2
1
mirror of https://github.com/qpdf/qpdf.git synced 2025-01-10 02:07:12 +00:00
qpdf/libqpdf/QPDFWriter.cc
Jay Berkenbilt a7e269537d update code to new PointerHolder, and reintroduce change that was accidentally backed out
git-svn-id: svn+q:///qpdf/trunk@1031 71b93d88-0707-0410-a8cf-f5a4172ac649
2010-09-24 20:45:18 +00:00

2315 lines
58 KiB
C++
Raw Blame History

#include <qpdf/QPDFWriter.hh>
#include <assert.h>
#include <qpdf/Pl_StdioFile.hh>
#include <qpdf/Pl_Count.hh>
#include <qpdf/Pl_Discard.hh>
#include <qpdf/Pl_Buffer.hh>
#include <qpdf/Pl_RC4.hh>
#include <qpdf/Pl_AES_PDF.hh>
#include <qpdf/Pl_Flate.hh>
#include <qpdf/Pl_PNGFilter.hh>
#include <qpdf/QUtil.hh>
#include <qpdf/MD5.hh>
#include <qpdf/RC4.hh>
#include <qpdf/QTC.hh>
#include <qpdf/QPDF.hh>
#include <qpdf/QPDFObjectHandle.hh>
#include <qpdf/QPDF_Name.hh>
#include <qpdf/QPDF_String.hh>
#include <stdlib.h>
QPDFWriter::QPDFWriter(QPDF& pdf, char const* filename) :
pdf(pdf),
filename(filename),
file(0),
close_file(false),
normalize_content_set(false),
normalize_content(false),
stream_data_mode_set(false),
stream_data_mode(qpdf_s_compress),
qdf_mode(false),
static_id(false),
suppress_original_object_ids(false),
direct_stream_lengths(true),
encrypted(false),
preserve_encryption(true),
linearized(false),
object_stream_mode(qpdf_o_preserve),
encrypt_metadata(true),
encrypt_use_aes(false),
encryption_dict_objid(0),
next_objid(1),
cur_stream_length_id(0),
cur_stream_length(0),
added_newline(false),
max_ostream_index(0)
{
if (filename == 0)
{
this->filename = "standard output";
QTC::TC("qpdf", "QPDFWriter write to stdout");
file = stdout;
QUtil::binary_stdout();
}
else
{
QTC::TC("qpdf", "QPDFWriter write to file");
file = QUtil::fopen_wrapper(std::string("open ") + filename,
fopen(filename, "wb+"));
close_file = true;
}
Pipeline* p = new Pl_StdioFile("qdf output", file);
to_delete.push_back(p);
pipeline = new Pl_Count("qdf count", p);
to_delete.push_back(pipeline);
pipeline_stack.push_back(pipeline);
}
QPDFWriter::~QPDFWriter()
{
if (file)
{
fclose(file);
}
}
void
QPDFWriter::setObjectStreamMode(qpdf_object_stream_e mode)
{
this->object_stream_mode = mode;
}
void
QPDFWriter::setStreamDataMode(qpdf_stream_data_e mode)
{
this->stream_data_mode_set = true;
this->stream_data_mode = mode;
}
void
QPDFWriter::setContentNormalization(bool val)
{
this->normalize_content_set = true;
this->normalize_content = val;
}
void
QPDFWriter::setQDFMode(bool val)
{
this->qdf_mode = val;
}
void
QPDFWriter::setMinimumPDFVersion(std::string const& version)
{
bool set_version = false;
if (this->min_pdf_version.empty())
{
set_version = true;
}
else
{
int old_major = 0;
int old_minor = 0;
int min_major = 0;
int min_minor = 0;
parseVersion(version, old_major, old_minor);
parseVersion(this->min_pdf_version, min_major, min_minor);
if (compareVersions(old_major, old_minor, min_major, min_minor) > 0)
{
QTC::TC("qpdf", "QPDFWriter increasing minimum version");
set_version = true;
}
}
if (set_version)
{
this->min_pdf_version = version;
}
}
void
QPDFWriter::forcePDFVersion(std::string const& version)
{
this->forced_pdf_version = version;
}
void
QPDFWriter::setStaticID(bool val)
{
this->static_id = val;
}
void
QPDFWriter::setStaticAesIV(bool val)
{
if (val)
{
Pl_AES_PDF::useStaticIV();
}
}
void
QPDFWriter::setSuppressOriginalObjectIDs(bool val)
{
this->suppress_original_object_ids = val;
