2
1
mirror of https://github.com/qpdf/qpdf.git synced 2025-01-07 00:53:56 +00:00
qpdf/libqpdf/QPDF_linearization.cc
2012-06-24 15:56:50 -04:00

2128 lines
64 KiB
C++

// See doc/linearization.
#include <qpdf/QPDF.hh>
#include <qpdf/QPDFExc.hh>
#include <qpdf/QTC.hh>
#include <qpdf/QUtil.hh>
#include <qpdf/PCRE.hh>
#include <qpdf/Pl_Buffer.hh>
#include <qpdf/Pl_Flate.hh>
#include <qpdf/Pl_Count.hh>
#include <qpdf/BitWriter.hh>
#include <qpdf/BitStream.hh>
#include <iostream>
#include <algorithm>
#include <assert.h>
#include <math.h>
#include <string.h>
template <class T, class int_type>
static void
load_vector_int(BitStream& bit_stream, int nitems, std::vector<T>& vec,
int bits_wanted, int_type T::*field)
{
// nitems times, read bits_wanted from the given bit stream,
// storing results in the ith vector entry.
for (int i = 0; i < nitems; ++i)
{
vec[i].*field = bit_stream.getBits(bits_wanted);
}
// The PDF spec says that each hint table starts at a byte
// boundary. Each "row" actually must start on a byte boundary.
bit_stream.skipToNextByte();
}
template <class T>
static void
load_vector_vector(BitStream& bit_stream,
int nitems1, std::vector<T>& vec1, int T::*nitems2,
int bits_wanted, std::vector<int> T::*vec2)
{
// nitems1 times, read nitems2 (from the ith element of vec1) items
// into the vec2 vector field of the ith item of vec1.
for (int i1 = 0; i1 < nitems1; ++i1)
{
for (int i2 = 0; i2 < vec1[i1].*nitems2; ++i2)
{
(vec1[i1].*vec2).push_back(bit_stream.getBits(bits_wanted));
}
}
bit_stream.skipToNextByte();
}
bool
QPDF::checkLinearization()
{
bool result = false;
try
{
readLinearizationData();
result = checkLinearizationInternal();
}
catch (QPDFExc& e)
{
*out_stream << e.what() << std::endl;
}
return result;
}
bool
QPDF::isLinearized()
{
// If the first object in the file is a dictionary with a suitable
// /Linearized key and has an /L key that accurately indicates the
// file size, initialize this->lindict and return true.
// A linearized PDF spec's first object will be contained within
// the first 1024 bytes of the file and will be a dictionary with
// a valid /Linearized key. This routine looks for that and does
// no additional validation.
// The PDF spec says the linearization dictionary must be
// completely contained within the first 1024 bytes of the file.
// Add a byte for a null terminator.
static int const tbuf_size = 1025;
char* buf = new char[tbuf_size];
this->file->seek(0, SEEK_SET);
PointerHolder<char> b(true, buf);
memset(buf, '\0', tbuf_size);
this->file->read(buf, tbuf_size - 1);
PCRE lindict_re("(?s:(\\d+)\\s+0\\s+obj\\s*<<)");
int lindict_obj = -1;
char* p = buf;
while (lindict_obj == -1)
{
PCRE::Match m(lindict_re.match(p));
if (m)
{
lindict_obj = atoi(m.getMatch(1).c_str());
if (m.getMatch(0).find('\n') != std::string::npos)
{
QTC::TC("qpdf", "QPDF lindict found newline");
}
}
else
{
p = (char*)memchr(p, '\0', tbuf_size - (p - buf));
assert(p != 0);
while ((p - buf < tbuf_size) && (*p == 0))
{
++p;
}
if ((p - buf) == tbuf_size)
{
break;
}
QTC::TC("qpdf", "QPDF lindict searching after null");
}
}
if (lindict_obj == 0)
{
return false;
}
QPDFObjectHandle candidate = QPDFObjectHandle::Factory::newIndirect(
this, lindict_obj, 0);
if (! candidate.isDictionary())
{
return false;
}
QPDFObjectHandle linkey = candidate.getKey("/Linearized");
if (! (linkey.isNumber() && ((int)floor(linkey.getNumericValue()) == 1)))
{
return false;
}
QPDFObjectHandle L = candidate.getKey("/L");
if (L.isInteger())
{
qpdf_offset_t Li = L.getIntValue();
this->file->seek(0, SEEK_END);
if (Li != this->file->tell())
{
QTC::TC("qpdf", "QPDF /L mismatch");
return false;
}
else
{
this->linp.file_size = Li;
}
}
this->lindict = candidate;
return true;
}
void
QPDF::readLinearizationData()
{
// This function throws an exception (which is trapped by
// checkLinearization()) for any errors that prevent loading.
// Hint table parsing code needs at least 32 bits in a long.
assert(sizeof(long) >= 4);
if (! isLinearized())
{
throw std::logic_error("called readLinearizationData for file"
" that is not linearized");
}
// /L is read and stored in linp by isLinearized()
QPDFObjectHandle H = lindict.getKey("/H");
QPDFObjectHandle O = lindict.getKey("/O");
QPDFObjectHandle E = lindict.getKey("/E");
QPDFObjectHandle N = lindict.getKey("/N");
QPDFObjectHandle T = lindict.getKey("/T");
QPDFObjectHandle P = lindict.getKey("/P");
if (! (H.isArray() &&
O.isInteger() &&
E.isInteger() &&
N.isInteger() &&
T.isInteger() &&
(P.isInteger() || P.isNull())))
{
throw QPDFExc(qpdf_e_damaged_pdf, this->file->getName(),
"linearization dictionary",
this->file->getLastOffset(),
"some keys in linearization dictionary are of "
"the wrong type");
}
// Hint table array: offset length [ offset length ]
unsigned int n_H_items = H.getArrayNItems();
if (! ((n_H_items == 2) || (n_H_items == 4)))
{
throw QPDFExc(qpdf_e_damaged_pdf, this->file->getName(),
"linearization dictionary",
this->file->getLastOffset(),
"H has the wrong number of items");
}
std::vector<int> H_items;
for (unsigned int i = 0; i < n_H_items; ++i)
{
QPDFObjectHandle oh(H.getArrayItem(i));
if (oh.isInteger())
{
H_items.push_back(oh.getIntValue());
}
else
{
throw QPDFExc(qpdf_e_damaged_pdf, this->file->getName(),
"linearization dictionary",
this->file->getLastOffset(),
"some H items are of the wrong type");
}
}
// H: hint table offset/length for primary and overflow hint tables
int H0_offset = H_items[0];
int H0_length = H_items[1];
int H1_offset = 0;
int H1_length = 0;
if (H_items.size() == 4)
{
// Acrobat doesn't read or write these (as PDF 1.4), so we
// don't have a way to generate a test case.
// QTC::TC("qpdf", "QPDF overflow hint table");
H1_offset = H_items[2];
H1_length = H_items[3];
}
// P: first page number
int first_page = 0;
if (P.isInteger())
{
QTC::TC("qpdf", "QPDF P present in lindict");
first_page = P.getIntValue();
}
else
{
QTC::TC("qpdf", "QPDF P absent in lindict");
}
// Store linearization parameter data
// file_size initialized by isLinearized()
this->linp.first_page_object = O.getIntValue();
this->linp.first_page_end = E.getIntValue();
this->linp.npages = N.getIntValue();
this->linp.xref_zero_offset = T.getIntValue();
this->linp.first_page = first_page;
this->linp.H_offset = H0_offset;
this->linp.H_length = H0_length;
// Read hint streams
Pl_Buffer pb("hint buffer");
QPDFObjectHandle H0 = readHintStream(pb, H0_offset, H0_length);
if (H1_offset)
{
(void) readHintStream(pb, H1_offset, H1_length);
}
// PDF 1.4 hint tables that we ignore:
// /T thumbnail
// /A thread information
// /E named destination
// /V interactive form
// /I information dictionary
// /C logical structure
// /L page label
// Individual hint table offsets
QPDFObjectHandle HS = H0.getKey("/S"); // shared object
QPDFObjectHandle HO = H0.getKey("/O"); // outline
PointerHolder<Buffer> hbp = pb.getBuffer();
Buffer* hb = hbp.getPointer();
unsigned char const* h_buf = hb->getBuffer();
int h_size = (int)hb->getSize();
readHPageOffset(BitStream(h_buf, h_size));
int HSi = HS.getIntValue();
readHSharedObject(BitStream(h_buf + HSi, h_size - HSi));
if (HO.isInteger())
{
int HOi = HO.getIntValue();
readHGeneric(BitStream(h_buf + HOi, h_size - HOi),
this->outline_hints);
}
}
QPDFObjectHandle
QPDF::readHintStream(Pipeline& pl, qpdf_offset_t offset, size_t length)
{
int obj;
int gen;
QPDFObjectHandle H = readObjectAtOffset(
false, offset, "linearization hint stream", -1, 0, obj, gen);
ObjCache& oc = this->obj_cache[ObjGen(obj, gen)];
qpdf_offset_t min_end_offset = oc.end_before_space;
qpdf_offset_t max_end_offset = oc.end_after_space;
if (! H.isStream())
{
throw QPDFExc(qpdf_e_damaged_pdf, this->file->getName(),
"linearization dictionary",
this->file->getLastOffset(),
"hint table is not a stream");
}
QPDFObjectHandle Hdict = H.getDict();
// Some versions of Acrobat make /Length indirect and place it
// immediately after the stream, increasing length to cover it,
// even though the specification says all objects in the
// linearization parameter dictionary must be direct. We have to
// get the file position of the end of length in this case.
