mirror of
https://github.com/qpdf/qpdf.git
synced 2024-12-31 14:01:59 +00:00
955 lines
31 KiB
C++
955 lines
31 KiB
C++
#include <qpdf/NNTree.hh>
|
|
|
|
#include <qpdf/QTC.hh>
|
|
#include <qpdf/QUtil.hh>
|
|
|
|
#include <exception>
|
|
|
|
static std::string
|
|
get_description(QPDFObjectHandle& node)
|
|
{
|
|
std::string result("Name/Number tree node");
|
|
if (node.isIndirect()) {
|
|
result += " (object " + std::to_string(node.getObjectID()) + ")";
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static void
|
|
warn(QPDF& qpdf, QPDFObjectHandle& node, std::string const& msg)
|
|
{
|
|
qpdf.warn(qpdf_e_damaged_pdf, get_description(node), 0, msg);
|
|
}
|
|
|
|
static void
|
|
error(QPDF& qpdf, QPDFObjectHandle& node, std::string const& msg)
|
|
{
|
|
throw QPDFExc(qpdf_e_damaged_pdf, qpdf.getFilename(), get_description(node), 0, msg);
|
|
}
|
|
|
|
NNTreeIterator::NNTreeIterator(NNTreeImpl& impl) :
|
|
impl(impl),
|
|
item_number(-1)
|
|
{
|
|
}
|
|
|
|
void
|
|
NNTreeIterator::updateIValue(bool allow_invalid)
|
|
{
|
|
// ivalue should never be used inside the class since we return a pointer/reference to it. Every
|
|
// bit of code that ever changes what object the iterator points to should take care to call
|
|
// updateIValue. Failure to do this means that any old references to *iter will point to
|
|
// incorrect objects, though the next dereference of the iterator will fix it. This isn't
|
|
// necessarily catastrophic, but it would be confusing. The test suite attempts to exercise
|
|
// various cases to ensure we don't introduce that bug in the future, but sadly it's tricky to
|
|
// verify by reasoning about the code that this constraint is always satisfied. Whenever we
|
|
// update what the iterator points to, we should call setItemNumber, which calls this. If we
|
|
// change what the iterator points to in some other way, such as replacing a value or removing
|
|
// an item and making the iterator point at a different item in potentially the same position,
|
|
// we must call updateIValue as well. These cases are handled, and for good measure, we also
|
|
// call updateIValue in operator* and operator->.
|
|
|
|
bool okay = false;
|
|
if ((item_number >= 0) && this->node.isDictionary()) {
|
|
auto items = this->node.getKey(impl.details.itemsKey());
|
|
if (this->item_number + 1 < items.getArrayNItems()) {
|
|
okay = true;
|
|
this->ivalue.first = items.getArrayItem(this->item_number);
|
|
this->ivalue.second = items.getArrayItem(1 + this->item_number);
|
|
} else {
|
|
error(impl.qpdf, node, "update ivalue: items array is too short");
|
|
}
|
|
}
|
|
if (!okay) {
|
|
if (!allow_invalid) {
|
|
throw std::logic_error("attempt made to dereference an invalid"
|
|
" name/number tree iterator");
|
|
}
|
|
this->ivalue.first = QPDFObjectHandle();
|
|
this->ivalue.second = QPDFObjectHandle();
|
|
}
|
|
}
|
|
|
|
NNTreeIterator::PathElement::PathElement(QPDFObjectHandle const& node, int kid_number) :
|
|
node(node),
|
|
kid_number(kid_number)
|
|
{
|
|
}
|
|
|
|
QPDFObjectHandle
|
|
NNTreeIterator::getNextKid(PathElement& pe, bool backward)
|
|
{
|
|
QPDFObjectHandle result;
|
|
bool found = false;
|
|
while (!found) {
|
|
pe.kid_number += backward ? -1 : 1;
|
|
auto kids = pe.node.getKey("/Kids");
|
|
if ((pe.kid_number >= 0) && (pe.kid_number < kids.getArrayNItems())) {
|
|
result = kids.getArrayItem(pe.kid_number);
|
|
if (result.isDictionary() &&
|
|
(result.hasKey("/Kids") || result.hasKey(impl.details.itemsKey()))) {
|
|
found = true;
|
|
} else {
|
|
QTC::TC("qpdf", "NNTree skip invalid kid");
|
|
warn(
|
|
impl.qpdf,
|
|
pe.node,
|
|
("skipping over invalid kid at index " + std::to_string(pe.kid_number)));
|
|
}
|
|
} else {
|
|
result = QPDFObjectHandle::newNull();
|
|
found = true;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
bool
|
|
NNTreeIterator::valid() const
|
|
{
|
|
