<char>(uval); } else { unsigned char bytes[7]; bytes[6] = '\0'; unsigned char* cur_byte = &bytes[5]; // maximum value that will fit in the current number of bytes unsigned char maxval = 0x3f; // six bits while (uval > QIntC::to_ulong(maxval)) { // Assign low six bits plus 10000000 to lowest unused // byte position, then shift *cur_byte = static_cast<unsigned char>(0x80 + (uval & 0x3f)); uval >>= 6; // Maximum that will fit in high byte now shrinks by one bit maxval = static_cast<unsigned char>(maxval >> 1); // Slide to the left one byte if (cur_byte <= bytes) { throw std::logic_error("QUtil::toUTF8: overflow error"); } --cur_byte; } // If maxval is k bits long, the high (7 - k) bits of the // resulting byte must be high. *cur_byte = static_cast<unsigned char>( QIntC::to_ulong(0xff - (1 + (maxval << 1))) + uval); result += reinterpret_cast<char*>(cur_byte); } return result; } std::string QUtil::toUTF16(unsigned long uval) { std::string result; if ((uval >= 0xd800) && (uval <= 0xdfff)) { result = "\xff\xfd"; } else if (uval <= 0xffff) { char out[2]; out[0] = static_cast<char>((uval & 0xff00) >> 8); out[1] = static_cast<char>(uval & 0xff); result = std::string(out, 2); } else if (uval <= 0x10ffff) { char out[4]; uval -= 0x10000; unsigned short high = static_cast<unsigned short>(((uval & 0xffc00) >> 10) + 0xd800); unsigned short low = static_cast<unsigned short>((uval & 0x3ff) + 0xdc00); out[0] = static_cast<char>((high & 0xff00) >> 8); out[1] = static_cast<char>(high & 0xff); out[2] = static_cast<char>((low & 0xff00) >> 8); out[3] = static_cast<char>(low & 0xff); result = std::string(out, 4); } else { result = "\xff\xfd"; } return result; } // Random data support class RandomDataProviderProvider { public: RandomDataProviderProvider(); void setProvider(RandomDataProvider*); RandomDataProvider* getProvider(); private: RandomDataProvider* default_provider; RandomDataProvider* current_provider; }; RandomDataProviderProvider::RandomDataProviderProvider() : default_provider(CryptoRandomDataProvider::getInstance()), current_provider(0) { this->current_provider = default_provider; } RandomDataProvider* RandomDataProviderProvider::getProvider() { return this->current_provider; } void RandomDataProviderProvider::setProvider(RandomDataProvider* p) { this->current_provider = p ? p : this->default_provider; } static RandomDataProviderProvider* getRandomDataProviderProvider() { // Thread-safe static initializer static RandomDataProviderProvider rdpp; return &rdpp; } void QUtil::setRandomDataProvider(RandomDataProvider* p) { getRandomDataProviderProvider()->setProvider(p); } RandomDataProvider* QUtil::getRandomDataProvider() { return getRandomDataProviderProvider()->getProvider(); } void QUtil::initializeWithRandomBytes(unsigned char* data, size_t len) { getRandomDataProvider()->provideRandomData(data, len); } long QUtil::random() { long result = 0L; initializeWithRandomBytes( reinterpret_cast<unsigned char*>(&result), sizeof(result)); return result; } bool QUtil::is_hex_digit(char ch) { return (ch && (strchr("0123456789abcdefABCDEF", ch) != 0)); } bool QUtil::is_space(char ch) { return (ch && (strchr(" \f\n\r\t\v", ch) != 0)); } bool QUtil::is_digit(char ch) { return ((ch >= '0') && (ch <= '9')); } bool QUtil::is_number(char const* p) { // ^[\+\-]?(\.\d*|\d+(\.\d*)?)