QPDFObjectHandle length_obj = Hdict.getKey("/Length");
if (length_obj.isIndirect())
{
QTC::TC("qpdf", "QPDF hint table length indirect");
// Force resolution
(void) length_obj.getIntValue();
ObjCache& oc = this->obj_cache
[ObjGen(length_obj.getObjectID(),
length_obj.getGeneration())];
min_end_offset = oc.end_before_space;
max_end_offset = oc.end_after_space;
}
else
{
QTC::TC("qpdf", "QPDF hint table length direct");
}
qpdf_offset_t computed_end = offset + (qpdf_offset_t)length;
if ((computed_end < min_end_offset) ||
(computed_end > max_end_offset))
{
*out_stream << "expected = " << computed_end
<< "; actual = " << min_end_offset << ".."
<< max_end_offset << std::endl;
throw QPDFExc(qpdf_e_damaged_pdf, this->file->getName(),
"linearization dictionary",
this->file->getLastOffset(),
"hint table length mismatch");
}
H.pipeStreamData(&pl, true, false, false);
return Hdict;
}
void
QPDF::readHPageOffset(BitStream h)
{
// All comments referring to the PDF spec refer to the spec for
// version 1.4.
HPageOffset& t = this->page_offset_hints;
t.min_nobjects = h.getBits(32); // 1
t.first_page_offset = h.getBits(32); // 2
t.nbits_delta_nobjects = h.getBits(16); // 3
t.min_page_length = h.getBits(32); // 4
t.nbits_delta_page_length = h.getBits(16); // 5
t.min_content_offset = h.getBits(32); // 6
t.nbits_delta_content_offset = h.getBits(16); // 7
t.min_content_length = h.getBits(32); // 8
t.nbits_delta_content_length = h.getBits(16); // 9
t.nbits_nshared_objects = h.getBits(16); // 10
t.nbits_shared_identifier = h.getBits(16); // 11
t.nbits_shared_numerator = h.getBits(16); // 12
t.shared_denominator = h.getBits(16); // 13
unsigned int nitems = this->linp.npages;
std::vector<HPageOffsetEntry>& entries = t.entries;
entries = std::vector<HPageOffsetEntry>(nitems);
load_vector_int(h, nitems, entries,
t.nbits_delta_nobjects,
&HPageOffsetEntry::delta_nobjects);
load_vector_int(h, nitems, entries,
t.nbits_delta_page_length,
&HPageOffsetEntry::delta_page_length);
load_vector_int(h, nitems, entries,
t.nbits_nshared_objects,
&HPageOffsetEntry::nshared_objects);
load_vector_vector(h, nitems, entries,
&HPageOffsetEntry::nshared_objects,
t.nbits_shared_identifier,
&HPageOffsetEntry::shared_identifiers);
load_vector_vector(h, nitems, entries,
&HPageOffsetEntry::nshared_objects,
t.nbits_shared_numerator,
&HPageOffsetEntry::shared_numerators);
load_vector_int(h, nitems, entries,
t.nbits_delta_content_offset,
&HPageOffsetEntry::delta_content_offset);
load_vector_int(h, nitems, entries,
t.nbits_delta_content_length,
&HPageOffsetEntry::delta_content_length);
}
void
QPDF::readHSharedObject(BitStream h)
{
HSharedObject& t = this->shared_object_hints;
t.first_shared_obj = h.getBits(32); // 1
t.first_shared_offset = h.getBits(32); // 2
t.nshared_first_page = h.getBits(32); // 3
t.nshared_total = h.getBits(32); // 4
t.nbits_nobjects = h.getBits(16); // 5
t.min_group_length = h.getBits(32); // 6
t.nbits_delta_group_length = h.getBits(16); // 7
QTC::TC("qpdf", "QPDF lin nshared_total > nshared_first_page",
(t.nshared_total > t.nshared_first_page) ? 1 : 0);
int nitems = t.nshared_total;
std::vector<HSharedObjectEntry>& entries = t.entries;
entries = std::vector<HSharedObjectEntry>(nitems);
load_vector_int(h, nitems, entries,
t.nbits_delta_group_length,
&HSharedObjectEntry::delta_group_length);
load_vector_int(h, nitems, entries,
1, &HSharedObjectEntry::signature_present);
for (int i = 0; i < nitems; ++i)
{
if (entries[i].signature_present)
{
// Skip 128-bit MD5 hash. These are not supported by
// acrobat, so they should probably never be there. We
// have no test case for this.
for (int j = 0; j < 4; ++j)
{
(void) h.getBits(32);
}
}
}
load_vector_int(h, nitems, entries,
t.nbits_nobjects,
&HSharedObjectEntry::nobjects_minus_one);
}
void
QPDF::readHGeneric(BitStream h, HGeneric& t)
{
t.first_object = h.getBits(32); // 1
t.first_object_offset = h.getBits(32); // 2
t.nobjects = h.getBits(32); // 3
t.group_length = h.getBits(32); // 4
}
bool
QPDF::checkLinearizationInternal()
{
// All comments referring to the PDF spec refer to the spec for
// version 1.4.
std::list<std::string> errors;
std::list<std::string> warnings;
// Check all values in linearization parameter dictionary
LinParameters& p = this->linp;
// L: file size in bytes -- checked by isLinearized
// O: object number of first page
std::vector<QPDFObjectHandle> const& pages = getAllPages();
if (p.first_page_object != pages[0].getObjectID())
{
QTC::TC("qpdf", "QPDF err /O mismatch");
errors.push_back("first page object (/O) mismatch");
}
// N: number of pages
int npages = (int)pages.size();
if (p.npages != npages)
{
// Not tested in the test suite
errors.push_back("page count (/N) mismatch");
}
for (int i = 0; i < npages; ++i)
{
QPDFObjectHandle const& page = pages[i];
ObjGen og(page.getObjectID(), page.getGeneration());
if (this->xref_table[og].getType() == 2)
{
errors.push_back("page dictionary for page " +
QUtil::int_to_string(i) + " is compressed");
}
}
// T: offset of whitespace character preceding xref entry for object 0
this->file->seek(p.xref_zero_offset, SEEK_SET);
while (1)
{
char ch;
this->file->read(&ch, 1);
if (! ((ch == ' ') || (ch == '\r') || (ch == '\n')))
{
this->file->seek(-1, SEEK_CUR);
break;
}
}
if (this->file->tell() != this->first_xref_item_offset)
{
QTC::TC("qpdf", "QPDF err /T mismatch");
errors.push_back("space before first xref item (/T) mismatch "
"(computed = " +
QUtil::int_to_string(this->first_xref_item_offset) +
"; file = " +
QUtil::int_to_string(this->file->tell()));
}
// P: first page number -- Implementation note 124 says Acrobat
// ignores this value, so we will too.
// Check numbering of compressed objects in each xref section.
// For linearized files, all compressed objects are supposed to be
// at the end of the containing xref section if any object streams
// are in use.
if (this->uncompressed_after_compressed)
{
errors.push_back("linearized file contains an uncompressed object"
" after a compressed one in a cross-reference stream");
}
// Further checking requires optimization and order calculation.
