// This file implements a class for computation of MD5 checksums. // It is derived from the reference algorithm for MD5 as given in // RFC 1321. The original copyright notice is as follows: // ///////////////////////////////////////////////////////////////////////// // // Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All // rights reserved. // // License to copy and use this software is granted provided that it // is identified as the "RSA Data Security, Inc. MD5 Message-Digest // Algorithm" in all material mentioning or referencing this software // or this function. // // License is also granted to make and use derivative works provided // that such works are identified as "derived from the RSA Data // Security, Inc. MD5 Message-Digest Algorithm" in all material // mentioning or referencing the derived work. // // RSA Data Security, Inc. makes no representations concerning either // the merchantability of this software or the suitability of this // software for any particular purpose. It is provided "as is" // without express or implied warranty of any kind. // // These notices must be retained in any copies of any part of this // documentation and/or software. // ///////////////////////////////////////////////////////////////////////// #include #include #include #include #include #include int const S11 = 7; int const S12 = 12; int const S13 = 17; int const S14 = 22; int const S21 = 5; int const S22 = 9; int const S23 = 14; int const S24 = 20; int const S31 = 4; int const S32 = 11; int const S33 = 16; int const S34 = 23; int const S41 = 6; int const S42 = 10; int const S43 = 15; int const S44 = 21; static unsigned char PADDING[64] = { 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; // F, G, H and I are basic MD5 functions. #define F(x, y, z) (((x) & (y)) | ((~x) & (z))) #define G(x, y, z) (((x) & (z)) | ((y) & (~z))) #define H(x, y, z) ((x) ^ (y) ^ (z)) #define I(x, y, z) ((y) ^ ((x) | (~z))) // ROTATE_LEFT rotates x left n bits. #define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32-(n)))) // FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4. // Rotation is separate from addition to prevent recomputation. #define FF(a, b, c, d, x, s, ac) { \ (a) += F ((b), (c), (d)) + (x) + (UINT4)(ac); \ (a) = ROTATE_LEFT ((a), (s)); \ (a) += (b); \ } #define GG(a, b, c, d, x, s, ac) { \ (a) += G ((b), (c), (d)) + (x) + (UINT4)(ac); \ (a) = ROTATE_LEFT ((a), (s)); \ (a) += (b); \ } #define HH(a, b, c, d, x, s, ac) { \ (a) += H ((b), (c), (d)) + (x) + (UINT4)(ac); \ (a) = ROTATE_LEFT ((a), (s)); \ (a) += (b); \ } #define II(a, b, c, d, x, s, ac) { \ (a) += I ((b), (c), (d)) + (x) + (UINT4)(ac); \ (a) = ROTATE_LEFT ((a), (s)); \ (a) += (b); \ } // MD5 initialization. Begins an MD5 operation, writing a new context. void MD5::init() { count[0] = count[1] = 0; // Load magic initialization constants. state[0] = 0x67452301; state[1] = 0xefcdab89; state[2] = 0x98badcfe; state[3] = 0x10325476; finalized = false; memset(digest_val, 0, sizeof(digest_val)); } // MD5 block update operation. Continues an MD5 message-digest // operation, processing another message block, and updating the // context. void MD5::update(unsigned char *input, unsigned int inputLen) { unsigned int i, index, partLen; // Compute number of bytes mod 64 index = (unsigned int)((count[0] >> 3) & 0x3F); // Update number of bits if ((count[0] += ((UINT4)inputLen << 3)) < ((UINT4)inputLen << 3)) count[1]++; count[1] += ((UINT4)inputLen >> 29); partLen = 64 - index; // Transform as many times as possible. if (inputLen >= partLen) { memcpy ((POINTER)&buffer[index], (POINTER)input, partLen); transform(state, buffer); for (i = partLen; i + 63 < inputLen; i += 64) transform(state, &input[i]); index = 0; } else i = 0; // Buffer remaining input memcpy ((POINTER)&buffer[index], (POINTER)&input[i], inputLen-i); } // MD5 finalization. Ends an MD5 message-digest operation, writing the // the message digest and zeroizing the context. void MD5::final() { if (finalized) { return; } unsigned char bits[8]; unsigned int index, padLen; // Save number of bits encode(bits, count, 8); // Pad out to 56 mod 64. index = (unsigned int)((count[0] >> 3) & 0x3f); padLen = (index < 56) ? (56 - index) : (120 - index); update(PADDING, padLen); // Append length (before padding) update(bits, 8); // Store state in digest_val encode(digest_val, state, 16); // Zeroize sensitive information. memset(state, 0, sizeof(state)); memset(count, 0, sizeof(count)); memset(buffer, 0, sizeof(buffer)); finalized = true; } // MD5 basic transformation. Transforms state based on block. void MD5::transform(UINT4 state[4], unsigned char block[64]) { UINT4 a = state[0], b = state[1], c = state[2], d = state[3], x[16]; decode(x, block, 64); // Round 1 FF (a, b, c, d, x[ 0], S11, 0xd76aa478); // 1 FF (d, a, b, c, x[ 1], S12, 0xe8c7b756); // 2 FF (c, d, a, b, x[ 2], S13, 0x242070db); // 3 FF (b, c, d, a, x[ 3], S14, 0xc1bdceee); // 4 FF (a, b, c, d, x[ 4], S11, 0xf57c0faf); // 5 FF (d, a, b, c, x[ 5], S12, 0x4787c62a); // 6 FF (c, d, a, b, x[ 6], S13, 0xa8304613); // 7 FF (b, c, d, a, x[ 7], S14, 0xfd469501); // 8 FF (a, b, c, d, x[ 8], S11, 0x698098d8); // 9 FF (d, a, b, c, x[ 9], S12, 0x8b44f7af); // 10 FF (c, d, a, b, x[10], S13, 0xffff5bb1); // 11 FF (b, c, d, a, x[11], S14, 0x895cd7be); // 12 FF (a, b, c, d, x[12], S11, 0x6b901122); // 13 FF (d, a, b, c, x[13], S12, 0xfd987193); // 14 FF (c, d, a, b, x[14], S13, 0xa679438e); // 15 FF (b, c, d, a, x[15], S14, 0x49b40821); // 16 // Round 2 GG (a, b, c, d, x[ 1], S21, 0xf61e2562); // 17 GG (d, a, b, c, x[ 6], S22, 0xc040b340); // 18 GG (c, d, a, b, x[11], S23, 0x265e5a51); // 19 GG (b, c, d, a, x[ 0], S24, 0xe9b6c7aa); // 20 GG (a, b, c, d, x[ 5], S21, 0xd62f105d); // 21 GG (d, a, b, c, x[10], S22, 0x2441453); // 22 GG (c, d, a, b, x[15], S23, 0xd8a1e681); // 23 GG (b, c, d, a, x[ 4], S24, 0xe7d3fbc8); // 24 GG (a, b, c, d, x[ 9], S21, 0x21e1cde6); // 25 GG (d, a, b, c, x[14], S22, 0xc33707d6); // 26 GG (c, d, a, b, x[ 3], S23, 0xf4d50d87); // 27 GG (b, c, d, a, x[ 8], S24, 0x455a14ed); // 28 GG (a, b, c, d, x[13], S21, 0xa9e3e905); // 29 GG (d, a, b, c, x[ 2], S22, 0xfcefa3f8); // 30 GG (c, d, a, b, x[ 7], S23, 0x676f02d9); // 31 GG (b, c, d, a, x[12], S24, 0x8d2a4c8a); // 32 // Round 3 HH (a, b, c, d, x[ 5], S31, 0xfffa3942); // 33 HH (d, a, b, c, x[ 8], S32, 0x8771f681); // 34 HH (c, d, a, b, x[11], S33, 0x6d9d6122); // 35 HH (b, c, d, a, x[14], S34, 0xfde5380c); // 36 HH (a, b, c, d, x[ 1], S31, 0xa4beea44); // 37 HH (d, a, b, c, x[ 4], S32, 0x4bdecfa9); // 38 HH (c, d, a, b, x[ 7], S33, 0xf6bb4b60); // 39 HH (b, c, d, a, x[10], S34, 0xbebfbc70); // 40 HH (a, b, c, d, x[13], S31, 0x289b7ec6); // 41 HH (d, a, b, c, x[ 0], S32, 0xeaa127fa); // 42 HH (c, d, a, b, x[ 3], S33, 0xd4ef3085); // 43 HH (b, c, d, a, x[ 6], S34, 0x4881d05); // 44 HH (a, b, c, d, x[ 9], S31, 0xd9d4d039); // 45 HH (d, a, b, c, x[12], S32, 0xe6db99e5); // 46 HH (c, d, a, b, x[15], S33, 0x1fa27cf8); // 47 HH (b, c, d, a, x[ 2], S34, 0xc4ac5665); // 48 // Round 4 II (a, b, c, d, x[ 0], S41, 0xf4292244); // 49 II (d, a, b, c, x[ 7], S42, 0x432aff97); // 50 II (c, d, a, b, x[14], S43, 0xab9423a7); // 51 II (b, c, d, a, x[ 5], S44, 0xfc93a039); // 52 II (a, b, c, d, x[12], S41, 0x655b59c3); // 53 II (d, a, b, c, x[ 3], S42, 0x8f0ccc92); // 54 II (c, d, a, b, x[10], S43, 0xffeff47d); // 55 