$ if (! *p) { return false; } if ((*p == '-') || (*p == '+')) { ++p; } bool found_dot = false; bool found_digit = false; for (; *p; ++p) { if (*p == '.') { if (found_dot) { // only one dot return false; } found_dot = true; } else if (QUtil::is_digit(*p)) { found_digit = true; } else { return false; } } return found_digit; } void QUtil::read_file_into_memory( char const* filename, PointerHolder<char>& file_buf, size_t& size) { FILE* f = safe_fopen(filename, "rb"); FileCloser fc(f); fseek(f, 0, SEEK_END); size = QIntC::to_size(QUtil::tell(f)); fseek(f, 0, SEEK_SET); file_buf = make_array_pointer_holder<char>(size); char* buf_p = file_buf.get(); size_t bytes_read = 0; size_t len = 0; while ((len = fread(buf_p + bytes_read, 1, size - bytes_read, f)) > 0) { bytes_read += len; } if (bytes_read != size) { if (ferror(f)) { throw std::runtime_error( std::string("failure reading file ") + filename + " into memory: read " + uint_to_string(bytes_read) + "; wanted " + uint_to_string(size)); } else { throw std::runtime_error( std::string("premature eof reading file ") + filename + " into memory: read " + uint_to_string(bytes_read) + "; wanted " + uint_to_string(size)); } } } static bool read_char_from_FILE(char& ch, FILE* f) { auto len = fread(&ch, 1, 1, f); if (len == 0) { if (ferror(f)) { throw std::runtime_error("failure reading character from file"); } return false; } return true; } std::list<std::string> QUtil::read_lines_from_file(char const* filename, bool preserve_eol) { std::list<std::string> lines; FILE* f = safe_fopen(filename, "rb"); FileCloser fc(f); auto next_char = [&f](char& ch) { return read_char_from_FILE(ch, f); }; read_lines_from_file(next_char, lines, preserve_eol); return lines; } std::list<std::string> QUtil::read_lines_from_file(std::istream& in, bool preserve_eol) { std::list<std::string> lines; auto next_char = [&in](char& ch) { return (in.get(ch)) ? true: false; }; read_lines_from_file(next_char, lines, preserve_eol); return lines; } std::list<std::string> QUtil::read_lines_from_file(FILE* f, bool preserve_eol) { std::list<std::string> lines; auto next_char = [&f](char& ch) { return read_char_from_FILE(ch, f); }; read_lines_from_file(next_char, lines, preserve_eol); return lines; } void QUtil::read_lines_from_file(std::function<bool(char&)> next_char, std::list<std::string>& lines, bool preserve_eol) { std::string* buf = 0; char c; while (next_char(c)) { if (buf == 0) { lines.push_back(""); buf = &(lines.back()); buf->reserve(80); } if (buf->capacity() == buf->size()) { buf->reserve(buf->capacity() * 2); } if (c == '\n') { if (preserve_eol) { buf->append(1, c); } else { // Remove any carriage return that preceded the // newline and discard the newline if ((! buf->empty()) && ((*(buf->rbegin())) == '\r')) { buf->erase(buf->length() - 1); } } buf = 0; } else { buf->append(1, c); } } } int QUtil::str_compare_nocase(char const *s1, char const *s2) { #if defined(_WIN32) && defined(__BORLANDC__) return stricmp(s1, s2); #elif defined(_WIN32) return _stricmp(s1, s2); #else return strcasecmp(s1, s2); #endif } static int maybe_from_end(int num, bool from_end, int max) { if (from_end) { if (num > max) { num = 0; } else { num = max + 1 - num; } } return num; } std::vector<int> QUtil::parse_numrange(char const* range, int max) { std::vector<int> result; char const* p = range; try { std::vector<int> work; static int const comma = -1; static int const dash = -2; size_t start_idx = 