// Don't allow optimization to make changes. If it has to, then
// the file is not properly linearized. We use the xref table to
// figure out which objects are compressed and which are
// uncompressed.
{ // local scope
std::map<int, int> object_stream_data;
for (std::map<ObjGen, QPDFXRefEntry>::const_iterator iter =
this->xref_table.begin();
iter != this->xref_table.end(); ++iter)
{
ObjGen const& og = (*iter).first;
QPDFXRefEntry const& entry = (*iter).second;
if (entry.getType() == 2)
{
object_stream_data[og.obj] = entry.getObjStreamNumber();
}
}
optimize(object_stream_data, false);
calculateLinearizationData(object_stream_data);
}
// E: offset of end of first page -- Implementation note 123 says
// Acrobat includes on extra object here by mistake. pdlin fails
// to place thumbnail images in section 9, so when thumbnails are
// present, it also gets the wrong value for /E. It also doesn't
// count outlines here when it should even though it places them
// in part 6. This code fails to put thread information
// dictionaries in part 9, so it actually gets the wrong value for
// E when threads are present. In that case, it would probably
// agree with pdlin. As of this writing, the test suite doesn't
// contain any files with threads.
assert(! this->part6.empty());
int min_E = -1;
int max_E = -1;
for (std::vector<QPDFObjectHandle>::iterator iter = this->part6.begin();
iter != this->part6.end(); ++iter)
{
ObjGen og((*iter).getObjectID(), (*iter).getGeneration());
// All objects have to have been dereferenced to be classified.
assert(this->obj_cache.count(og) > 0);
ObjCache const& oc = this->obj_cache[og];
min_E = std::max(min_E, (int)oc.end_before_space);
max_E = std::max(max_E, (int)oc.end_after_space);
}
if ((p.first_page_end < min_E) || (p.first_page_end > max_E))
{
QTC::TC("qpdf", "QPDF warn /E mismatch");
warnings.push_back("end of first page section (/E) mismatch: /E = " +
QUtil::int_to_string(p.first_page_end) +
"; computed = " +
QUtil::int_to_string(min_E) + ".." +
QUtil::int_to_string(max_E));
}
// Check hint tables
std::map<int, int> shared_idx_to_obj;
checkHSharedObject(errors, warnings, pages, shared_idx_to_obj);
checkHPageOffset(errors, warnings, pages, shared_idx_to_obj);
checkHOutlines(warnings);
// Report errors
bool result = true;
if (! errors.empty())
{
result = false;
for (std::list<std::string>::iterator iter = errors.begin();
iter != errors.end(); ++iter)
{
*out_stream << "ERROR: " << (*iter) << std::endl;
}
}
if (! warnings.empty())
{
result = false;
for (std::list<std::string>::iterator iter = warnings.begin();
iter != warnings.end(); ++iter)
{
*out_stream << "WARNING: " << (*iter) << std::endl;
}
}
return result;
}
int
QPDF::maxEnd(ObjUser const& ou)
{
assert(this->obj_user_to_objects.count(ou) > 0);
std::set<ObjGen> const& ogs = this->obj_user_to_objects[ou];
int end = 0;
for (std::set<ObjGen>::const_iterator iter = ogs.begin();
iter != ogs.end(); ++iter)
{
ObjGen const& og = *iter;
assert(this->obj_cache.count(og) > 0);
end = std::max(
end, (int)(this->obj_cache[og].end_after_space));
}
return end;
}
qpdf_offset_t
QPDF::getLinearizationOffset(ObjGen const& og)
{
QPDFXRefEntry entry = this->xref_table[og];
qpdf_offset_t result = 0;
switch (entry.getType())
{
case 1:
result = entry.getOffset();
break;
case 2:
// For compressed objects, return the offset of the object
// stream that contains them.
result = getLinearizationOffset(ObjGen(entry.getObjStreamNumber(), 0));
break;
default:
throw std::logic_error(
"getLinearizationOffset called for xref entry not of type 1 or 2");
break;
}
return result;
}
QPDFObjectHandle
QPDF::getUncompressedObject(QPDFObjectHandle& obj,
std::map<int, int> const& object_stream_data)
{
if (obj.isNull() || (object_stream_data.count(obj.getObjectID()) == 0))
{
return obj;
}
else
{
int repl = (*(object_stream_data.find(obj.getObjectID()))).second;
return objGenToIndirect(ObjGen(repl, 0));
}
}
int
QPDF::lengthNextN(int first_object, int n,
std::list<std::string>& errors)
{
int length = 0;
for (int i = 0; i < n; ++i)
{
ObjGen og(first_object + i, 0);
if (this->xref_table.count(og) == 0)
{
errors.push_back(
"no xref table entry for " +
QUtil::int_to_string(first_object + i) + " 0");
}
else
{
assert(this->obj_cache.count(og) > 0);
length += this->obj_cache[og].end_after_space -
getLinearizationOffset(og);
}
}
return length;
}
void
QPDF::checkHPageOffset(std::list<std::string>& errors,
std::list<std::string>& warnings,
std::vector<QPDFObjectHandle> const& pages,
std::map<int, int>& shared_idx_to_obj)
{
// Implementation note 126 says Acrobat always sets
// delta_content_offset and delta_content_length in the page
// offset header dictionary to 0. It also states that
// min_content_offset in the per-page information is always 0,
// which is an incorrect value.
// Implementation note 127 explains that Acrobat always sets item
// 8 (min_content_length) to zero, item 9
// (nbits_delta_content_length) to the value of item 5
// (nbits_delta_page_length), and item 7 of each per-page hint
// table (delta_content_length) to item 2 (delta_page_length) of
// that entry. Acrobat ignores these values when reading files.
// Empirically, it also seems that Acrobat sometimes puts items
// under a page's /Resources dictionary in with shared objects
// even when they are private.
unsigned int npages = (unsigned int)pages.size();
int table_offset = adjusted_offset(
this->page_offset_hints.first_page_offset);
ObjGen first_page_og(pages[0].getObjectID(), pages[0].getGeneration());
assert(this->xref_table.count(first_page_og) > 0);
int offset = getLinearizationOffset(first_page_og);
if (table_offset != offset)
{
warnings.push_back("first page object offset mismatch");
}
for (unsigned int pageno = 0; pageno < npages; ++pageno)
{
ObjGen page_og(pages[pageno].getObjectID(),
pages[pageno].getGeneration());
int first_object = page_og.obj;
assert(this->xref_table.count(page_og) > 0);
offset = getLinearizationOffset(page_og);
HPageOffsetEntry& he = this->page_offset_hints.entries[pageno];
CHPageOffsetEntry& ce = this->c_page_offset_data.entries[pageno];
int h_nobjects = he.delta_nobjects +
this->page_offset_hints.min_nobjects;
if (h_nobjects != ce.nobjects)
{
// This happens with pdlin when there are thumbnails.
warnings.push_back(
"object count mismatch for page " +
QUtil::int_to_string(pageno) + ": hint table = " +
QUtil::int_to_string(h_nobjects) + "; computed = " +
QUtil::int_to_string(ce.nobjects));
}
// Use value for number of objects in hint table rather than
// computed value if there is a discrepancy.
int length = lengthNextN(first_object, h_nobjects, errors);
int h_length = he.delta_page_length +
this->page_offset_hints.min_page_length;
if (length != h_length)
{
// This condition almost certainly indicates a bad hint
// table or a bug in this code.
errors.push_back(
"page length mismatch for page " +
QUtil::int_to_string(pageno) + ": hint table = " +
QUtil::int_to_string(h_length) + "; computed length = " +
QUtil::int_to_string(length) + " (offset = " +
QUtil::int_to_string(offset) + ")");
}
offset += h_length;
// Translate shared object indexes to object numbers.
std::set<int> hint_shared;
std::set<int> computed_shared;
if ((pageno == 0) && (he.nshared_objects > 0))
{
// pdlin and Acrobat both do this even though the spec
// states clearly and unambiguously that they should not.