}
void
QPDFWriter::setPreserveEncryption(bool val)
{
this->preserve_encryption = val;
}
void
QPDFWriter::setLinearization(bool val)
{
this->linearized = val;
}
void
QPDFWriter::setR2EncryptionParameters(
char const* user_password, char const* owner_password,
bool allow_print, bool allow_modify,
bool allow_extract, bool allow_annotate)
{
std::set<int> clear;
if (! allow_print)
{
clear.insert(3);
}
if (! allow_modify)
{
clear.insert(4);
}
if (! allow_extract)
{
clear.insert(5);
}
if (! allow_annotate)
{
clear.insert(6);
}
setMinimumPDFVersion("1.3");
setEncryptionParameters(user_password, owner_password, 1, 2, 5, clear);
}
void
QPDFWriter::setR3EncryptionParameters(
char const* user_password, char const* owner_password,
bool allow_accessibility, bool allow_extract,
qpdf_r3_print_e print, qpdf_r3_modify_e modify)
{
std::set<int> clear;
interpretR3EncryptionParameters(
clear, user_password, owner_password,
allow_accessibility, allow_extract, print, modify);
setMinimumPDFVersion("1.4");
setEncryptionParameters(user_password, owner_password, 2, 3, 16, clear);
}
void
QPDFWriter::setR4EncryptionParameters(
char const* user_password, char const* owner_password,
bool allow_accessibility, bool allow_extract,
qpdf_r3_print_e print, qpdf_r3_modify_e modify,
bool encrypt_metadata, bool use_aes)
{
std::set<int> clear;
interpretR3EncryptionParameters(
clear, user_password, owner_password,
allow_accessibility, allow_extract, print, modify);
this->encrypt_use_aes = use_aes;
this->encrypt_metadata = encrypt_metadata;
setMinimumPDFVersion(use_aes ? "1.6" : "1.5");
setEncryptionParameters(user_password, owner_password, 4, 4, 16, clear);
}
void
QPDFWriter::interpretR3EncryptionParameters(
std::set<int>& clear,
char const* user_password, char const* owner_password,
bool allow_accessibility, bool allow_extract,
qpdf_r3_print_e print, qpdf_r3_modify_e modify)
{
// Acrobat 5 security options:
// Checkboxes:
// Enable Content Access for the Visually Impaired
// Allow Content Copying and Extraction
// Allowed changes menu:
// None
// Only Document Assembly
// Only Form Field Fill-in or Signing
// Comment Authoring, Form Field Fill-in or Signing
// General Editing, Comment and Form Field Authoring
// Allowed printing menu:
// None
// Low Resolution
// Full printing
if (! allow_accessibility)
{
clear.insert(10);
}
if (! allow_extract)
{
clear.insert(5);
}
// Note: these switch statements all "fall through" (no break
// statements). Each option clears successively more access bits.
switch (print)
{
case qpdf_r3p_none:
clear.insert(3); // any printing
case qpdf_r3p_low:
clear.insert(12); // high resolution printing
case qpdf_r3p_full:
break;
// no default so gcc warns for missing cases
}
switch (modify)
{
case qpdf_r3m_none:
clear.insert(11); // document assembly
case qpdf_r3m_assembly:
clear.insert(9); // filling in form fields
case qpdf_r3m_form:
clear.insert(6); // modify annotations, fill in form fields
case qpdf_r3m_annotate:
clear.insert(4); // other modifications
case qpdf_r3m_all:
break;
// no default so gcc warns for missing cases
}
}
void
QPDFWriter::setEncryptionParameters(
char const* user_password, char const* owner_password,
int V, int R, int key_len, std::set<int>& bits_to_clear)
{
// PDF specification refers to bits with the low bit numbered 1.
// We have to convert this into a bit field.