II (b, c, d, a, x[ 1], S44, 0x85845dd1); // 56 II (a, b, c, d, x[ 8], S41, 0x6fa87e4f); // 57 II (d, a, b, c, x[15], S42, 0xfe2ce6e0); // 58 II (c, d, a, b, x[ 6], S43, 0xa3014314); // 59 II (b, c, d, a, x[13], S44, 0x4e0811a1); // 60 II (a, b, c, d, x[ 4], S41, 0xf7537e82); // 61 II (d, a, b, c, x[11], S42, 0xbd3af235); // 62 II (c, d, a, b, x[ 2], S43, 0x2ad7d2bb); // 63 II (b, c, d, a, x[ 9], S44, 0xeb86d391); // 64 state[0] += a; state[1] += b; state[2] += c; state[3] += d; // Zeroize sensitive information. memset ((POINTER)x, 0, sizeof (x)); } // Encodes input (UINT4) into output (unsigned char). Assumes len is a // multiple of 4. void MD5::encode(unsigned char *output, UINT4 *input, unsigned int len) { unsigned int i, j; for (i = 0, j = 0; j < len; i++, j += 4) { output[j] = (unsigned char)(input[i] & 0xff); output[j+1] = (unsigned char)((input[i] >> 8) & 0xff); output[j+2] = (unsigned char)((input[i] >> 16) & 0xff); output[j+3] = (unsigned char)((input[i] >> 24) & 0xff); } } // Decodes input (unsigned char) into output (UINT4). Assumes len is a // multiple of 4. void MD5::decode(UINT4 *output, unsigned char *input, unsigned int len) { unsigned int i, j; for (i = 0, j = 0; j < len; i++, j += 4) output[i] = ((UINT4)input[j]) | (((UINT4)input[j+1]) << 8) | (((UINT4)input[j+2]) << 16) | (((UINT4)input[j+3]) << 24); } // Public functions MD5::MD5() { init(); } void MD5::reset() { init(); } void MD5::encodeString(char const* str) { unsigned int len = strlen(str); update((unsigned char *)str, len); final(); } void MD5::appendString(char const* input_string) { update((unsigned char *)input_string, strlen(input_string)); } void MD5::encodeDataIncrementally(char const* data, int len) { update((unsigned char *)data, len); } void MD5::encodeFile(char const *filename, int up_to_size) throw (QEXC::System) { FILE *file; unsigned char buffer[1024]; if ((file = fopen (filename, "rb")) == NULL) { throw QEXC::System(std::string("MD5: can't open ") + filename, errno); } int len; int so_far = 0; int to_try = 1024; do { if ((up_to_size >= 0) && ((so_far + to_try) > up_to_size)) { to_try = up_to_size - so_far; } len = fread(buffer, 1, to_try, file); if (len > 0) { update(buffer, len); so_far += len; if ((up_to_size >= 0) && (so_far >= up_to_size)) { break; } } } while (len > 0); if (ferror(file)) { // Assume, perhaps incorrectly, that errno was set by the // underlying call to read.... (void) fclose(file); throw QEXC::System(std::string("MD5: read error on ") + filename, errno); } (void) fclose(file); final(); } void MD5::digest(Digest result) { final(); memcpy(result, digest_val, sizeof(digest_val)); } void MD5::print() { final(); unsigned int i; for (i = 0; i < 16; ++i) { printf("%02x", digest_val[i]); } printf("\n"); } std::string MD5::unparse() { final(); char result[33]; char* p = result; unsigned int i; for (i = 0; i < 16; ++i) { sprintf(p, "%02x", digest_val[i]); p += 2; } return result; } std::string MD5::getDataChecksum(char const* buf, int len) { MD5 m; m.encodeDataIncrementally(buf, len); return m.unparse(); } std::string MD5::getFileChecksum(char const* filename, int up_to_size) { MD5 m; m.encodeFile(filename, up_to_size); return m.unparse(); } bool MD5::checkDataChecksum(char const* const checksum, char const* buf, int len) { std::string actual_checksum = getDataChecksum(buf, len); return (checksum == actual_checksum); } bool MD5::checkFileChecksum(char const* const checksum, char const* filename, int up_to_size) { bool result = false; try { std::string actual_checksum = getFileChecksum(filename, up_to_size); result = (checksum == actual_checksum); } catch (QEXC::System) { // Ignore -- return false } return result; }