warnings.push_back("page 0 has shared identifier entries");
}
for (int i = 0; i < he.nshared_objects; ++i)
{
int idx = he.shared_identifiers[i];
assert(shared_idx_to_obj.count(idx) > 0);
hint_shared.insert(shared_idx_to_obj[idx]);
}
for (int i = 0; i < ce.nshared_objects; ++i)
{
int idx = ce.shared_identifiers[i];
assert(idx < this->c_shared_object_data.nshared_total);
int obj = this->c_shared_object_data.entries[idx].object;
computed_shared.insert(obj);
}
for (std::set<int>::iterator iter = hint_shared.begin();
iter != hint_shared.end(); ++iter)
{
if (! computed_shared.count(*iter))
{
// pdlin puts thumbnails here even though it shouldn't
warnings.push_back(
"page " + QUtil::int_to_string(pageno) +
": shared object " + QUtil::int_to_string(*iter) +
": in hint table but not computed list");
}
}
for (std::set<int>::iterator iter = computed_shared.begin();
iter != computed_shared.end(); ++iter)
{
if (! hint_shared.count(*iter))
{
// Acrobat does not put some things including at least
// built-in fonts and procsets here, at least in some
// cases.
warnings.push_back(
"page " + QUtil::int_to_string(pageno) +
": shared object " + QUtil::int_to_string(*iter) +
": in computed list but not hint table");
}
}
}
}
void
QPDF::checkHSharedObject(std::list<std::string>& errors,
std::list<std::string>& warnings,
std::vector<QPDFObjectHandle> const& pages,
std::map<int, int>& idx_to_obj)
{
// Implementation note 125 says shared object groups always
// contain only one object. Implementation note 128 says that
// Acrobat always nbits_nobjects to zero. Implementation note 130
// says that Acrobat does not support more than one shared object
// per group. These are all consistent.
// Implementation note 129 states that MD5 signatures are not
// implemented in Acrobat, so signature_present must always be
// zero.
// Implementation note 131 states that first_shared_obj and
// first_shared_offset have meaningless values for single-page
// files.
// Empirically, Acrobat and pdlin generate incorrect values for
// these whenever there are no shared objects not referenced by
// the first page (i.e., nshared_total == nshared_first_page).
HSharedObject& so = this->shared_object_hints;
if (so.nshared_total < so.nshared_first_page)
{
errors.push_back("shared object hint table: ntotal < nfirst_page");
}
else
{
// The first nshared_first_page objects are consecutive
// objects starting with the first page object. The rest are
// consecutive starting from the first_shared_obj object.
int cur_object = pages[0].getObjectID();
for (int i = 0; i < so.nshared_total; ++i)
{
if (i == so.nshared_first_page)
{
QTC::TC("qpdf", "QPDF lin check shared past first page");
if (this->part8.empty())
{
errors.push_back(
"part 8 is empty but nshared_total > "
"nshared_first_page");
}
else
{
int obj = this->part8[0].getObjectID();
if (obj != so.first_shared_obj)
{
errors.push_back(
"first shared object number mismatch: "
"hint table = " +
QUtil::int_to_string(so.first_shared_obj) +
"; computed = " +
QUtil::int_to_string(obj));
}
}
cur_object = so.first_shared_obj;
ObjGen og(cur_object, 0);
assert(this->xref_table.count(og) > 0);
int offset = getLinearizationOffset(og);
int h_offset = adjusted_offset(so.first_shared_offset);
if (offset != h_offset)
{
errors.push_back(
"first shared object offset mismatch: hint table = " +
QUtil::int_to_string(h_offset) + "; computed = " +
QUtil::int_to_string(offset));
}
}
idx_to_obj[i] = cur_object;
HSharedObjectEntry& se = so.entries[i];
int nobjects = se.nobjects_minus_one + 1;
int length = lengthNextN(cur_object, nobjects, errors);
int h_length = so.min_group_length + se.delta_group_length;
if (length != h_length)
{
errors.push_back(
"shared object " + QUtil::int_to_string(i) +
" length mismatch: hint table = " +
QUtil::int_to_string(h_length) + "; computed = " +
QUtil::int_to_string(length));
}
cur_object += nobjects;
}
}
}
void
QPDF::checkHOutlines(std::list<std::string>& warnings)
{
// Empirically, Acrobat generates the correct value for the object
// number but incorrectly stores the next object number's offset
// as the offset, at least when outlines appear in part 6. It
// also generates an incorrect value for length (specifically, the
// length that would cover the correct number of objects from the
// wrong starting place). pdlin appears to generate correct
// values in those cases.
if (this->c_outline_data.nobjects == this->outline_hints.nobjects)
{
if (this->c_outline_data.nobjects == 0)
{
return;
}
if (this->c_outline_data.first_object ==
this->outline_hints.first_object)
{
// Check length and offset. Acrobat gets these wrong.
QPDFObjectHandle outlines = getRoot().getKey("/Outlines");
ObjGen og(outlines.getObjectID(), outlines.getGeneration());
assert(this->xref_table.count(og) > 0);
int offset = getLinearizationOffset(og);
ObjUser ou(ObjUser::ou_root_key, "/Outlines");
int length = maxEnd(ou) - offset;
int table_offset =
adjusted_offset(this->outline_hints.first_object_offset);
if (offset != table_offset)
{
warnings.push_back(
"incorrect offset in outlines table: hint table = " +
QUtil::int_to_string(table_offset) +
"; computed = " + QUtil::int_to_string(offset));
}
int table_length = this->outline_hints.group_length;
if (length != table_length)
{
warnings.push_back(
"incorrect length in outlines table: hint table = " +
QUtil::int_to_string(table_length) +
"; computed = " + QUtil::int_to_string(length));
}
}
else
{
warnings.push_back("incorrect first object number in outline "
"hints table.");
}
}
else
{
warnings.push_back("incorrect object count in outline hint table");
}
}
void
QPDF::showLinearizationData()
{
try
{
readLinearizationData();
checkLinearizationInternal();
dumpLinearizationDataInternal();
}
catch (QPDFExc& e)
{
*out_stream << e.what() << std::endl;
}
}
void
QPDF::dumpLinearizationDataInternal()
{
*out_stream << this->file->getName() << ": linearization data:" << std::endl
<< std::endl;
*out_stream
<< "file_size: " << this->linp.file_size << std::endl
<< "first_page_object: " << this->linp.first_page_object << std::endl
<< "first_page_end: " << this->linp.first_page_end << std::endl
<< "npages: " << this->linp.npages << std::endl
<< "xref_zero_offset: " << this->linp.xref_zero_offset << std::endl
<< "first_page: " << this->linp.first_page << std::endl
<< "H_offset: " << this->linp.H_offset << std::endl
<< "H_length: " << this->linp.H_length << std::endl
<< std::endl;
*out_stream << "Page Offsets Hint Table" << std::endl
<< std::endl;
dumpHPageOffset();
*out_stream << std::endl
<< "Shared Objects Hint Table" << std::endl
<< std::endl;
dumpHSharedObject();
if (this->outline_hints.nobjects > 0)
{
*out_stream << std::endl
<< "Outlines Hint Table" << std::endl
<< std::endl;
dumpHGeneric(this->outline_hints);
}
}
int
QPDF::adjusted_offset(int offset)
{
// All offsets >= H_offset have to be increased by H_length
// since all hint table location values disregard the hint table
// itself.