// Specification always requires bits 1 and 2 to be cleared.
bits_to_clear.insert(1);
bits_to_clear.insert(2);
int P = 0;
// Create the complement of P, then invert.
for (std::set<int>::iterator iter = bits_to_clear.begin();
iter != bits_to_clear.end(); ++iter)
{
P |= (1 << ((*iter) - 1));
}
P = ~P;
generateID();
std::string O;
std::string U;
QPDF::compute_encryption_O_U(
user_password, owner_password, V, R, key_len, P,
this->encrypt_metadata, this->id1, O, U);
setEncryptionParametersInternal(
V, R, key_len, P, O, U, this->id1, user_password);
}
void
QPDFWriter::copyEncryptionParameters()
{
generateID();
QPDFObjectHandle trailer = this->pdf.getTrailer();
if (trailer.hasKey("/Encrypt"))
{
QPDFObjectHandle encrypt = trailer.getKey("/Encrypt");
int V = encrypt.getKey("/V").getIntValue();
int key_len = 5;
if (V > 1)
{
key_len = encrypt.getKey("/Length").getIntValue() / 8;
}
setEncryptionParametersInternal(
V,
encrypt.getKey("/R").getIntValue(),
key_len,
encrypt.getKey("/P").getIntValue(),
encrypt.getKey("/O").getStringValue(),
encrypt.getKey("/U").getStringValue(),
this->id1, // this->id1 == the other file's id1
pdf.getPaddedUserPassword());
}
}
void
QPDFWriter::disableIncompatibleEncryption(int major, int minor)
{
if (! this->encrypted)
{
return;
}
bool disable = false;
if (compareVersions(major, minor, 1, 3) < 0)
{
disable = true;
}
else
{
int V = atoi(encryption_dictionary["/V"].c_str());
int R = atoi(encryption_dictionary["/R"].c_str());
if (compareVersions(major, minor, 1, 4) < 0)
{
if ((V > 1) || (R > 2))
{
disable = true;
}
}
else if (compareVersions(major, minor, 1, 5) < 0)
{
if ((V > 2) || (R > 3))
{
disable = true;
}
}
else if (compareVersions(major, minor, 1, 6) < 0)
{
if (this->encrypt_use_aes)
{
disable = true;
}
}
}
if (disable)
{
QTC::TC("qpdf", "QPDFWriter forced version disabled encryption");
this->encrypted = false;
}
}
void
QPDFWriter::parseVersion(std::string const& version,
int& major, int& minor) const
{
major = atoi(version.c_str());
minor = 0;
size_t p = version.find('.');
if ((p != std::string::npos) && (version.length() > p))
{
minor = atoi(version.substr(p + 1).c_str());
}
std::string tmp = QUtil::int_to_string(major) + "." +
QUtil::int_to_string(minor);
if (tmp != version)
{
throw std::logic_error(
"INTERNAL ERROR: QPDFWriter::parseVersion"
" called with invalid version number " + version);
}
}
int
QPDFWriter::compareVersions(int major1, int minor1,
int major2, int minor2) const
{
if (major1 < major2)
{
return -1;
}
else if (major1 > major2)
{
return 1;
}
else if (minor1 < minor2)
{
return -1;
}
else if (minor1 > minor2)
{
return 1;
}
else
{
return 0;
}
}
void
QPDFWriter::setEncryptionParametersInternal(
int V, int R, int key_len, long P,
std::string const& O, std::string const& U,
std::string const& id1, std::string const& user_password)
{
encryption_dictionary["/Filter"] = "/Standard";
encryption_dictionary["/V"] = QUtil::int_to_string(V);
encryption_dictionary["/Length"] = QUtil::int_to_string(key_len * 8);
encryption_dictionary["/R"] = QUtil::int_to_string(R);
encryption_dictionary["/P"] = QUtil::int_to_string(P);
encryption_dictionary["/O"] = QPDF_String(O).unparse(true);
encryption_dictionary["/U"] = QPDF_String(U).unparse(true);
if ((R >= 4) && (! encrypt_metadata))
{
encryption_dictionary["/EncryptMetadata"] = "false";
}
if (V == 4)
{
// The spec says the value for the crypt filter key can be
// anything, and xpdf seems to agree. However, Adobe Reader
// won't open our files unless we use /StdCF.