return this->item_number >= 0;
|
|
}
|
|
|
|
void
|
|
NNTreeIterator::increment(bool backward)
|
|
{
|
|
if (this->item_number < 0) {
|
|
QTC::TC("qpdf", "NNTree increment end()");
|
|
deepen(impl.oh, !backward, true);
|
|
return;
|
|
}
|
|
bool found_valid_key = false;
|
|
while (valid() && (!found_valid_key)) {
|
|
this->item_number += backward ? -2 : 2;
|
|
auto items = this->node.getKey(impl.details.itemsKey());
|
|
if ((this->item_number < 0) || (this->item_number >= items.getArrayNItems())) {
|
|
bool found = false;
|
|
setItemNumber(QPDFObjectHandle(), -1);
|
|
while (!(found || this->path.empty())) {
|
|
auto& element = this->path.back();
|
|
auto pe_node = getNextKid(element, backward);
|
|
if (pe_node.isNull()) {
|
|
this->path.pop_back();
|
|
} else {
|
|
found = deepen(pe_node, !backward, false);
|
|
}
|
|
}
|
|
}
|
|
if (this->item_number >= 0) {
|
|
items = this->node.getKey(impl.details.itemsKey());
|
|
if (this->item_number + 1 >= items.getArrayNItems()) {
|
|
QTC::TC("qpdf", "NNTree skip item at end of short items");
|
|
warn(impl.qpdf, this->node, "items array doesn't have enough elements");
|
|
} else if (!impl.details.keyValid(items.getArrayItem(this->item_number))) {
|
|
QTC::TC("qpdf", "NNTree skip invalid key");
|
|
warn(
|
|
impl.qpdf,
|
|
this->node,
|
|
("item " + std::to_string(this->item_number) + " has the wrong type"));
|
|
} else {
|
|
found_valid_key = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
NNTreeIterator::resetLimits(QPDFObjectHandle node, std::list<PathElement>::iterator parent)
|
|
{
|
|
bool done = false;
|
|
while (!done) {
|
|
if (parent == this->path.end()) {
|
|
QTC::TC("qpdf", "NNTree remove limits from root");
|
|
node.removeKey("/Limits");
|
|
done = true;
|
|
break;
|
|
}
|
|
auto kids = node.getKey("/Kids");
|
|
int nkids = kids.isArray() ? kids.getArrayNItems() : 0;
|
|
auto items = node.getKey(impl.details.itemsKey());
|
|
int nitems = items.isArray() ? items.getArrayNItems() : 0;
|
|
|
|
bool changed = true;
|
|
QPDFObjectHandle first;
|
|
QPDFObjectHandle last;
|
|
if (nitems >= 2) {
|
|
first = items.getArrayItem(0);
|
|
last = items.getArrayItem((nitems - 1) & ~1);
|
|
} else if (nkids > 0) {
|
|
auto first_kid = kids.getArrayItem(0);
|
|
auto last_kid = kids.getArrayItem(nkids - 1);
|
|
if (first_kid.isDictionary() && last_kid.isDictionary()) {
|
|
auto first_limits = first_kid.getKey("/Limits");
|
|
auto last_limits = last_kid.getKey("/Limits");
|
|
if (first_limits.isArray() && (first_limits.getArrayNItems() >= 2) &&
|
|
last_limits.isArray() && (last_limits.getArrayNItems() >= 2)) {
|
|
first = first_limits.getArrayItem(0);
|
|
last = last_limits.getArrayItem(1);
|
|
}
|
|
}
|
|
}
|
|
if (first && last) {
|
|
auto limits = QPDFObjectHandle::newArray();
|
|
limits.appendItem(first);
|
|
limits.appendItem(last);
|
|
auto olimits = node.getKey("/Limits");
|
|
if (olimits.isArray() && (olimits.getArrayNItems() == 2)) {
|
|
auto ofirst = olimits.getArrayItem(0);
|
|
auto olast = olimits.getArrayItem(1);
|
|
if (impl.details.keyValid(ofirst) && impl.details.keyValid(olast) &&
|
|
(impl.details.compareKeys(first, ofirst) == 0) &&
|
|
(impl.details.compareKeys(last, olast) == 0)) {
|
|
QTC::TC("qpdf", "NNTree limits didn't change");
|
|
changed = false;
|
|
}
|
|
}
|
|
if (changed) {
|
|
node.replaceKey("/Limits", limits);
|
|
}
|
|
} else {
|
|
QTC::TC("qpdf", "NNTree unable to determine limits");
|
|
warn(impl.qpdf, node, "unable to determine limits");
|
|
}
|
|
|
|
if ((!changed) || (parent == this->path.begin())) {
|
|
done = true;
|
|
} else {
|
|
node = parent->node;
|
|
--parent;
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
NNTreeIterator::split(QPDFObjectHandle to_split, std::list<PathElement>::iterator parent)
|
|
{
|
|
// Split some node along the path to the item pointed to by this iterator, and adjust the
|
|
// iterator so it points to the same item.