if (offset >= this->linp.H_offset)
{
return offset + this->linp.H_length;
}
return offset;
}
void
QPDF::dumpHPageOffset()
{
HPageOffset& t = this->page_offset_hints;
*out_stream
<< "min_nobjects: " << t.min_nobjects
<< std::endl
<< "first_page_offset: " << adjusted_offset(t.first_page_offset)
<< std::endl
<< "nbits_delta_nobjects: " << t.nbits_delta_nobjects
<< std::endl
<< "min_page_length: " << t.min_page_length
<< std::endl
<< "nbits_delta_page_length: " << t.nbits_delta_page_length
<< std::endl
<< "min_content_offset: " << t.min_content_offset
<< std::endl
<< "nbits_delta_content_offset: " << t.nbits_delta_content_offset
<< std::endl
<< "min_content_length: " << t.min_content_length
<< std::endl
<< "nbits_delta_content_length: " << t.nbits_delta_content_length
<< std::endl
<< "nbits_nshared_objects: " << t.nbits_nshared_objects
<< std::endl
<< "nbits_shared_identifier: " << t.nbits_shared_identifier
<< std::endl
<< "nbits_shared_numerator: " << t.nbits_shared_numerator
<< std::endl
<< "shared_denominator: " << t.shared_denominator
<< std::endl;
for (int i1 = 0; i1 < this->linp.npages; ++i1)
{
HPageOffsetEntry& pe = t.entries[i1];
*out_stream
<< "Page " << i1 << ":" << std::endl
<< " nobjects: " << pe.delta_nobjects + t.min_nobjects
<< std::endl
<< " length: " << pe.delta_page_length + t.min_page_length
<< std::endl
// content offset is relative to page, not file
<< " content_offset: "
<< pe.delta_content_offset + t.min_content_offset << std::endl
<< " content_length: "
<< pe.delta_content_length + t.min_content_length << std::endl
<< " nshared_objects: " << pe.nshared_objects << std::endl;
for (int i2 = 0; i2 < pe.nshared_objects; ++i2)
{
*out_stream << " identifier " << i2 << ": "
<< pe.shared_identifiers[i2] << std::endl;
*out_stream << " numerator " << i2 << ": "
<< pe.shared_numerators[i2] << std::endl;
}
}
}
void
QPDF::dumpHSharedObject()
{
HSharedObject& t = this->shared_object_hints;
*out_stream
<< "first_shared_obj: " << t.first_shared_obj
<< std::endl
<< "first_shared_offset: " << adjusted_offset(t.first_shared_offset)
<< std::endl
<< "nshared_first_page: " << t.nshared_first_page
<< std::endl
<< "nshared_total: " << t.nshared_total
<< std::endl
<< "nbits_nobjects: " << t.nbits_nobjects
<< std::endl
<< "min_group_length: " << t.min_group_length
<< std::endl
<< "nbits_delta_group_length: " << t.nbits_delta_group_length
<< std::endl;
for (int i = 0; i < t.nshared_total; ++i)
{
HSharedObjectEntry& se = t.entries[i];
*out_stream << "Shared Object " << i << ":" << std::endl;
*out_stream << " group length: "
<< se.delta_group_length + t.min_group_length << std::endl;
// PDF spec says signature present nobjects_minus_one are
// always 0, so print them only if they have a non-zero value.
if (se.signature_present)
{
*out_stream << " signature present" << std::endl;
}
if (se.nobjects_minus_one != 0)
{
*out_stream << " nobjects: "
<< se.nobjects_minus_one + 1 << std::endl;
}
}
}
void
QPDF::dumpHGeneric(HGeneric& t)
{
*out_stream
<< "first_object: " << t.first_object
<< std::endl
<< "first_object_offset: " << adjusted_offset(t.first_object_offset)
<< std::endl
<< "nobjects: " << t.nobjects
<< std::endl
<< "group_length: " << t.group_length
<< std::endl;
}
QPDFObjectHandle
QPDF::objGenToIndirect(ObjGen const& og)
{
return getObjectByID(og.obj, og.gen);
}
void
QPDF::calculateLinearizationData(std::map<int, int> const& object_stream_data)
{
// This function calculates the ordering of objects, divides them
// into the appropriate parts, and computes some values for the
// linearization parameter dictionary and hint tables. The file
// must be optimized (via calling optimize()) prior to calling
// this function. Note that actual offsets and lengths are not
// computed here, but anything related to object ordering is.
if (this->object_to_obj_users.empty())
{
// Note that we can't call optimize here because we don't know
// whether it should be called with or without allow changes.
throw std::logic_error(
"INTERNAL ERROR: QPDF::calculateLinearizationData "
"called before optimize()");
}
// Separate objects into the categories sufficient for us to
// determine which part of the linearized file should contain the
// object. This categorization is useful for other purposes as
// well. Part numbers refer to version 1.4 of the PDF spec.
// Parts 1, 3, 5, 10, and 11 don't contain any objects from the
// original file (except the trailer dictionary in part 11).
// Part 4 is the document catalog (root) and the following root
// keys: /ViewerPreferences, /PageMode, /Threads, /OpenAction,
// /AcroForm, /Encrypt. Note that Thread information dictionaries
// are supposed to appear in part 9, but we are disregarding that
// recommendation for now.
// Part 6 is the first page section. It includes all remaining
// objects referenced by the first page including shared objects
// but not including thumbnails. Additionally, if /PageMode is
// /Outlines, then information from /Outlines also appears here.
// Part 7 contains remaining objects private to pages other than
// the first page.
// Part 8 contains all remaining shared objects except those that
// are shared only within thumbnails.
// Part 9 contains all remaining objects.
// We sort objects into the following categories:
// * open_document: part 4
// * first_page_private: part 6
// * first_page_shared: part 6
// * other_page_private: part 7
// * other_page_shared: part 8
// * thumbnail_private: part 9
// * thumbnail_shared: part 9
// * other: part 9
// * outlines: part 6 or 9
QPDFObjectHandle root = getRoot();
bool outlines_in_first_page = false;
QPDFObjectHandle pagemode = root.getKey("/PageMode");
QTC::TC("qpdf", "QPDF categorize pagemode present",
pagemode.isName() ? 1 : 0);
if (pagemode.isName())
{
if (pagemode.getName() == "/UseOutlines")
{
if (root.hasKey("/Outlines"))
{
outlines_in_first_page = true;
}
else
{
QTC::TC("qpdf", "QPDF UseOutlines but no Outlines");
}
}
QTC::TC("qpdf", "QPDF categorize pagemode outlines",
outlines_in_first_page ? 1 : 0);
}
std::set<std::string> open_document_keys;
open_document_keys.insert("/ViewerPreferences");
open_document_keys.insert("/PageMode");
open_document_keys.insert("/Threads");
open_document_keys.insert("/OpenAction");
open_document_keys.insert("/AcroForm");
std::set<ObjGen> lc_open_document;
std::set<ObjGen> lc_first_page_private;
std::set<ObjGen> lc_first_page_shared;
std::set<ObjGen> lc_other_page_private;
std::set<ObjGen> lc_other_page_shared;
std::set<ObjGen> lc_thumbnail_private;
std::set<ObjGen> lc_thumbnail_shared;
std::set<ObjGen> lc_other;
std::set<ObjGen> lc_outlines;
std::set<ObjGen> lc_root;
for (std::map<ObjGen, std::set<ObjUser> >::iterator oiter =
this->object_to_obj_users.begin();
oiter != this->object_to_obj_users.end(); ++oiter)
{
ObjGen const& og = (*oiter).first;
std::set<ObjUser>& ous = (*oiter).second;
bool in_open_document = false;
bool in_first_page = false;
int other_pages = 0;
int thumbs = 0;
int others = 0;
bool in_outlines = false;
bool is_root = false;
for (std::set<ObjUser>::iterator uiter = ous.begin();
uiter != ous.end(); ++uiter)
{
ObjUser const& ou = *uiter;
switch (ou.ou_type)
{
case ObjUser::ou_trailer_key:
if (ou.key == "/Encrypt")
{
in_open_document = true;
}
else
{
++others;
}
break;
case ObjUser::ou_thumb:
++thumbs;
break;
case ObjUser::ou_root_key:
if (open_document_keys.count(ou.key) > 0)
{
in_open_document = true;
}
else if (ou.key == "/Outlines")
{
in_outlines = true;
}
else
{
++others;
}
break;
case ObjUser::ou_page:
if (ou.pageno == 0)
{
in_first_page = true;
}
else
{
++other_pages;
}
break;
case ObjUser::ou_root:
is_root = true;
break;
case ObjUser::ou_bad:
throw std::logic_error(
"INTERNAL ERROR: QPDF::calculateLinearizationData: "
"invalid user type");
break;
}
}
if (is_root)
{
lc_root.insert(og);
}
else if (in_outlines)
{
lc_outlines.insert(og);
}
else if (in_open_document)
{
lc_open_document.insert(og);
}
else if ((in_first_page) &&
(others == 0) && (other_pages == 0) && (thumbs == 0))
{
lc_first_page_private.insert(og);
}
else if (in_first_page)
{
lc_first_page_shared.insert(og);
}
else if ((other_pages == 1) && (others == 0) && (thumbs == 0))
{
lc_other_page_private.insert(og);
}
else if (other_pages > 1)
{
lc_other_page_shared.insert(og);
}
else if ((thumbs == 1) && (others == 0))
{
lc_thumbnail_private.insert(og);
}
else if (thumbs > 1)
{
lc_thumbnail_shared.insert(og);
}
else
{
lc_other.insert(og);
}
}
// Generate ordering for objects in the output file. Sometimes we
// just dump right from a set into a vector. Rather than
// optimizing this by going straight into the vector, we'll leave
// these phases separate for now. That way, this section can be
// concerned only with ordering, and the above section can be
// considered only with categorization. Note that sets of ObjGens
// are sorted by ObjGen. In a linearized file, objects appear in
// sequence with the possible exception of hints tables which we
// won't see here anyway. That means that running
// calculateLinearizationData() on a linearized file should give
// results identical to the original file ordering.