encryption_dictionary["/StmF"] = "/StdCF";
encryption_dictionary["/StrF"] = "/StdCF";
std::string method = (this->encrypt_use_aes ? "/AESV2" : "/V2");
encryption_dictionary["/CF"] =
"<< /StdCF << /AuthEvent /DocOpen /CFM " + method + " >> >>";
}
this->encrypted = true;
QPDF::EncryptionData encryption_data(
V, R, key_len, P, O, U, this->id1, this->encrypt_metadata);
this->encryption_key = QPDF::compute_encryption_key(
user_password, encryption_data);
}
void
QPDFWriter::setDataKey(int objid)
{
this->cur_data_key = QPDF::compute_data_key(
this->encryption_key, objid, 0, this->encrypt_use_aes);
}
int
QPDFWriter::bytesNeeded(unsigned long n)
{
int bytes = 0;
while (n)
{
++bytes;
n >>= 8;
}
return bytes;
}
void
QPDFWriter::writeBinary(unsigned long val, unsigned int bytes)
{
assert(bytes <= sizeof(unsigned long));
unsigned char data[sizeof(unsigned long)];
for (unsigned int i = 0; i < bytes; ++i)
{
data[bytes - i - 1] = (unsigned char)(val & 0xff);
val >>= 8;
}
this->pipeline->write(data, bytes);
}
void
QPDFWriter::writeString(std::string const& str)
{
this->pipeline->write((unsigned char*)str.c_str(), str.length());
}
void
QPDFWriter::writeBuffer(PointerHolder<Buffer>& b)
{
this->pipeline->write(b->getBuffer(), b->getSize());
}
void
QPDFWriter::writeStringQDF(std::string const& str)
{
if (this->qdf_mode)
{
writeString(str);
}
}
void
QPDFWriter::writeStringNoQDF(std::string const& str)
{
if (! this->qdf_mode)
{
writeString(str);
}
}
void
QPDFWriter::writePad(int nspaces)
{
for (int i = 0; i < nspaces; ++i)
{
writeString(" ");
}
}
Pipeline*
QPDFWriter::pushPipeline(Pipeline* p)
{
assert(dynamic_cast<Pl_Count*>(p) == 0);
this->pipeline_stack.push_back(p);
return p;
}
void
QPDFWriter::activatePipelineStack()
{
Pl_Count* c = new Pl_Count("count", this->pipeline_stack.back());
this->pipeline_stack.push_back(c);
this->pipeline = c;
}
void
QPDFWriter::popPipelineStack(PointerHolder<Buffer>* bp)
{
assert(this->pipeline_stack.size() >= 2);
this->pipeline->finish();
assert(dynamic_cast<Pl_Count*>(this->pipeline_stack.back()) ==
this->pipeline);
delete this->pipeline_stack.back();
this->pipeline_stack.pop_back();
while (dynamic_cast<Pl_Count*>(this->pipeline_stack.back()) == 0)
{
Pipeline* p = this->pipeline_stack.back();
this->pipeline_stack.pop_back();
Pl_Buffer* buf = dynamic_cast<Pl_Buffer*>(p);
if (bp && buf)
{
*bp = buf->getBuffer();
}
delete p;
}
this->pipeline = dynamic_cast<Pl_Count*>(this->pipeline_stack.back());
}
void
QPDFWriter::adjustAESStreamLength(unsigned long& length)
{
if (this->encrypted && (! this->cur_data_key.empty()) &&
this->encrypt_use_aes)
{
// Stream length will be padded with 1 to 16 bytes to end up
// as a multiple of 16. It will also be prepended by 16 bits
// of random data.
length += 32 - (length & 0xf);
}
}
void
QPDFWriter::pushEncryptionFilter()
{
if (this->encrypted && (! this->cur_data_key.empty()))
{
Pipeline* p = 0;
if (this->encrypt_use_aes)
{
p = new Pl_AES_PDF(
"aes stream encryption", this->pipeline, true,
(unsigned char*) this->cur_data_key.c_str());
}
else
{
p = new Pl_RC4("rc4 stream encryption", this->pipeline,
(unsigned char*) this->cur_data_key.c_str(),
this->cur_data_key.length());
}
pushPipeline(p);
}
// Must call this unconditionally so we can call popPipelineStack
// to balance pushEncryptionFilter().
activatePipelineStack();
}
void
QPDFWriter::pushDiscardFilter()
{
pushPipeline(new Pl_Discard());
activatePipelineStack();
}
int
QPDFWriter::openObject(int objid)
{
if (objid == 0)
{
objid = this->next_objid++;
}
this->xref[objid] = QPDFXRefEntry(1, pipeline->getCount(), 0);
writeString(QUtil::int_to_string(objid));
writeString(" 0 obj\n");
return objid;
}
void
QPDFWriter::closeObject(int objid)
{
// Write a newline before endobj as it makes the file easier to
// repair.
writeString("\nendobj\n");
writeStringQDF("\n");
this->lengths[objid] = pipeline->getCount() - this->xref[objid].getOffset();
}
void
QPDFWriter::assignCompressedObjectNumbers(int objid)
{
if (this->object_stream_to_objects.count(objid) == 0)
{
return;
}
// Reserve numbers for the objects that belong to this object
// stream.