0; size_t skip = 1; enum { st_top, st_in_number, st_after_number } state = st_top; bool last_separator_was_dash = false; int cur_number = 0; bool from_end = false; while (*p) { char ch = *p; if (isdigit(ch)) { if (! ((state == st_top) || (state == st_in_number))) { throw std::runtime_error("digit not expected"); } state = st_in_number; cur_number *= 10; cur_number += (ch - '0'); } else if (ch == 'z') { // z represents max if (! (state == st_top)) { throw std::runtime_error("z not expected"); } state = st_after_number; cur_number = max; } else if (ch == 'r') { if (! (state == st_top)) { throw std::runtime_error("r not expected"); } state = st_in_number; from_end = true; } else if ((ch == ',') || (ch == '-')) { if (! ((state == st_in_number) || (state == st_after_number))) { throw std::runtime_error("unexpected separator"); } cur_number = maybe_from_end(cur_number, from_end, max); work.push_back(cur_number); cur_number = 0; from_end = false; if (ch == ',') { state = st_top; last_separator_was_dash = false; work.push_back(comma); } else if (ch == '-') { if (last_separator_was_dash) { throw std::runtime_error("unexpected dash"); } state = st_top; last_separator_was_dash = true; work.push_back(dash); } } else if (ch == ':') { if (! ((state == st_in_number) || (state == st_after_number))) { throw std::runtime_error("unexpected colon"); } break; } else { throw std::runtime_error("unexpected character"); } ++p; } if ((state == st_in_number) || (state == st_after_number)) { cur_number = maybe_from_end(cur_number, from_end, max); work.push_back(cur_number); } else { throw std::runtime_error("number expected"); } if (*p == ':') { if (strcmp(p, ":odd") == 0) { skip = 2; } else if (strcmp(p, ":even") == 0) { skip = 2; start_idx = 1; } else { throw std::runtime_error("unexpected even/odd modifier"); } } p = 0; for (size_t i = 0; i < work.size(); i += 2) { int num = work.at(i); // max == 0 means we don't know the max and are just // testing for valid syntax. if ((max > 0) && ((num < 1) || (num > max))) { throw std::runtime_error( "number " + QUtil::int_to_string(num) + " out of range"); } if (i == 0) { result.push_back(work.at(i)); } else { int separator = work.at(i-1); if (separator == comma) { result.push_back(num); } else if (separator == dash) { int lastnum = result.back(); if (num > lastnum) { for (int j = lastnum + 1; j <= num; ++j) { result.push_back(j); } } else { for (int j = lastnum - 1; j >= num; --j) { result.push_back(j); } } } else { throw std::logic_error( "INTERNAL ERROR parsing numeric range"); } } } if ((start_idx > 0) || (skip != 1)) { auto t = result; result.clear(); for (size_t i = start_idx; i < t.size(); i += skip) { result.push_back(t.at(i)); } } } catch (std::runtime_error const& e) { std::string message; if (p) { message = "error at * in numeric range " + std::string(range, QIntC::to_size(p - range)) + "*" + p + ": " + e.what(); } else { message = "error in numeric range " + std::string(range) + ": " + e.what(); } throw std::runtime_error(message); } return result; } enum encoding_e { e_utf16, e_ascii, e_winansi, e_macroman, e_pdfdoc }; static unsigned char encode_winansi(unsigned long codepoint) { // Use this ugly switch statement to avoid a static, which is not // thread-safe. unsigned char ch = '\0'; switch (codepoint) { case 0x20ac: ch = 0x80; break; case 0x201a: ch = 0x82; break; case 0x192: ch = 