// We seem to traverse the page tree a lot in this code, but we
// can address this for a future code optimization if necessary.
// Premature optimization is the root of all evil.
std::vector<QPDFObjectHandle> pages;
{ // local scope
// Map all page objects to the containing object stream. This
// should be a no-op in a properly linearized file.
std::vector<QPDFObjectHandle> t = getAllPages();
for (std::vector<QPDFObjectHandle>::iterator iter = t.begin();
iter != t.end(); ++iter)
{
pages.push_back(getUncompressedObject(*iter, object_stream_data));
}
}
unsigned int npages = (unsigned int)pages.size();
// We will be initializing some values of the computed hint
// tables. Specifically, we can initialize any items that deal
// with object numbers or counts but not any items that deal with
// lengths or offsets. The code that writes linearized files will
// have to fill in these values during the first pass. The
// validation code can compute them relatively easily given the
// rest of the information.
this->c_linp.npages = npages;
this->c_page_offset_data.entries = std::vector<CHPageOffsetEntry>(npages);
// Part 4: open document objects. We don't care about the order.
assert(lc_root.size() == 1);
this->part4.push_back(objGenToIndirect(*(lc_root.begin())));
for (std::set<ObjGen>::iterator iter = lc_open_document.begin();
iter != lc_open_document.end(); ++iter)
{
this->part4.push_back(objGenToIndirect(*iter));
}
// Part 6: first page objects. Note: implementation note 124
// states that Acrobat always treats page 0 as the first page for
// linearization regardless of /OpenAction. pdlin doesn't provide
// any option to set this and also disregards /OpenAction. We
// will do the same.
// First, place the actual first page object itself.
ObjGen first_page_og(pages[0].getObjectID(), pages[0].getGeneration());
if (! lc_first_page_private.count(first_page_og))
{
throw std::logic_error(
"INTERNAL ERROR: QPDF::calculateLinearizationData: first page "
"object not in lc_first_page_private");
}
lc_first_page_private.erase(first_page_og);
this->c_linp.first_page_object = pages[0].getObjectID();
this->part6.push_back(pages[0]);
// The PDF spec "recommends" an order for the rest of the objects,
// but we are going to disregard it except to the extent that it
// groups private and shared objects contiguously for the sake of
// hint tables.
for (std::set<ObjGen>::iterator iter = lc_first_page_private.begin();
iter != lc_first_page_private.end(); ++iter)
{
this->part6.push_back(objGenToIndirect(*iter));
}
for (std::set<ObjGen>::iterator iter = lc_first_page_shared.begin();
iter != lc_first_page_shared.end(); ++iter)
{
this->part6.push_back(objGenToIndirect(*iter));
}
// Place the outline dictionary if it goes in the first page section.
if (outlines_in_first_page)
{
pushOutlinesToPart(this->part6, lc_outlines, object_stream_data);
}
// Fill in page offset hint table information for the first page.
// The PDF spec says that nshared_objects should be zero for the
// first page. pdlin does not appear to obey this, but it fills
// in garbage values for all the shared object identifiers on the
// first page.
this->c_page_offset_data.entries[0].nobjects = (int)this->part6.size();
// Part 7: other pages' private objects
// For each page in order:
for (unsigned int i = 1; i < npages; ++i)
{
// Place this page's page object
ObjGen page_og(pages[i].getObjectID(), pages[i].getGeneration());
if (! lc_other_page_private.count(page_og))
{
throw std::logic_error(
"INTERNAL ERROR: "
"QPDF::calculateLinearizationData: page object for page " +
QUtil::int_to_string(i) + " not in lc_other_page_private");
}
lc_other_page_private.erase(page_og);
this->part7.push_back(pages[i]);
// Place all non-shared objects referenced by this page,
// updating the page object count for the hint table.
this->c_page_offset_data.entries[i].nobjects = 1;
ObjUser ou(ObjUser::ou_page, i);
assert(this->obj_user_to_objects.count(ou) > 0);
std::set<ObjGen> ogs = this->obj_user_to_objects[ou];
for (std::set<ObjGen>::iterator iter = ogs.begin();
iter != ogs.end(); ++iter)
{
ObjGen const& og = (*iter);
if (lc_other_page_private.count(og))
{
lc_other_page_private.erase(og);
this->part7.push_back(objGenToIndirect(og));
++this->c_page_offset_data.entries[i].nobjects;
}
}
}
// That should have covered all part7 objects.
if (! lc_other_page_private.empty())
{
throw std::logic_error(
"INTERNAL ERROR:"
" QPDF::calculateLinearizationData: lc_other_page_private is "
"not empty after generation of part7");
}
// Part 8: other pages' shared objects
// Order is unimportant.
for (std::set<ObjGen>::iterator iter = lc_other_page_shared.begin();
iter != lc_other_page_shared.end(); ++iter)
{
this->part8.push_back(objGenToIndirect(*iter));
}
// Part 9: other objects
// The PDF specification makes recommendations on ordering here.
// We follow them only to a limited extent. Specifically, we put
// the pages tree first, then private thumbnail objects in page
// order, then shared thumbnail objects, and then outlines (unless
// in part 6). After that, we throw all remaining objects in
// arbitrary order.
// Place the pages tree.
std::set<ObjGen> pages_ogs =
this->obj_user_to_objects[ObjUser(ObjUser::ou_root_key, "/Pages")];
assert(! pages_ogs.empty());
for (std::set<ObjGen>::iterator iter = pages_ogs.begin();
iter != pages_ogs.end(); ++iter)
{
ObjGen const& og = *iter;
if (lc_other.count(og))
{
lc_other.erase(og);
this->part9.push_back(objGenToIndirect(og));
}
}
// Place private thumbnail images in page order. Slightly more
// information would be required if we were going to bother with
// thumbnail hint tables.
for (unsigned int i = 0; i < npages; ++i)
{
QPDFObjectHandle thumb = pages[i].getKey("/Thumb");
thumb = getUncompressedObject(thumb, object_stream_data);
if (! thumb.isNull())
{
// Output the thumbnail itself
ObjGen thumb_og(thumb.getObjectID(), thumb.getGeneration());
if (lc_thumbnail_private.count(thumb_og))
{
lc_thumbnail_private.erase(thumb_og);
this->part9.push_back(thumb);
}
else
{
// No internal error this time...there's nothing to
// stop this object from having been referred to
// somewhere else outside of a page's /Thumb, and if
// it had been, there's nothing to prevent it from
// having been in some set other than
// lc_thumbnail_private.
}
std::set<ObjGen>& ogs =
this->obj_user_to_objects[ObjUser(ObjUser::ou_thumb, i)];
for (std::set<ObjGen>::iterator iter = ogs.begin();
iter != ogs.end(); ++iter)
{
ObjGen const& og = *iter;
if (lc_thumbnail_private.count(og))
{
lc_thumbnail_private.erase(og);
this->part9.push_back(objGenToIndirect(og));
}
}
}
}
if (! lc_thumbnail_private.empty())
{
throw std::logic_error(
"INTERNAL ERROR: "
"QPDF::calculateLinearizationData: lc_thumbnail_private "
"not empty after placing thumbnails");
}
// Place shared thumbnail objects
for (std::set<ObjGen>::iterator iter = lc_thumbnail_shared.begin();
iter != lc_thumbnail_shared.end(); ++iter)
{
this->part9.push_back(objGenToIndirect(*iter));
}
// Place outlines unless in first page
if (! outlines_in_first_page)
{
pushOutlinesToPart(this->part9, lc_outlines, object_stream_data);
}
// Place all remaining objects
for (std::set<ObjGen>::iterator iter = lc_other.begin();
iter != lc_other.end(); ++iter)
{
this->part9.push_back(objGenToIndirect(*iter));
}
// Make sure we got everything exactly once.
unsigned int num_placed =
(unsigned int)(this->part4.size() + this->part6.size() +
this->part7.size() + this->part8.size() +
this->part9.size());
unsigned int num_wanted = (unsigned int)this->object_to_obj_users.size();
if (num_placed != num_wanted)
{
throw std::logic_error(
"INTERNAL ERROR: QPDF::calculateLinearizationData: wrong "
"number of objects placed (num_placed = " +
QUtil::int_to_string(num_placed) +
"; number of objects: " +
QUtil::int_to_string(num_wanted));
}
// Calculate shared object hint table information including
// references to shared objects from page offset hint data.