for (std::set<int>::iterator iter =
this->object_stream_to_objects[objid].begin();
iter != this->object_stream_to_objects[objid].end();
++iter)
{
obj_renumber[*iter] = next_objid++;
}
}
void
QPDFWriter::enqueueObject(QPDFObjectHandle object)
{
if (object.isIndirect())
{
if (object.isNull())
{
// This is a place-holder object for an object stream
}
else if (object.isScalar())
{
// flattenScalarReferences is supposed to have removed all
// indirect scalars.
throw std::logic_error(
"INTERNAL ERROR: QPDFWriter::enqueueObject: indirect scalar: " +
std::string(this->filename) + " " +
QUtil::int_to_string(object.getObjectID()) + " " +
QUtil::int_to_string(object.getGeneration()));
}
int objid = object.getObjectID();
if (obj_renumber.count(objid) == 0)
{
if (this->object_to_object_stream.count(objid))
{
// This is in an object stream. Don't process it
// here. Instead, enqueue the object stream.
int stream_id = this->object_to_object_stream[objid];
enqueueObject(this->pdf.getObjectByID(stream_id, 0));
}
else
{
object_queue.push_back(object);
obj_renumber[objid] = next_objid++;
if (this->object_stream_to_objects.count(objid))
{
// For linearized files, uncompressed objects go
// at end, and we take care of assigning numbers
// to them elsewhere.
if (! this->linearized)
{
assignCompressedObjectNumbers(objid);
}
}
else if ((! this->direct_stream_lengths) && object.isStream())
{
// reserve next object ID for length
++next_objid;
}
}
}
}
else if (object.isArray())
{
int n = object.getArrayNItems();
for (int i = 0; i < n; ++i)
{
if (! this->linearized)
{
enqueueObject(object.getArrayItem(i));
}
}
}
else if (object.isDictionary())
{
std::set<std::string> keys = object.getKeys();
for (std::set<std::string>::iterator iter = keys.begin();
iter != keys.end(); ++iter)
{
if (! this->linearized)
{
enqueueObject(object.getKey(*iter));
}
}
}
else
{
// ignore
}
}
void
QPDFWriter::unparseChild(QPDFObjectHandle child, int level, int flags)
{
if (! this->linearized)
{
enqueueObject(child);
}
if (child.isIndirect())
{
if (child.isScalar())
{
// flattenScalarReferences is supposed to have removed all
// indirect scalars.
throw std::logic_error(
"INTERNAL ERROR: QPDFWriter::unparseChild: indirect scalar: " +
QUtil::int_to_string(child.getObjectID()) + " " +
QUtil::int_to_string(child.getGeneration()));
}
int old_id = child.getObjectID();
int new_id = obj_renumber[old_id];
writeString(QUtil::int_to_string(new_id));
writeString(" 0 R");
}
else
{
unparseObject(child, level, flags);
}
}
void
QPDFWriter::writeTrailer(trailer_e which, int size, bool xref_stream, int prev)
{
QPDFObjectHandle trailer = pdf.getTrailer();
if (! xref_stream)
{
writeString("trailer <<");
}
writeStringQDF("\n");
if (which == t_lin_second)
{
writeString(" /Size ");
writeString(QUtil::int_to_string(size));
}
else
{
std::set<std::string> keys = trailer.getKeys();
for (std::set<std::string>::iterator iter = keys.begin();
iter != keys.end(); ++iter)
{
std::string const& key = *iter;
writeStringQDF(" ");
writeStringNoQDF(" ");
writeString(QPDF_Name::normalizeName(key));
writeString(" ");
if (key == "/Size")
{
writeString(QUtil::int_to_string(size));
if (which == t_lin_first)
{
writeString(" /Prev ");
int pos = this->pipeline->getCount();
writeString(QUtil::int_to_string(prev));
int nspaces = pos + 11 - this->pipeline->getCount();
assert(nspaces >= 0);
writePad(nspaces);
}
}
else
{
unparseChild(trailer.getKey(key), 1, 0);
}
writeStringQDF("\n");
}
}
// Write ID
writeStringQDF(" ");
writeString(" /ID [");
writeString(QPDF_String(this->id1).unparse(true));
writeString(QPDF_String(this->id2).unparse(true));
writeString("]");
if (which != t_lin_second)
{
// Write reference to encryption dictionary
if (this->encrypted)
{
writeString(" /Encrypt ");
writeString(QUtil::int_to_string(this->encryption_dict_objid));
writeString(" 0 R");
}
}
writeStringQDF("\n");
writeStringNoQDF(" ");
writeString(">>");
}
void
QPDFWriter::unparseObject(QPDFObjectHandle object, int level,
unsigned int flags)
{
unparseObject(object, level, flags, 0, false);
}
void
QPDFWriter::unparseObject(QPDFObjectHandle object, int level,
unsigned int flags, int stream_length, bool compress)
{
unsigned int child_flags = flags & ~f_stream;
std::string indent;
for (int i = 0; i < level; ++i)
{
indent += " ";
}
if (object.isArray())
{
// Note: PDF spec 1.4 implementation note 121 states that
// Acrobat requires a space after the [ in the /H key of the
// linearization parameter dictionary. We'll do this
// unconditionally for all arrays because it looks nicer and
// doesn't make the files that much bigger.