0x83; break; case 0x201e: ch = 0x84; break; case 0x2026: ch = 0x85; break; case 0x2020: ch = 0x86; break; case 0x2021: ch = 0x87; break; case 0x2c6: ch = 0x88; break; case 0x2030: ch = 0x89; break; case 0x160: ch = 0x8a; break; case 0x2039: ch = 0x8b; break; case 0x152: ch = 0x8c; break; case 0x17d: ch = 0x8e; break; case 0x2018: ch = 0x91; break; case 0x2019: ch = 0x92; break; case 0x201c: ch = 0x93; break; case 0x201d: ch = 0x94; break; case 0x2022: ch = 0x95; break; case 0x2013: ch = 0x96; break; case 0x2014: ch = 0x97; break; case 0x303: ch = 0x98; break; case 0x2122: ch = 0x99; break; case 0x161: ch = 0x9a; break; case 0x203a: ch = 0x9b; break; case 0x153: ch = 0x9c; break; case 0x17e: ch = 0x9e; break; case 0x178: ch = 0x9f; break; case 0xa0: ch = 0xa0; break; default: break; } return ch; } static unsigned char encode_macroman(unsigned long codepoint) { // Use this ugly switch statement to avoid a static, which is not // thread-safe. unsigned char ch = '\0'; switch (codepoint) { case 0xc4: ch = 0x80; break; case 0xc5: ch = 0x81; break; case 0xc7: ch = 0x82; break; case 0xc9: ch = 0x83; break; case 0xd1: ch = 0x84; break; case 0xd6: ch = 0x85; break; case 0xdc: ch = 0x86; break; case 0xe1: ch = 0x87; break; case 0xe0: ch = 0x88; break; case 0xe2: ch = 0x89; break; case 0xe4: ch = 0x8a; break; case 0xe3: ch = 0x8b; break; case 0xe5: ch = 0x8c; break; case 0xe7: ch = 0x8d; break; case 0xe9: ch = 0x8e; break; case 0xe8: ch = 0x8f; break; case 0xea: ch = 0x90; break; case 0xeb: ch = 0x91; break; case 0xed: ch = 0x92; break; case 0xec: ch = 0x93; break; case 0xee: ch = 0x94; break; case 0xef: ch = 0x95; break; case 0xf1: ch = 0x96; break; case 0xf3: ch = 0x97; break; case 0xf2: ch = 0x98; break; case 0xf4: ch = 0x99; break; case 0xf6: ch = 0x9a; break; case 0xf5: ch = 0x9b; break; case 0xfa: ch = 0x9c; break; case 0xf9: ch = 0x9d; break; case 0xfb: ch = 0x9e; break; case 0xfc: ch = 0x9f; break; case 0x2020: ch = 0xa0; break; case 0xb0: ch = 0xa1; break; case 0xa2: ch = 0xa2; break; case 0xa3: ch = 0xa3; break; case 0xa7: ch = 0xa4; break; case 0x2022: ch = 0xa5; break; case 0xb6: ch = 0xa6; break; case 0xdf: ch = 0xa7; break; case 0xae: ch = 0xa8; break; case 0xa9: ch = 0xa9; break; case 0x2122: ch = 0xaa; break; case 0x301: ch = 0xab; break; case 0x308: ch = 0xac; break; case 0xc6: ch = 0xae; break; case 0xd8: ch = 0xaf; break; case 0xb1: ch = 0xb1; break; case 0xa5: ch = 0xb4; break; case 0x3bc: ch = 0xb5; break; case 0x1d43: ch = 0xbb; break; case 0x1d52: ch = 0xbc; break; case 0xe6: ch = 0xbe; break; case 0xf8: ch = 0xbf; break; case 0xbf: ch = 0xc0; break; case 0xa1: ch = 0xc1; break; case 0xac: ch = 0xc2; break; case 0x192: ch = 0xc4; break; case 0xab: ch = 0xc7; break; case 0xbb: ch = 0xc8; break; case 0x2026: ch = 0xc9; break; case 0xc0: ch = 0xcb; break; case 0xc3: ch = 0xcc; break; case 0xd5: ch = 0xcd; break; case 0x152: ch = 0xce; break; case 0x153: ch = 0xcf; break; case 0x2013: ch = 0xd0; break; case 0x2014: ch = 0xd1; break; case 0x201c: ch = 0xd2; break; case 0x201d: ch = 0xd3; break; case 0x2018: ch = 0xd4; break; case 0x2019: ch = 0xd5; break; case 0xf7: ch = 0xd6; break; case 0xff: ch = 0xd8; break; case 0x178: ch = 0xd9; break; case 0x2044: ch = 0xda; break; case 0xa4: ch = 0xdb; break; case 0x2039: ch = 0xdc; break; case 0x203a: ch = 0xdd; break; case 0xfb01: ch = 0xde; break; case 0xfb02: ch = 