|
|
|
|
// In examples, for simplicity, /Nums is shown to just contain numbers instead of pairs. Imagine
|
|
// this tree:
|
|
//
|
|
// root: << /Kids [ A B C D ] >>
|
|
// A: << /Nums [ 1 2 3 4 ] >>
|
|
// B: << /Nums [ 5 6 7 8 ] >>
|
|
// C: << /Nums [ 9 10 11 12 ] >>
|
|
// D: << /Kids [ E F ]
|
|
// E: << /Nums [ 13 14 15 16 ] >>
|
|
// F: << /Nums [ 17 18 19 20 ] >>
|
|
|
|
// iter1 (points to 19)
|
|
// path:
|
|
// - { node: root: kid_number: 3 }
|
|
// - { node: D, kid_number: 1 }
|
|
// node: F
|
|
// item_number: 2
|
|
|
|
// iter2 (points to 1)
|
|
// path:
|
|
// - { node: root, kid_number: 0}
|
|
// node: A
|
|
// item_number: 0
|
|
|
|
if (!valid()) {
|
|
throw std::logic_error("NNTreeIterator::split called an invalid iterator");
|
|
}
|
|
|
|
// Find the array we actually need to split, which is either this node's kids or items.
|
|
auto kids = to_split.getKey("/Kids");
|
|
int nkids = kids.isArray() ? kids.getArrayNItems() : 0;
|
|
auto items = to_split.getKey(impl.details.itemsKey());
|
|
int nitems = items.isArray() ? items.getArrayNItems() : 0;
|
|
|
|
QPDFObjectHandle first_half;
|
|
int n = 0;
|
|
std::string key;
|
|
int threshold = 0;
|
|
if (nkids > 0) {
|
|
QTC::TC("qpdf", "NNTree split kids");
|
|
first_half = kids;
|
|
n = nkids;
|
|
threshold = impl.split_threshold;
|
|
key = "/Kids";
|
|
} else if (nitems > 0) {
|
|
QTC::TC("qpdf", "NNTree split items");
|
|
first_half = items;
|
|
n = nitems;
|
|
threshold = 2 * impl.split_threshold;
|
|
key = impl.details.itemsKey();
|
|
} else {
|
|
throw std::logic_error("NNTreeIterator::split called on invalid node");
|
|
}
|
|
|
|
if (n <= threshold) {
|
|
return;
|
|
}
|
|
|
|
bool is_root = (parent == this->path.end());
|
|
bool is_leaf = (nitems > 0);
|
|
|
|
// CURRENT STATE: tree is in original state; iterator is valid and unchanged.
|
|
|
|
if (is_root) {
|
|
// What we want to do is to create a new node for the second half of the items and put it in
|
|
// the parent's /Kids array right after the element that points to the current to_split
|
|
// node, but if we're splitting root, there is no parent, so handle that first.
|
|
|
|
// In the non-root case, parent points to the path element whose /Kids contains the first
|
|
// half node, and the first half node is to_split. If we are splitting the root, we need to
|
|
// push everything down a level, but we want to keep the actual root object the same so that
|
|
// indirect references to it remain intact (and also in case it might be a direct object,
|
|
// which it shouldn't be but that case probably exists in the wild). To achieve this, we
|
|
// create a new node for the first half and then replace /Kids in the root to contain it.
|
|
// Then we adjust the path so that the first element is root and the second element, if any,
|
|
// is the new first half. In this way, we make the root case identical to the non-root case
|
|
// so remaining logic can handle them in the same way.
|
|
|
|
auto first_node = impl.qpdf.makeIndirectObject(QPDFObjectHandle::newDictionary());
|
|
first_node.replaceKey(key, first_half);
|
|
QPDFObjectHandle new_kids = QPDFObjectHandle::newArray();
|
|
new_kids.appendItem(first_node);
|
|
to_split.removeKey("/Limits"); // already shouldn't be there for root
|
|
to_split.removeKey(impl.details.itemsKey());
|
|
to_split.replaceKey("/Kids", new_kids);
|
|
if (is_leaf) {
|
|
QTC::TC("qpdf", "NNTree split root + leaf");
|
|
this->node = first_node;
|
|
} else {
|
|
QTC::TC("qpdf", "NNTree split root + !leaf");
|
|
auto next = this->path.begin();
|
|
next->node = first_node;
|
|
}
|
|
this->path.emplace_front(to_split, 0);
|
|
parent = this->path.begin();
|
|
to_split = first_node;
|
|
}
|
|
|
|
// CURRENT STATE: parent is guaranteed to be defined, and we have the invariants that
|
|
// parent[/Kids][kid_number] == to_split and (++parent).node == to_split.