// The shared object hint table consists of all part 6 (whether
// shared or not) in order followed by all part 8 objects in
// order. Add the objects to shared object data keeping a map of
// object number to index. Then populate the shared object
// information for the pages.
// Note that two objects never have the same object number, so we
// can map from object number only without regards to generation.
std::map<int, int> obj_to_index;
this->c_shared_object_data.nshared_first_page =
(unsigned int)this->part6.size();
this->c_shared_object_data.nshared_total =
this->c_shared_object_data.nshared_first_page +
(unsigned int) this->part8.size();
std::vector<CHSharedObjectEntry>& shared =
this->c_shared_object_data.entries;
for (std::vector<QPDFObjectHandle>::iterator iter = this->part6.begin();
iter != this->part6.end(); ++iter)
{
QPDFObjectHandle& oh = *iter;
int obj = oh.getObjectID();
obj_to_index[obj] = (int)shared.size();
shared.push_back(CHSharedObjectEntry(obj));
}
QTC::TC("qpdf", "QPDF lin part 8 empty", this->part8.empty() ? 1 : 0);
if (! this->part8.empty())
{
this->c_shared_object_data.first_shared_obj =
this->part8[0].getObjectID();
for (std::vector<QPDFObjectHandle>::iterator iter =
this->part8.begin();
iter != this->part8.end(); ++iter)
{
QPDFObjectHandle& oh = *iter;
int obj = oh.getObjectID();
obj_to_index[obj] = (int)shared.size();
shared.push_back(CHSharedObjectEntry(obj));
}
}
assert(this->c_shared_object_data.nshared_total ==
(int) this->c_shared_object_data.entries.size());
// Now compute the list of shared objects for each page after the
// first page.
for (unsigned int i = 1; i < npages; ++i)
{
CHPageOffsetEntry& pe = this->c_page_offset_data.entries[i];
ObjUser ou(ObjUser::ou_page, i);
assert(this->obj_user_to_objects.count(ou) > 0);
std::set<ObjGen> const& ogs = this->obj_user_to_objects[ou];
for (std::set<ObjGen>::const_iterator iter = ogs.begin();
iter != ogs.end(); ++iter)
{
ObjGen const& og = *iter;
if ((this->object_to_obj_users[og].size() > 1) &&
(obj_to_index.count(og.obj) > 0))
{
int idx = obj_to_index[og.obj];
++pe.nshared_objects;
pe.shared_identifiers.push_back(idx);
}
}
}
}
void
QPDF::pushOutlinesToPart(
std::vector<QPDFObjectHandle>& part,
std::set<ObjGen>& lc_outlines,
std::map<int, int> const& object_stream_data)
{
QPDFObjectHandle root = getRoot();
QPDFObjectHandle outlines = root.getKey("/Outlines");
if (outlines.isNull())
{
return;
}
outlines = getUncompressedObject(outlines, object_stream_data);
ObjGen outlines_og(outlines.getObjectID(), outlines.getGeneration());
QTC::TC("qpdf", "QPDF lin outlines in part",
((&part == (&this->part6)) ? 0
: (&part == (&this->part9)) ? 1
: 9999)); // can't happen
this->c_outline_data.first_object = outlines_og.obj;
this->c_outline_data.nobjects = 1;
lc_outlines.erase(outlines_og);
part.push_back(outlines);
for (std::set<ObjGen>::iterator iter = lc_outlines.begin();
iter != lc_outlines.end(); ++iter)
{
part.push_back(objGenToIndirect(*iter));
++this->c_outline_data.nobjects;
}
}
void
QPDF::getLinearizedParts(
std::map<int, int> const& object_stream_data,
std::vector<QPDFObjectHandle>& part4,
std::vector<QPDFObjectHandle>& part6,
std::vector<QPDFObjectHandle>& part7,
std::vector<QPDFObjectHandle>& part8,
std::vector<QPDFObjectHandle>& part9)
{
calculateLinearizationData(object_stream_data);
part4 = this->part4;
part6 = this->part6;
part7 = this->part7;
part8 = this->part8;
part9 = this->part9;
}
static inline int nbits(int val)
{
return (val == 0 ? 0 : (1 + nbits(val >> 1)));
}
int
QPDF::outputLengthNextN(
int in_object, int n,
std::map<int, qpdf_offset_t> const& lengths,
std::map<int, int> const& obj_renumber)
{
// Figure out the length of a series of n consecutive objects in
// the output file starting with whatever object in_object from
// the input file mapped to.
assert(obj_renumber.count(in_object) > 0);
int first = (*(obj_renumber.find(in_object))).second;
int length = 0;
for (int i = 0; i < n; ++i)
{
assert(lengths.count(first + i) > 0);
length += (*(lengths.find(first + i))).second;
}
return length;
}
void
QPDF::calculateHPageOffset(
std::map<int, QPDFXRefEntry> const& xref,
std::map<int, qpdf_offset_t> const& lengths,
std::map<int, int> const& obj_renumber)
{
// Page Offset Hint Table
// We are purposely leaving some values set to their initial zero
// values.
std::vector<QPDFObjectHandle> const& pages = getAllPages();
unsigned int npages = (unsigned int)pages.size();
CHPageOffset& cph = this->c_page_offset_data;
std::vector<CHPageOffsetEntry>& cphe = cph.entries;
// Calculate minimum and maximum values for number of objects per
// page and page length.
int min_nobjects = cphe[0].nobjects;
int max_nobjects = min_nobjects;
int min_length = outputLengthNextN(
pages[0].getObjectID(), min_nobjects, lengths, obj_renumber);
int max_length = min_length;
int max_shared = cphe[0].nshared_objects;
HPageOffset& ph = this->page_offset_hints;
std::vector<HPageOffsetEntry>& phe = ph.entries;
phe = std::vector<HPageOffsetEntry>(npages);
for (unsigned int i = 0; i < npages; ++i)
{
// Calculate values for each page, assigning full values to
// the delta items. They will be adjusted later.
// Repeat calculations for page 0 so we can assign to phe[i]
// without duplicating those assignments.
int nobjects = cphe[i].nobjects;
int length = outputLengthNextN(
pages[i].getObjectID(), nobjects, lengths, obj_renumber);
int nshared = cphe[i].nshared_objects;
min_nobjects = std::min(min_nobjects, nobjects);
max_nobjects = std::max(max_nobjects, nobjects);
min_length = std::min(min_length, length);
max_length = std::max(max_length, length);
max_shared = std::max(max_shared, nshared);
phe[i].delta_nobjects = nobjects;
phe[i].delta_page_length = length;
phe[i].nshared_objects = nshared;
}
ph.min_nobjects = min_nobjects;
int in_page0_id = pages[0].getObjectID();
int out_page0_id = (*(obj_renumber.find(in_page0_id))).second;
ph.first_page_offset = (*(xref.find(out_page0_id))).second.getOffset();
ph.nbits_delta_nobjects = nbits(max_nobjects - min_nobjects);
ph.min_page_length = min_length;
ph.nbits_delta_page_length = nbits(max_length - min_length);
ph.nbits_nshared_objects = nbits(max_shared);
ph.nbits_shared_identifier =
nbits(this->c_shared_object_data.nshared_total);
ph.shared_denominator = 4; // doesn't matter
// It isn't clear how to compute content offset and content
// length. Since we are not interleaving page objects with the
// content stream, we'll use the same values for content length as
// page length. We will use 0 as content offset because this is
// what Adobe does (implementation note 127) and pdlin as well.