0xdf; break; case 0x2021: ch = 0xe0; break; case 0xb7: ch = 0xe1; break; case 0x201a: ch = 0xe2; break; case 0x201e: ch = 0xe3; break; case 0x2030: ch = 0xe4; break; case 0xc2: ch = 0xe5; break; case 0xca: ch = 0xe6; break; case 0xc1: ch = 0xe7; break; case 0xcb: ch = 0xe8; break; case 0xc8: ch = 0xe9; break; case 0xcd: ch = 0xea; break; case 0xce: ch = 0xeb; break; case 0xcf: ch = 0xec; break; case 0xcc: ch = 0xed; break; case 0xd3: ch = 0xee; break; case 0xd4: ch = 0xef; break; case 0xd2: ch = 0xf1; break; case 0xda: ch = 0xf2; break; case 0xdb: ch = 0xf3; break; case 0xd9: ch = 0xf4; break; case 0x131: ch = 0xf5; break; case 0x2c6: ch = 0xf6; break; case 0x303: ch = 0xf7; break; case 0x304: ch = 0xf8; break; case 0x306: ch = 0xf9; break; case 0x307: ch = 0xfa; break; case 0x30a: ch = 0xfb; break; case 0x327: ch = 0xfc; break; case 0x30b: ch = 0xfd; break; case 0x328: ch = 0xfe; break; case 0x2c7: ch = 0xff; break; default: break; } return ch; } static unsigned char encode_pdfdoc(unsigned long codepoint) { // Use this ugly switch statement to avoid a static, which is not // thread-safe. unsigned char ch = '\0'; switch (codepoint) { case 0x02d8: ch = 0x18; break; case 0x02c7: ch = 0x19; break; case 0x02c6: ch = 0x1a; break; case 0x02d9: ch = 0x1b; break; case 0x02dd: ch = 0x1c; break; case 0x02db: ch = 0x1d; break; case 0x02da: ch = 0x1e; break; case 0x02dc: ch = 0x1f; break; case 0x2022: ch = 0x80; break; case 0x2020: ch = 0x81; break; case 0x2021: ch = 0x82; break; case 0x2026: ch = 0x83; break; case 0x2014: ch = 0x84; break; case 0x2013: ch = 0x85; break; case 0x0192: ch = 0x86; break; case 0x2044: ch = 0x87; break; case 0x2039: ch = 0x88; break; case 0x203a: ch = 0x89; break; case 0x2212: ch = 0x8a; break; case 0x2030: ch = 0x8b; break; case 0x201e: ch = 0x8c; break; case 0x201c: ch = 0x8d; break; case 0x201d: ch = 0x8e; break; case 0x2018: ch = 0x8f; break; case 0x2019: ch = 0x90; break; case 0x201a: ch = 0x91; break; case 0x2122: ch = 0x92; break; case 0xfb01: ch = 0x93; break; case 0xfb02: ch = 0x94; break; case 0x0141: ch = 0x95; break; case 0x0152: ch = 0x96; break; case 0x0160: ch = 0x97; break; case 0x0178: ch = 0x98; break; case 0x017d: ch = 0x99; break; case 0x0131: ch = 0x9a; break; case 0x0142: ch = 0x9b; break; case 0x0153: ch = 0x9c; break; case 0x0161: ch = 0x9d; break; case 0x017e: ch = 0x9e; break; case 0xfffd: ch = 0x9f; break; case 0x20ac: ch = 0xa0; break; default: break; } return ch; } unsigned long get_next_utf8_codepoint( std::string const& utf8_val, size_t& pos, bool& error) { size_t len = utf8_val.length(); unsigned char ch = static_cast<unsigned char>(utf8_val.at(pos)); error = false; if (ch < 128) { return static_cast<unsigned long>(ch); } size_t bytes_needed = 0; unsigned bit_check = 0x40; unsigned char to_clear = 0x80; while (ch & bit_check) { ++bytes_needed; to_clear = static_cast<unsigned char>(to_clear | bit_check); bit_check >>= 1; } if (((bytes_needed > 5) || (bytes_needed < 1)) || ((pos + bytes_needed) >= len)) { error = true; return 0xfffd; } unsigned long codepoint = static_cast<unsigned long>(ch & ~to_clear); while (bytes_needed > 0) { --bytes_needed; ch = static_cast<unsigned char>(utf8_val.at(++pos)); if ((ch & 0xc0) != 0x80) { --pos; codepoint = 0xfffd; break; } codepoint <<= 6; codepoint += (ch & 0x3f); } return codepoint; } static bool transcode_utf8(std::string