|
|
|
|
// Create a second half array, and transfer the second half of the items into the second half
|
|
// array.
|
|
QPDFObjectHandle second_half = QPDFObjectHandle::newArray();
|
|
int start_idx = ((n / 2) & ~1);
|
|
while (first_half.getArrayNItems() > start_idx) {
|
|
second_half.appendItem(first_half.getArrayItem(start_idx));
|
|
first_half.eraseItem(start_idx);
|
|
}
|
|
resetLimits(to_split, parent);
|
|
|
|
// Create a new node to contain the second half
|
|
QPDFObjectHandle second_node = impl.qpdf.makeIndirectObject(QPDFObjectHandle::newDictionary());
|
|
second_node.replaceKey(key, second_half);
|
|
resetLimits(second_node, parent);
|
|
|
|
// CURRENT STATE: half the items from the kids or items array in the node being split have been
|
|
// moved into a new node. The new node is not yet attached to the tree. The iterator may have a
|
|
// path element or leaf node that is out of bounds.
|
|
|
|
// We need to adjust the parent to add the second node to /Kids and, if needed, update
|
|
// kid_number to traverse through it. We need to update to_split's path element, or the node if
|
|
// this is a leaf, so that the kid/item number points to the right place.
|
|
|
|
auto parent_kids = parent->node.getKey("/Kids");
|
|
parent_kids.insertItem(parent->kid_number + 1, second_node);
|
|
auto cur_elem = parent;
|
|
++cur_elem; // points to end() for leaf nodes
|
|
int old_idx = (is_leaf ? this->item_number : cur_elem->kid_number);
|
|
if (old_idx >= start_idx) {
|
|
++parent->kid_number;
|
|
if (is_leaf) {
|
|
QTC::TC("qpdf", "NNTree split second half item");
|
|
setItemNumber(second_node, this->item_number - start_idx);
|
|
} else {
|
|
QTC::TC("qpdf", "NNTree split second half kid");
|
|
cur_elem->node = second_node;
|
|
cur_elem->kid_number -= start_idx;
|
|
}
|
|
}
|
|
if (!is_root) {
|
|
QTC::TC("qpdf", "NNTree split parent");
|
|
auto next = parent->node;
|
|
resetLimits(next, parent);
|
|
--parent;
|
|
split(next, parent);
|
|
}
|
|
}
|
|
|
|
std::list<NNTreeIterator::PathElement>::iterator
|
|
NNTreeIterator::lastPathElement()
|
|
{
|
|
auto result = this->path.end();
|
|
if (!this->path.empty()) {
|
|
--result;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void
|
|
NNTreeIterator::insertAfter(QPDFObjectHandle key, QPDFObjectHandle value)
|
|
{
|
|
if (!valid()) {
|
|
QTC::TC("qpdf", "NNTree insertAfter inserts first");
|
|
impl.insertFirst(key, value);
|
|
deepen(impl.oh, true, false);
|
|
return;
|
|
}
|
|
|
|
auto items = this->node.getKey(impl.details.itemsKey());
|
|
if (!items.isArray()) {
|
|
error(impl.qpdf, node, "node contains no items array");
|
|
}
|
|
if (items.getArrayNItems() < this->item_number + 2) {
|
|
error(impl.qpdf, node, "insert: items array is too short");
|
|
}
|
|
items.insertItem(this->item_number + 2, key);
|
|
items.insertItem(this->item_number + 3, value);
|
|
resetLimits(this->node, lastPathElement());
|
|
split(this->node, lastPathElement());
|
|
increment(false);
|
|
}
|
|
|
|
void
|
|
NNTreeIterator::remove()
|
|
{
|
|
// Remove this item, leaving the tree valid and this iterator pointing to the next item.
|
|
|
|
if (!valid()) {
|
|
throw std::logic_error("attempt made to remove an invalid iterator");
|
|
}
|
|
auto items = this->node.getKey(impl.details.itemsKey());
|
|
int nitems = items.getArrayNItems();
|
|
if (this->item_number + 2 > nitems) {
|
|
error(impl.qpdf, this->node, "found short items array while removing an item");
|
|
}
|
|
|
|
items.eraseItem(this->item_number);
|
|
items.eraseItem(this->item_number);
|
|
nitems -= 2;
|
|
|
|
if (nitems > 0) {
|
|
// There are still items left
|
|
|
|
if ((this->item_number == 0) || (this->item_number == nitems)) {
|
|
// We removed either the first or last item of an items array that remains non-empty, so
|
|
// we have to adjust limits.
|
|
QTC::TC("qpdf", "NNTree remove reset limits");
|
|
resetLimits(this->node, lastPathElement());
|
|
}
|
|
|
|
if (this->item_number == nitems) {
|
|
// We removed the last item of a non-empty items array, so advance to the successor of
|
|
// the previous item.