writeString("[");
writeStringQDF("\n");
int n = object.getArrayNItems();
for (int i = 0; i < n; ++i)
{
writeStringQDF(indent);
writeStringQDF(" ");
writeStringNoQDF(" ");
unparseChild(object.getArrayItem(i), level + 1, child_flags);
writeStringQDF("\n");
}
writeStringQDF(indent);
writeStringNoQDF(" ");
writeString("]");
}
else if (object.isDictionary())
{
writeString("<<");
writeStringQDF("\n");
std::set<std::string> keys = object.getKeys();
for (std::set<std::string>::iterator iter = keys.begin();
iter != keys.end(); ++iter)
{
// I'm not fully clear on /Crypt keys in /DecodeParms. If
// one is found, we refuse to filter, so we should be
// safe.
std::string const& key = *iter;
if ((flags & f_filtered) &&
((key == "/Filter") ||
(key == "/DecodeParms")))
{
continue;
}
if ((flags & f_stream) && (key == "/Length"))
{
continue;
}
writeStringQDF(indent);
writeStringQDF(" ");
writeStringNoQDF(" ");
writeString(QPDF_Name::normalizeName(key));
writeString(" ");
unparseChild(object.getKey(key), level + 1, child_flags);
writeStringQDF("\n");
}
if (flags & f_stream)
{
writeStringQDF(indent);
writeStringQDF(" ");
writeString(" /Length ");
if (this->direct_stream_lengths)
{
writeString(QUtil::int_to_string(stream_length));
}
else
{
writeString(
QUtil::int_to_string(this->cur_stream_length_id));
writeString(" 0 R");
}
writeStringQDF("\n");
if (compress && (flags & f_filtered))
{
writeStringQDF(indent);
writeStringQDF(" ");
writeString(" /Filter /FlateDecode");
writeStringQDF("\n");
}
}
writeStringQDF(indent);
writeStringNoQDF(" ");
writeString(">>");
}
else if (object.isStream())
{
// Write stream data to a buffer.
int old_id = object.getObjectID();
int new_id = obj_renumber[old_id];
if (! this->direct_stream_lengths)
{
this->cur_stream_length_id = new_id + 1;
}
QPDFObjectHandle stream_dict = object.getDict();
bool is_metadata = false;
if (stream_dict.getKey("/Type").isName() &&
(stream_dict.getKey("/Type").getName() == "/Metadata"))
{
is_metadata = true;
}
bool filter = (this->stream_data_mode != qpdf_s_preserve);
if (this->stream_data_mode == qpdf_s_compress)
{
// Don't filter if the stream is already compressed with
// FlateDecode. We don't want to make it worse by getting
// rid of a predictor or otherwise messing with it. We
// should also avoid messing with anything that's
// compressed with a lossy compression scheme, but we
// don't support any of those right now.