const& utf8_val, std::string& result, encoding_e encoding, char unknown) { bool okay = true; result.clear(); if (encoding == e_utf16) { result += "\xfe\xff"; } size_t len = utf8_val.length(); for (size_t i = 0; i < len; ++i) { bool error = false; unsigned long codepoint = get_next_utf8_codepoint(utf8_val, i, error); if (error) { okay = false; if (encoding == e_utf16) { result += "\xff\xfd"; } else { result.append(1, unknown); } } else if (codepoint < 128) { char ch = static_cast<char>(codepoint); if (encoding == e_utf16) { result += QUtil::toUTF16(QIntC::to_ulong(ch)); } else if ((encoding == e_pdfdoc) && (((ch >= 0x18) && (ch <= 0x1f)) || (ch == 127))) { // PDFDocEncoding maps some low characters to Unicode, // so if we encounter those invalid UTF-8 code points, // map them to unknown so reversing the mapping // doesn't change them into other characters. okay = false; result.append(1, unknown); } else { result.append(1, ch); } } else if (encoding == e_utf16) { result += QUtil::toUTF16(codepoint); } else if ((codepoint == 0xad) && (encoding == e_pdfdoc)) { // PDFDocEncoding omits 0x00ad (soft hyphen). okay = false; result.append(1, unknown); } else if ((codepoint > 160) && (codepoint < 256) && ((encoding == e_winansi) || (encoding == e_pdfdoc))) { result.append(1, static_cast<char>(codepoint & 0xff)); } else { unsigned char ch = '\0'; if (encoding == e_winansi) { ch = encode_winansi(codepoint); } else if (encoding == e_macroman) { ch = encode_macroman(codepoint); } else if (encoding == e_pdfdoc) { ch = encode_pdfdoc(codepoint); } if (ch == '\0') { okay = false; ch = static_cast<unsigned char>(unknown); } result.append(1, static_cast<char>(ch)); } } return okay; } static std::string transcode_utf8(std::string const& utf8_val, encoding_e encoding, char unknown) { std::string result; transcode_utf8(utf8_val, result, encoding, unknown); return result; } std::string QUtil::utf8_to_utf16(std::string const& utf8) { return transcode_utf8(utf8, e_utf16, 0); } std::string QUtil::utf8_to_ascii(std::string const& utf8, char unknown_char) { return transcode_utf8(utf8, e_ascii, unknown_char); } std::string QUtil::utf8_to_win_ansi(std::string const& utf8, char unknown_char) { return transcode_utf8(utf8, e_winansi, unknown_char); } std::string QUtil::utf8_to_mac_roman(std::string const& utf8, char unknown_char) { return transcode_utf8(utf8, e_macroman, unknown_char); } std::string QUtil::utf8_to_pdf_doc(std::string const& utf8, char unknown_char) { return transcode_utf8(utf8, e_pdfdoc, unknown_char); } bool QUtil::utf8_to_ascii(std::string const& utf8, std::string& ascii, char unknown_char) { return transcode_utf8(utf8, ascii, e_ascii, unknown_char); } bool QUtil::utf8_to_win_ansi(std::string const& utf8, std::string& win, char unknown_char) { return transcode_utf8(utf8, win, e_winansi, unknown_char); } bool QUtil::utf8_to_mac_roman(std::string const& utf8, std::string& mac, char unknown_char) { return transcode_utf8(utf8, mac, e_macroman, unknown_char); } bool QUtil::utf8_to_pdf_doc(std::string const& utf8, std::string& pdfdoc, char unknown_char) { return transcode_utf8(utf8, pdfdoc, e_pdfdoc, unknown_char); } bool QUtil::is_utf16(std::string const& val) { return ((val.length() >= 2) && (((val.at(0) == '\xfe') && (val.at(1) == '\xff')) || ((val.at(0) == '\xff') && (val.at(1) == '\xfe')))); } std::string QUtil::utf16_to_utf8(std::string