|
|
QTC::TC("qpdf", "NNTree erased last item");
|
|
this->item_number -= 2;
|
|
increment(false);
|
|
} else if (this->item_number < nitems) {
|
|
// We don't have to do anything since the removed item's successor now occupies its
|
|
// former location.
|
|
QTC::TC("qpdf", "NNTree erased non-last item");
|
|
updateIValue();
|
|
} else {
|
|
// We already checked to ensure this condition would not happen.
|
|
throw std::logic_error("NNTreeIterator::remove: item_number > nitems after erase");
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (this->path.empty()) {
|
|
// Special case: if this is the root node, we can leave it empty.
|
|
QTC::TC("qpdf", "NNTree erased all items on leaf/root");
|
|
setItemNumber(impl.oh, -1);
|
|
return;
|
|
}
|
|
|
|
QTC::TC("qpdf", "NNTree items is empty after remove");
|
|
|
|
// We removed the last item from this items array, so we need to remove this node from the
|
|
// parent on up the tree. Then we need to position ourselves at the removed item's successor.
|
|
bool done = false;
|
|
while (!done) {
|
|
auto element = lastPathElement();
|
|
auto parent = element;
|
|
--parent;
|
|
auto kids = element->node.getKey("/Kids");
|
|
kids.eraseItem(element->kid_number);
|
|
auto nkids = kids.getArrayNItems();
|
|
if (nkids > 0) {
|
|
// The logic here is similar to the items case.
|
|
if ((element->kid_number == 0) || (element->kid_number == nkids)) {
|
|
QTC::TC("qpdf", "NNTree erased first or last kid");
|
|
resetLimits(element->node, parent);
|
|
}
|
|
if (element->kid_number == nkids) {
|
|
// Move to the successor of the last child of the previous kid.
|
|
setItemNumber(QPDFObjectHandle(), -1);
|
|
--element->kid_number;
|
|
deepen(kids.getArrayItem(element->kid_number), false, true);
|
|
if (valid()) {
|
|
increment(false);
|
|
if (!valid()) {
|
|
QTC::TC("qpdf", "NNTree erased last item in tree");
|
|
} else {
|
|
QTC::TC("qpdf", "NNTree erased last kid");
|
|
}
|
|
}
|
|
} else {
|
|
// Next kid is in deleted kid's position
|
|
QTC::TC("qpdf", "NNTree erased non-last kid");
|
|
deepen(kids.getArrayItem(element->kid_number), true, true);
|
|
}
|
|
done = true;
|
|
} else if (parent == this->path.end()) {
|
|
// We erased the very last item. Convert the root to an empty items array.
|
|
QTC::TC("qpdf", "NNTree non-flat tree is empty after remove");
|
|
element->node.removeKey("/Kids");
|
|
element->node.replaceKey(impl.details.itemsKey(), QPDFObjectHandle::newArray());
|
|
this->path.clear();
|
|
setItemNumber(impl.oh, -1);
|
|
done = true;
|
|
} else {
|
|
// Walk up the tree and continue
|
|
QTC::TC("qpdf", "NNTree remove walking up tree");
|
|
this->path.pop_back();
|
|
}
|
|
}
|
|
}
|
|
|
|
NNTreeIterator&
|
|
NNTreeIterator::operator++()
|
|
{
|
|
increment(false);
|
|
return *this;
|
|
}
|
|
|
|
NNTreeIterator&
|
|
NNTreeIterator::operator--()
|
|
{
|
|
increment(true);
|
|
return *this;
|
|
}
|
|
|
|
NNTreeIterator::reference
|
|
NNTreeIterator::operator*()
|
|
{
|
|
updateIValue(false);
|
|
return this->ivalue;
|
|
}
|
|
|
|
NNTreeIterator::pointer
|
|
NNTreeIterator::operator->()
|
|
{
|
|
updateIValue(false);
|
|
return &(this->ivalue);
|
|
}
|
|
|
|
bool
|
|
NNTreeIterator::operator==(NNTreeIterator const& other) const
|
|
{
|
|
if ((this->item_number == -1) && (other.item_number == -1)) {
|
|
return true;
|
|
}
|
|
if (this->path.size() != other.path.size()) {
|
|
return false;
|
|
}
|
|
auto tpi = this->path.begin();
|
|
auto opi = other.path.begin();
|
|
while (tpi != this->path.end()) {
|
|
if (tpi->kid_number != opi->kid_number) {
|
|
return false;
|
|
}
|
|
++tpi;
|
|
++opi;
|
|
}
|
|
if (this->item_number != other.item_number) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void
|
|
NNTreeIterator::setItemNumber(QPDFObjectHandle const& node, int n)
|
|
{
|
|
this->node = node;
|
|
this->item_number = n;
|
|
updateIValue();
|
|
}
|
|
|
|
void
|
|
NNTreeIterator::addPathElement(QPDFObjectHandle const& node, int kid_number)
|
|
{
|
|
this->path.emplace_back(node, kid_number);
|
|
}
|
|
|
|
bool
|
|
NNTreeIterator::deepen(QPDFObjectHandle node, bool first, bool allow_empty)
|
|
{
|
|
// Starting at this node, descend through the first or last kid until we reach a node with
|
|
// items. If we succeed, return true; otherwise return false and leave path alone.