ph.nbits_delta_content_length = ph.nbits_delta_page_length;
ph.min_content_length = ph.min_page_length;
for (unsigned int i = 0; i < npages; ++i)
{
// Adjust delta entries
assert(phe[i].delta_nobjects >= min_nobjects);
assert(phe[i].delta_page_length >= min_length);
phe[i].delta_nobjects -= min_nobjects;
phe[i].delta_page_length -= min_length;
phe[i].delta_content_length = phe[i].delta_page_length;
for (int j = 0; j < cphe[i].nshared_objects; ++j)
{
phe[i].shared_identifiers.push_back(
cphe[i].shared_identifiers[j]);
phe[i].shared_numerators.push_back(0);
}
}
}
void
QPDF::calculateHSharedObject(
std::map<int, QPDFXRefEntry> const& xref,
std::map<int, qpdf_offset_t> const& lengths,
std::map<int, int> const& obj_renumber)
{
CHSharedObject& cso = this->c_shared_object_data;
std::vector<CHSharedObjectEntry>& csoe = cso.entries;
HSharedObject& so = this->shared_object_hints;
std::vector<HSharedObjectEntry>& soe = so.entries;
soe = std::vector<HSharedObjectEntry>(cso.nshared_total);
int min_length = outputLengthNextN(
csoe[0].object, 1, lengths, obj_renumber);
int max_length = min_length;
for (int i = 0; i < cso.nshared_total; ++i)
{
// Assign absolute numbers to deltas; adjust later
int length = outputLengthNextN(
csoe[i].object, 1, lengths, obj_renumber);
min_length = std::min(min_length, length);
max_length = std::max(max_length, length);
soe[i].delta_group_length = length;
}
so.nshared_total = cso.nshared_total;
so.nshared_first_page = cso.nshared_first_page;
if (so.nshared_total > so.nshared_first_page)
{
so.first_shared_obj =
(*(obj_renumber.find(cso.first_shared_obj))).second;
so.first_shared_offset =
(*(xref.find(so.first_shared_obj))).second.getOffset();
}
so.min_group_length = min_length;
so.nbits_delta_group_length = nbits(max_length - min_length);
for (int i = 0; i < cso.nshared_total; ++i)
{
// Adjust deltas
assert(soe[i].delta_group_length >= min_length);
soe[i].delta_group_length -= min_length;
}
}
void
QPDF::calculateHOutline(
std::map<int, QPDFXRefEntry> const& xref,
std::map<int, qpdf_offset_t> const& lengths,
std::map<int, int> const& obj_renumber)
{
HGeneric& cho = this->c_outline_data;
if (cho.nobjects == 0)
{
return;
}
HGeneric& ho = this->outline_hints;
ho.first_object =
(*(obj_renumber.find(cho.first_object))).second;
ho.first_object_offset =
(*(xref.find(ho.first_object))).second.getOffset();
ho.nobjects = cho.nobjects;
ho.group_length = outputLengthNextN(
cho.first_object, ho.nobjects, lengths, obj_renumber);
}
template <class T, class int_type>
static void
write_vector_int(BitWriter& w, int nitems, std::vector<T>& vec,
int bits, int_type T::*field)
{
// nitems times, write bits bits from the given field of the ith
// vector to the given bit writer.
for (int i = 0; i < nitems; ++i)
{
w.writeBits(vec[i].*field, bits);
}
// The PDF spec says that each hint table starts at a byte
// boundary. Each "row" actually must start on a byte boundary.
w.flush();
}
template <class T>
static void
write_vector_vector(BitWriter& w,
int nitems1, std::vector<T>& vec1, int T::*nitems2,
int bits, std::vector<int> T::*vec2)
{
// nitems1 times, write nitems2 (from the ith element of vec1) items
// from the vec2 vector field of the ith item of vec1.
for (int i1 = 0; i1 < nitems1; ++i1)
{
for (int i2 = 0; i2 < vec1[i1].*nitems2; ++i2)
{
w.writeBits((vec1[i1].*vec2)[i2], bits);
}
}
w.flush();
}
void
QPDF::writeHPageOffset(BitWriter& w)
{
HPageOffset& t = this->page_offset_hints;
w.writeBits(t.min_nobjects, 32); // 1
w.writeBits(t.first_page_offset, 32); // 2
w.writeBits(t.nbits_delta_nobjects, 16); // 3
w.writeBits(t.min_page_length, 32); // 4
w.writeBits(t.nbits_delta_page_length, 16); // 5
w.writeBits(t.min_content_offset, 32); // 6
w.writeBits(t.nbits_delta_content_offset, 16); // 7
w.writeBits(t.min_content_length, 32); // 8
w.writeBits(t.nbits_delta_content_length, 16); // 9
w.writeBits(t.nbits_nshared_objects, 16); // 10
w.writeBits(t.nbits_shared_identifier, 16); // 11
w.writeBits(t.nbits_shared_numerator, 16); // 12
w.writeBits(t.shared_denominator, 16); // 13
unsigned int nitems = (unsigned int)getAllPages().size();
std::vector<HPageOffsetEntry>& entries = t.entries;
write_vector_int(w, nitems, entries,
t.nbits_delta_nobjects,
&HPageOffsetEntry::delta_nobjects);
write_vector_int(w, nitems, entries,
t.nbits_delta_page_length,
&HPageOffsetEntry::delta_page_length);
write_vector_int(w, nitems, entries,
t.nbits_nshared_objects,
&HPageOffsetEntry::nshared_objects);
write_vector_vector(w, nitems, entries,
&HPageOffsetEntry::nshared_objects,
t.nbits_shared_identifier,
&HPageOffsetEntry::shared_identifiers);
write_vector_vector(w, nitems, entries,
&HPageOffsetEntry::nshared_objects,
t.nbits_shared_numerator,
&HPageOffsetEntry::shared_numerators);
write_vector_int(w, nitems, entries,
t.nbits_delta_content_offset,
&HPageOffsetEntry::delta_content_offset);
write_vector_int(w, nitems, entries,
t.nbits_delta_content_length,
&HPageOffsetEntry::delta_content_length);
}
void
QPDF::writeHSharedObject(BitWriter& w)
{
HSharedObject& t = this->shared_object_hints;
w.writeBits(t.first_shared_obj, 32); // 1
w.writeBits(t.first_shared_offset, 32); // 2
w.writeBits(t.nshared_first_page, 32); // 3
w.writeBits(t.nshared_total, 32); // 4
w.writeBits(t.nbits_nobjects, 16); // 5
w.writeBits(t.min_group_length, 32); // 6
w.writeBits(t.nbits_delta_group_length, 16); // 7
QTC::TC("qpdf", "QPDF lin write nshared_total > nshared_first_page",
(t.nshared_total > t.nshared_first_page) ? 1 : 0);
int nitems = t.nshared_total;
std::vector<HSharedObjectEntry>& entries = t.entries;
write_vector_int(w, nitems, entries,
t.nbits_delta_group_length,
&HSharedObjectEntry::delta_group_length);
write_vector_int(w, nitems, entries,
1, &HSharedObjectEntry::signature_present);
for (int i = 0; i < nitems; ++i)
{
// If signature were present, we'd have to write a 128-bit hash.
assert(entries[i].signature_present == 0);
}
write_vector_int(w, nitems, entries,
t.nbits_nobjects,
&HSharedObjectEntry::nobjects_minus_one);
}
void
QPDF::writeHGeneric(BitWriter& w, HGeneric& t)
{
w.writeBits(t.first_object, 32); // 1
w.writeBits(t.first_object_offset, 32); // 2
w.writeBits(t.nobjects, 32); // 3
w.writeBits(t.group_length, 32); // 4
}
void
QPDF::generateHintStream(std::map<int, QPDFXRefEntry> const& xref,
std::map<int, qpdf_offset_t> const& lengths,
std::map<int, int> const& obj_renumber,
PointerHolder<Buffer>& hint_buffer,
int& S, int& O)
{
// Populate actual hint table values
calculateHPageOffset(xref, lengths, obj_renumber);
calculateHSharedObject(xref, lengths, obj_renumber);
calculateHOutline(xref, lengths, obj_renumber);
// Write the hint stream itself into a compressed memory buffer.
// Write through a counter so we can get offsets.
Pl_Buffer hint_stream("hint stream");
Pl_Flate f("compress hint stream", &hint_stream, Pl_Flate::a_deflate);
Pl_Count c("count", &f);
BitWriter w(&c);
writeHPageOffset(w);
S = (int)c.getCount();
writeHSharedObject(w);
O = 0;
if (this->outline_hints.nobjects > 0)
{
O = (int)c.getCount();
writeHGeneric(w, this->outline_hints);
}
c.finish();
hint_buffer = hint_stream.getBuffer();
}