const& val) { std::string result; // This code uses unsigned long and unsigned short to hold // codepoint values. It requires unsigned long to be at least // 32 bits and unsigned short to be at least 16 bits, but it // will work fine if they are larger. unsigned long codepoint = 0L; size_t len = val.length(); size_t start = 0; bool is_le = false; if (is_utf16(val)) { if (static_cast<unsigned char>(val.at(0)) == 0xff) { is_le = true; } start += 2; } // If the string has an odd number of bytes, the last byte is // ignored. for (size_t i = start; i + 1 < len; i += 2) { // Convert from UTF16-BE. If we get a malformed // codepoint, this code will generate incorrect output // without giving a warning. Specifically, a high // codepoint not followed by a low codepoint will be // discarded, and a low codepoint not preceded by a high // codepoint will just get its low 10 bits output. auto msb = is_le ? i+1 : i; auto lsb = is_le ? i : i+1; unsigned short bits = QIntC::to_ushort( (static_cast<unsigned char>(val.at(msb)) << 8) + static_cast<unsigned char>(val.at(lsb))); if ((bits & 0xFC00) == 0xD800) { codepoint = 0x10000U + ((bits & 0x3FFU) << 10U); continue; } else if ((bits & 0xFC00) == 0xDC00) { if (codepoint != 0) { QTC::TC("qpdf", "QUtil non-trivial UTF-16"); } codepoint += bits & 0x3FF; } else { codepoint = bits; } result += QUtil::toUTF8(codepoint); codepoint = 0; } return result; } std::string QUtil::win_ansi_to_utf8(std::string const& val) { std::string result; size_t len = val.length(); for (unsigned int i = 0; i < len; ++i) { unsigned char ch = static_cast<unsigned char>(val.at(i)); unsigned short ch_short = ch; if ((ch >= 128) && (ch <= 160)) { ch_short = win_ansi_to_unicode[ch - 128]; } result += QUtil::toUTF8(ch_short); } return result; } std::string QUtil::mac_roman_to_utf8(std::string const& val) { std::string result; size_t len = val.length(); for (unsigned int i = 0; i < len; ++i) { unsigned char ch = static_cast<unsigned char>(val.at(i)); unsigned short ch_short = ch; if (ch >= 128) { ch_short = mac_roman_to_unicode[ch - 128]; } result += QUtil::toUTF8(ch_short); } return result; } std::string QUtil::pdf_doc_to_utf8(std::string const& val) { std::string result; size_t len = val.length(); for (unsigned int i = 0; i < len; ++i) { unsigned char ch = static_cast<unsigned char>(val.at(i)); unsigned short ch_short = ch; if ((ch >= 127) && (ch <= 160)) { ch_short = pdf_doc_to_unicode[ch - 127]; } else if ((ch >= 24) && (ch <= 31)) { ch_short = pdf_doc_low_to_unicode[ch - 24]; } else if (ch == 173) { ch_short = 0xfffd; } result += QUtil::toUTF8(ch_short); } return result; } void QUtil::analyze_encoding(std::string const& val, bool& has_8bit_chars, bool& is_valid_utf8, bool& is_utf16) { has_8bit_chars = is_utf16 = is_valid_utf8 = false; if (QUtil::is_utf16(val)) { has_8bit_chars = true; is_utf16 = true; return; } size_t len = val.length(); bool any_errors = false; for (size_t i = 0; i < len; ++i) { bool error = false; unsigned long codepoint = get_next_utf8_codepoint(val, i, error); if (error) { any_errors = true; } if (codepoint >= 128) { has_8bit_chars = true; } } if (has_8bit_chars && (! any_errors)) { is_valid_utf8 = true; } } std::vector<std::string> QUtil::possible_repaired_encodings(std::string supplied) { std::vector<std::string> result; // Always include the original string result.push_back(supplied); bool