|
|
|
|
auto opath = this->path;
|
|
bool failed = false;
|
|
|
|
QPDFObjGen::set seen;
|
|
for (auto const& i: this->path) {
|
|
seen.add(i.node);
|
|
}
|
|
while (!failed) {
|
|
if (!seen.add(node)) {
|
|
QTC::TC("qpdf", "NNTree deepen: loop");
|
|
warn(impl.qpdf, node, "loop detected while traversing name/number tree");
|
|
failed = true;
|
|
break;
|
|
}
|
|
|
|
if (!node.isDictionary()) {
|
|
QTC::TC("qpdf", "NNTree node is not a dictionary");
|
|
warn(impl.qpdf, node, "non-dictionary node while traversing name/number tree");
|
|
failed = true;
|
|
break;
|
|
}
|
|
|
|
auto kids = node.getKey("/Kids");
|
|
int nkids = kids.isArray() ? kids.getArrayNItems() : 0;
|
|
auto items = node.getKey(impl.details.itemsKey());
|
|
int nitems = items.isArray() ? items.getArrayNItems() : 0;
|
|
if (nitems > 0) {
|
|
setItemNumber(node, first ? 0 : nitems - 2);
|
|
break;
|
|
} else if (nkids > 0) {
|
|
int kid_number = first ? 0 : nkids - 1;
|
|
addPathElement(node, kid_number);
|
|
auto next = kids.getArrayItem(kid_number);
|
|
if (!next.isIndirect()) {
|
|
if (impl.auto_repair) {
|
|
QTC::TC("qpdf", "NNTree fix indirect kid");
|
|
warn(
|
|
impl.qpdf,
|
|
node,
|
|
("converting kid number " + std::to_string(kid_number) +
|
|
" to an indirect object"));
|
|
next = impl.qpdf.makeIndirectObject(next);
|
|
kids.setArrayItem(kid_number, next);
|
|
} else {
|
|
QTC::TC("qpdf", "NNTree warn indirect kid");
|
|
warn(
|
|
impl.qpdf,
|
|
node,
|
|
("kid number " + std::to_string(kid_number) +
|
|
" is not an indirect object"));
|
|
}
|
|
}
|
|
node = next;
|
|
} else if (allow_empty && items.isArray()) {
|
|
QTC::TC("qpdf", "NNTree deepen found empty");
|
|
setItemNumber(node, -1);
|
|
break;
|
|
} else {
|
|
QTC::TC("qpdf", "NNTree deepen: invalid node");
|
|
warn(
|
|
impl.qpdf,
|
|
node,
|
|
("name/number tree node has neither non-empty " + impl.details.itemsKey() +
|
|
" nor /Kids"));
|
|
failed = true;
|
|
break;
|
|
}
|
|
}
|
|
if (failed) {
|
|
this->path = opath;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
NNTreeImpl::NNTreeImpl(
|
|
NNTreeDetails const& details, QPDF& qpdf, QPDFObjectHandle& oh, bool auto_repair) :
|
|
details(details),
|
|
qpdf(qpdf),
|
|
split_threshold(32),
|
|
oh(oh),
|
|
auto_repair(auto_repair)
|
|
{
|
|
}
|
|
|
|
void
|
|
NNTreeImpl::setSplitThreshold(int split_threshold)
|
|
{
|
|
this->split_threshold = split_threshold;
|
|
}
|
|
|
|
NNTreeImpl::iterator
|
|
NNTreeImpl::begin()
|
|
{
|
|
iterator result(*this);
|
|
result.deepen(this->oh, true, true);
|
|
return result;
|
|
}
|
|
|
|
NNTreeImpl::iterator
|
|
NNTreeImpl::end()
|
|
{
|
|
return {*this};
|
|
}
|
|
|
|
NNTreeImpl::iterator
|
|
NNTreeImpl::last()
|
|
{
|
|
iterator result(*this);
|
|
result.deepen(this->oh, false, true);
|
|
return result;
|
|
}
|
|
|
|
int
|
|
NNTreeImpl::withinLimits(QPDFObjectHandle key, QPDFObjectHandle node)
|
|
{
|
|
int result = 0;
|
|
auto limits = node.getKey("/Limits");
|
|
if (limits.isArray() && (limits.getArrayNItems() >= 2) &&
|
|
details.keyValid(limits.getArrayItem(0)) && details.keyValid(limits.getArrayItem(1))) {
|
|
if (details.compareKeys(key, limits.getArrayItem(0)) < 0) {
|
|
result = -1;
|
|
} else if (details.compareKeys(key, limits.getArrayItem(1)) > 0) {
|
|
result = 1;
|
|
}
|
|
} else {