QPDFObjectHandle filter_obj = stream_dict.getKey("/Filter");
if (filter_obj.isName() &&
((filter_obj.getName() == "/FlateDecode") ||
(filter_obj.getName() == "/Fl")))
{
QTC::TC("qpdf", "QPDFWriter not recompressing /FlateDecode");
filter = false;
}
}
bool normalize = false;
bool compress = false;
if (is_metadata &&
((! this->encrypted) || (this->encrypt_metadata == false)))
{
QTC::TC("qpdf", "QPDFWriter not compressing metadata");
filter = true;
compress = false;
}
else if (this->normalize_content && normalized_streams.count(old_id))
{
normalize = true;
filter = true;
}
else if (filter && (this->stream_data_mode == qpdf_s_compress))
{
compress = true;
QTC::TC("qpdf", "QPDFWriter compressing uncompressed stream");
}
flags |= f_stream;
pushPipeline(new Pl_Buffer("stream data"));
activatePipelineStack();
bool filtered =
object.pipeStreamData(this->pipeline, filter, normalize, compress);
PointerHolder<Buffer> stream_data;
popPipelineStack(&stream_data);
if (filtered)
{
flags |= f_filtered;
}
else
{
compress = false;
}
this->cur_stream_length = stream_data->getSize();
if (is_metadata && this->encrypted && (! this->encrypt_metadata))
{
// Don't encrypt stream data for the metadata stream
this->cur_data_key.clear();
}
adjustAESStreamLength(this->cur_stream_length);
unparseObject(stream_dict, 0, flags, this->cur_stream_length, compress);
writeString("\nstream\n");
pushEncryptionFilter();
writeBuffer(stream_data);
popPipelineStack();
if (this->qdf_mode)
{
if (this->pipeline->getLastChar() != '\n')
{
writeString("\n");
this->added_newline = true;
}
else
{
this->added_newline = false;
}
}
writeString("endstream");
}
else if (object.isString())
{
std::string val;
if (this->encrypted &&
(! (flags & f_in_ostream)) &&
(! this->cur_data_key.empty()))
{
val = object.getStringValue();
if (this->encrypt_use_aes)
{
Pl_Buffer bufpl("encrypted string");
Pl_AES_PDF pl("aes encrypt string", &bufpl, true,
(unsigned char const*)this->cur_data_key.c_str());
pl.write((unsigned char*) val.c_str(), val.length());
pl.finish();
Buffer* buf = bufpl.getBuffer();
val = QPDF_String(
std::string((char*)buf->getBuffer(),
(size_t)buf->getSize())).unparse(true);
delete buf;
}
else
{
char* tmp = QUtil::copy_string(val);
unsigned int vlen = val.length();
RC4 rc4((unsigned char const*)this->cur_data_key.c_str(),
this->cur_data_key.length());
rc4.process((unsigned char*)tmp, vlen);
val = QPDF_String(std::string(tmp, vlen)).unparse();
delete [] tmp;
}
}
else
{
val = object.unparseResolved();
}
writeString(val);
}
else
{
writeString(object.unparseResolved());
}
}
void
QPDFWriter::writeObjectStreamOffsets(std::vector<int>& offsets,
int first_obj)
{
for (unsigned int i = 0; i < offsets.size(); ++i)
{
if (i != 0)
{
writeStringQDF("\n");
writeStringNoQDF(" ");
}
writeString(QUtil::int_to_string(i + first_obj));
writeString(" ");
writeString(QUtil::int_to_string(offsets[i]));
}
writeString("\n");
}
void
QPDFWriter::writeObjectStream(QPDFObjectHandle object)
{
// Note: object might be null if this is a place-holder for an
// object stream that we are generating from scratch.
int old_id = object.getObjectID();
int new_id = obj_renumber[old_id];
std::vector<int> offsets;
int first = 0;
// Generate stream itself. We have to do this in two passes so we
// can calculate offsets in the first pass.
PointerHolder<Buffer> stream_buffer;
int first_obj = -1;
bool compressed = false;
for (int pass = 1; pass <= 2; ++pass)
{
if (pass == 1)
{
pushDiscardFilter();
}
else
{
// Adjust offsets to skip over comment before first object
first = offsets[0];
for (std::vector<int>::iterator iter = offsets.begin();
iter != offsets.end(); ++iter)
{
*iter -= first;
}
// Take one pass at writing pairs of numbers so we can get
// their size information
pushDiscardFilter();
writeObjectStreamOffsets(offsets, first_obj);
first += this->pipeline->getCount();
popPipelineStack();
// Set up a stream to write the stream data into a buffer.