has_8bit_chars = false; bool is_valid_utf8 = false; bool is_utf16 = false; analyze_encoding(supplied, has_8bit_chars, is_valid_utf8, is_utf16); if (! has_8bit_chars) { return result; } if (is_utf16) { // Convert to UTF-8 and pretend we got a UTF-8 string. is_utf16 = false; is_valid_utf8 = true; supplied = utf16_to_utf8(supplied); } std::string output; if (is_valid_utf8) { // Maybe we were given UTF-8 but wanted one of the single-byte // encodings. if (utf8_to_pdf_doc(supplied, output)) { result.push_back(output); } if (utf8_to_win_ansi(supplied, output)) { result.push_back(output); } if (utf8_to_mac_roman(supplied, output)) { result.push_back(output); } } else { // Maybe we were given one of the single-byte encodings but // wanted UTF-8. std::string from_pdf_doc(pdf_doc_to_utf8(supplied)); result.push_back(from_pdf_doc); std::string from_win_ansi(win_ansi_to_utf8(supplied)); result.push_back(from_win_ansi); std::string from_mac_roman(mac_roman_to_utf8(supplied)); result.push_back(from_mac_roman); // Maybe we were given one of the other single-byte encodings // but wanted one of the other ones. if (utf8_to_win_ansi(from_pdf_doc, output)) { result.push_back(output); } if (utf8_to_mac_roman(from_pdf_doc, output)) { result.push_back(output); } if (utf8_to_pdf_doc(from_win_ansi, output)) { result.push_back(output); } if (utf8_to_mac_roman(from_win_ansi, output)) { result.push_back(output); } if (utf8_to_pdf_doc(from_mac_roman, output)) { result.push_back(output); } if (utf8_to_win_ansi(from_mac_roman, output)) { result.push_back(output); } } // De-duplicate std::vector<std::string> t; std::set<std::string> seen; for (std::vector<std::string>::iterator iter = result.begin(); iter != result.end(); ++iter) { if (! seen.count(*iter)) { seen.insert(*iter); t.push_back(*iter); } } return t; } #ifndef QPDF_NO_WCHAR_T static int call_main_from_wmain(bool, int argc, wchar_t const* const argv[], std::function<int(int, char*[])> realmain) { // argv contains UTF-16-encoded strings with a 16-bit wchar_t. // Convert this to UTF-8-encoded strings for compatibility with // other systems. That way the rest of qpdf.cc can just act like // arguments are UTF-8. std::vector<std::unique_ptr<char[]>> utf8_argv; for (int i = 0; i < argc; ++i) { std::string utf16; for (size_t j = 0; j < std::wcslen(argv[i]); ++j) { unsigned short codepoint = static_cast<unsigned short>(argv[i][j]); utf16.append(1, static_cast<char>( QIntC::to_uchar(codepoint >> 8))); utf16.append(1, static_cast<char>( QIntC::to_uchar(codepoint & 0xff))); } std::string utf8 = QUtil::utf16_to_utf8(utf16); utf8_argv.push_back(QUtil::make_unique_cstr(utf8)); } auto utf8_argv_sp = std::make_unique<char*[]>(1+utf8_argv.size()); char** new_argv = utf8_argv_sp.get(); for (size_t i = 0; i < utf8_argv.size(); ++i) { new_argv[i] = utf8_argv.at(i).get(); } argc = QIntC::to_int(utf8_argv.size()); new_argv[argc] = 0; return realmain(argc, new_argv); } int QUtil::call_main_from_wmain(int argc, wchar_t* argv[], std::function<int(int, char*[])> realmain) { return ::call_main_from_wmain(true, argc, argv, realmain); } int QUtil::call_main_from_wmain( int argc, wchar_t const* const argv[], std::function<int(int, char const* const[])> realmain) { return ::call_main_from_wmain( true, argc, argv, [realmain](int new_argc, char* new_argv[]) { return realmain(new_argc, new_argv); }); } #endif // QPDF_NO_WCHAR_T