|
|
QTC::TC("qpdf", "NNTree missing limits");
|
|
error(qpdf, node, "node is missing /Limits");
|
|
}
|
|
return result;
|
|
}
|
|
|
|
int
|
|
NNTreeImpl::binarySearch(
|
|
QPDFObjectHandle key,
|
|
QPDFObjectHandle items,
|
|
int num_items,
|
|
bool return_prev_if_not_found,
|
|
int (NNTreeImpl::*compare)(QPDFObjectHandle& key, QPDFObjectHandle& arr, int item))
|
|
{
|
|
int max_idx = 1;
|
|
while (max_idx < num_items) {
|
|
max_idx <<= 1;
|
|
}
|
|
|
|
int step = max_idx / 2;
|
|
int checks = max_idx;
|
|
int idx = step;
|
|
int found_idx = -1;
|
|
bool found = false;
|
|
bool found_leq = false;
|
|
int status = 0;
|
|
|
|
while ((!found) && (checks > 0)) {
|
|
if (idx < num_items) {
|
|
status = (this->*compare)(key, items, idx);
|
|
if (status >= 0) {
|
|
found_leq = true;
|
|
found_idx = idx;
|
|
}
|
|
} else {
|
|
// consider item to be below anything after the top
|
|
status = -1;
|
|
}
|
|
|
|
if (status == 0) {
|
|
found = true;
|
|
} else {
|
|
checks >>= 1;
|
|
if (checks > 0) {
|
|
step >>= 1;
|
|
if (step == 0) {
|
|
step = 1;
|
|
}
|
|
|
|
if (status < 0) {
|
|
idx -= step;
|
|
} else {
|
|
idx += step;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (found || (found_leq && return_prev_if_not_found)) {
|
|
return found_idx;
|
|
} else {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
int
|
|
NNTreeImpl::compareKeyItem(QPDFObjectHandle& key, QPDFObjectHandle& items, int idx)
|
|
{
|
|
if (!((items.isArray() && (items.getArrayNItems() > (2 * idx)) &&
|
|
details.keyValid(items.getArrayItem(2 * idx))))) {
|
|
QTC::TC("qpdf", "NNTree item is wrong type");
|
|
error(
|
|
qpdf,
|
|
this->oh,
|
|
("item at index " + std::to_string(2 * idx) + " is not the right type"));
|
|
}
|
|
return details.compareKeys(key, items.getArrayItem(2 * idx));
|
|
}
|
|
|
|
int
|
|
NNTreeImpl::compareKeyKid(QPDFObjectHandle& key, QPDFObjectHandle& kids, int idx)
|
|
{
|
|
if (!(kids.isArray() && (idx < kids.getArrayNItems()) &&
|
|
kids.getArrayItem(idx).isDictionary())) {
|
|
QTC::TC("qpdf", "NNTree kid is invalid");
|
|
error(qpdf, this->oh, "invalid kid at index " + std::to_string(idx));
|
|
}
|
|
return withinLimits(key, kids.getArrayItem(idx));
|
|
}
|
|
|
|
void
|
|
NNTreeImpl::repair()
|
|
{
|
|
auto new_node = QPDFObjectHandle::newDictionary();
|
|
new_node.replaceKey(details.itemsKey(), QPDFObjectHandle::newArray());
|
|
NNTreeImpl repl(details, qpdf, new_node, false);
|
|
for (auto const& i: *this) {
|
|
repl.insert(i.first, i.second);
|
|
}
|
|
this->oh.replaceKey("/Kids", new_node.getKey("/Kids"));
|
|
this->oh.replaceKey(details.itemsKey(), new_node.getKey(details.itemsKey()));
|
|
}
|
|
|
|
NNTreeImpl::iterator
|
|
NNTreeImpl::find(QPDFObjectHandle key, bool return_prev_if_not_found)
|
|
{
|
|
try {
|
|
return findInternal(key, return_prev_if_not_found);
|
|
} catch (QPDFExc& e) {
|
|
if (this->auto_repair) {
|
|
QTC::TC("qpdf", "NNTree repair");
|
|
warn(qpdf, this->oh, std::string("attempting to repair after error: ") + e.what());
|
|
repair();
|
|
return findInternal(key, return_prev_if_not_found);
|
|
} else {
|
|
throw;
|
|
}
|
|
}
|
|
}
|
|
|
|
NNTreeImpl::iterator
|
|
NNTreeImpl::findInternal(QPDFObjectHandle key, bool return_prev_if_not_found)
|
|
{
|
|
auto first_item = begin();
|
|
auto last_item = end();
|
|
if (first_item == end()) {
|
|
// Empty
|
|
return end();
|
|
} else if (
|
|
first_item.valid() && details.keyValid(first_item->first) &&
|
|
details.compareKeys(key, first_item->first) < 0) {
|
|
// Before the first key
|
|
return end();
|
|
} else if (
|
|
last_item.valid() && details.keyValid(last_item->first) &&
|
|
details.compareKeys(key, last_item->first) > 0) {
|
|
// After the last key
|
|
if (return_prev_if_not_found) {
|
|
return last_item;
|
|
} else {
|
|
return end();
|
|
}
|
|
}
|
|
|
|
QPDFObjGen::set seen;
|
|
auto node = this->oh;
|
|
iterator result(*this);
|
|
|
|
while (true) {
|
|
if (!seen.add(node)) {
|
|
QTC::TC("qpdf", "NNTree loop in find");
|
|
error(qpdf, node, "loop detected in find");
|
|
}
|
|
|
|
auto kids = node.getKey("/Kids");
|
|
int nkids = kids.isArray() ? kids.getArrayNItems() : 0;
|
|
auto items = node.getKey(details.itemsKey());
|
|
int nitems = items.isArray() ? items.getArrayNItems() : 0;
|
|
if (nitems > 0) {
|
|
int idx = binarySearch(
|
|
key, items, nitems / 2, return_prev_if_not_found, &NNTreeImpl::compareKeyItem);
|
|
if (idx >= 0) {
|
|
result.setItemNumber(node, 2 * idx);
|
|
}
|
|
break;
|
|
} else if (nkids > 0) {
|
|
int idx = binarySearch(key, kids, nkids, true, &NNTreeImpl::compareKeyKid);
|
|
if (idx == -1) {
|
|
QTC::TC("qpdf", "NNTree -1 in binary search");
|
|
error(
|
|
qpdf,
|
|
node,
|
|
"unexpected -1 from binary search of kids;"
|
|
" limits may by wrong");
|
|
}
|
|
result.addPathElement(node, idx);
|
|
node = kids.getArrayItem(idx);
|
|
} else {
|
|
QTC::TC("qpdf", "NNTree bad node during find");
|
|
error(qpdf, node, "bad node during find");
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
NNTreeImpl::iterator
|
|
NNTreeImpl::insertFirst(QPDFObjectHandle key, QPDFObjectHandle value)
|
|
{
|
|
auto iter = begin();
|
|
QPDFObjectHandle items;
|
|
if (iter.node.isDictionary()) {
|
|
items = iter.node.getKey(details.itemsKey());
|
|
}
|
|
if (!(items.isArray())) {
|
|
QTC::TC("qpdf", "NNTree no valid items node in insertFirst");
|
|
error(qpdf, this->oh, "unable to find a valid items node");
|
|
}
|
|
items.insertItem(0, key);
|
|
items.insertItem(1, value);
|
|
iter.setItemNumber(iter.node, 0);
|
|
iter.resetLimits(iter.node, iter.lastPathElement());
|
|
iter.split(iter.node, iter.lastPathElement());
|
|
return iter;
|
|
}
|
|
|
|
NNTreeImpl::iterator
|
|
NNTreeImpl::insert(QPDFObjectHandle key, QPDFObjectHandle value)
|
|
{
|
|
auto iter = find(key, true);
|
|
if (!iter.valid()) {
|
|
QTC::TC("qpdf", "NNTree insert inserts first");
|
|
return insertFirst(key, value);
|
|
} else if (details.compareKeys(key, iter->first) == 0) {
|
|
QTC::TC("qpdf", "NNTree insert replaces");
|
|
auto items = iter.node.getKey(details.itemsKey());
|
|
items.setArrayItem(iter.item_number + 1, value);
|
|
iter.updateIValue();
|
|
} else {
|
|
QTC::TC("qpdf", "NNTree insert inserts after");
|
|
iter.insertAfter(key, value);
|
|
}
|
|
return iter;
|
|
}
|
|
|
|
bool
|
|
NNTreeImpl::remove(QPDFObjectHandle key, QPDFObjectHandle* value)
|
|
{
|
|
auto iter = find(key, false);
|
|
if (!iter.valid()) {
|
|
QTC::TC("qpdf", "NNTree remove not found");
|
|
return false;
|
|
}
|
|
if (value) {
|
|
*value = iter->second;
|
|
}
|
|
iter.remove();
|
|
return true;
|
|
}
|