Pipeline* next = pushPipeline(new Pl_Buffer("object stream"));
if (! ((this->stream_data_mode == qpdf_s_uncompress) ||
this->qdf_mode))
{
compressed = true;
next = pushPipeline(
new Pl_Flate("compress object stream", next,
Pl_Flate::a_deflate));
}
activatePipelineStack();
writeObjectStreamOffsets(offsets, first_obj);
}
int count = 0;
for (std::set<int>::iterator iter =
this->object_stream_to_objects[old_id].begin();
iter != this->object_stream_to_objects[old_id].end();
++iter, ++count)
{
int obj = *iter;
int new_obj = this->obj_renumber[obj];
if (first_obj == -1)
{
first_obj = new_obj;
}
if (this->qdf_mode)
{
writeString("%% Object stream: object " +
QUtil::int_to_string(new_obj) + ", index " +
QUtil::int_to_string(count));
if (! this->suppress_original_object_ids)
{
writeString("; original object ID: " +
QUtil::int_to_string(obj));
}
writeString("\n");
}
if (pass == 1)
{
offsets.push_back(this->pipeline->getCount());
}
writeObject(this->pdf.getObjectByID(obj, 0), count);
this->xref[new_obj] = QPDFXRefEntry(2, new_id, count);
}
// stream_buffer will be initialized only for pass 2
popPipelineStack(&stream_buffer);
}
// Write the object
openObject(new_id);
setDataKey(new_id);
writeString("<<");
writeStringQDF("\n ");
writeString(" /Type /ObjStm");
writeStringQDF("\n ");
unsigned long length = stream_buffer->getSize();
adjustAESStreamLength(length);
writeString(" /Length " + QUtil::int_to_string(length));
writeStringQDF("\n ");
if (compressed)
{
writeString(" /Filter /FlateDecode");
}
writeString(" /N " + QUtil::int_to_string(offsets.size()));
writeStringQDF("\n ");
writeString(" /First " + QUtil::int_to_string(first));
if (! object.isNull())
{
// If the original object has an /Extends key, preserve it.
QPDFObjectHandle dict = object.getDict();
QPDFObjectHandle extends = dict.getKey("/Extends");
if (extends.isIndirect())
{
QTC::TC("qpdf", "QPDFWriter copy Extends");
writeStringQDF("\n ");
writeString(" /Extends ");
unparseChild(extends, 1, f_in_ostream);
}
}
writeStringQDF("\n");
writeStringNoQDF(" ");
writeString(">>\nstream\n");
if (this->encrypted)
{
QTC::TC("qpdf", "QPDFWriter encrypt object stream");
}
pushEncryptionFilter();
writeBuffer(stream_buffer);
popPipelineStack();
writeString("endstream");
this->cur_data_key.clear();
closeObject(new_id);
}
void
QPDFWriter::writeObject(QPDFObjectHandle object, int object_stream_index)
{
int old_id = object.getObjectID();
if ((object_stream_index == -1) &&
(this->object_stream_to_objects.count(old_id)))
{
writeObjectStream(object);
return;
}
int new_id = obj_renumber[old_id];
if (this->qdf_mode)
{
if (this->page_object_to_seq.count(old_id))
{
writeString("%% Page ");
writeString(
QUtil::int_to_string(
this->page_object_to_seq[old_id]));
writeString("\n");
}
if (this->contents_to_page_seq.count(old_id))
{
writeString("%% Contents for page ");
writeString(
QUtil::int_to_string(
this->contents_to_page_seq[old_id]));
writeString("\n");
}
}
if (object_stream_index == -1)
{
if (this->qdf_mode && (! this->suppress_original_object_ids))
{
writeString("%% Original object ID: " +
QUtil::int_to_string(object.getObjectID()) + " " +
QUtil::int_to_string(object.getGeneration()) + "\n");
}
openObject(new_id);
setDataKey(new_id);
unparseObject(object, 0, 0);
this->cur_data_key.clear();
closeObject(new_id);
}
else
{
unparseObject(object, 0, f_in_ostream);
writeString("\n");
}
if ((! this->direct_stream_lengths) && object.isStream())
{
if (this->qdf_mode)
{
if (this->added_newline)
{
writeString("%QDF: ignore_newline\n");
}
}
openObject(new_id + 1);
writeString(QUtil::int_to_string(this->cur_stream_length));
closeObject(new_id + 1);
}
}
void
QPDFWriter::generateID()
{
// Note: we can't call generateID() at the time of construction
// since the caller hasn't yet had a chance to call setStaticID(),
// but we need to generate it before computing encryption
// dictionary parameters. This is why we call this function both
// from setEncryptionParameters() and from write() and return
// immediately if the ID has already been generated.
if (! this->id2.empty())
{
return;
}
QPDFObjectHandle trailer = pdf.getTrailer();
std::string result;
if (this->static_id)
{
// For test suite use only...
static char tmp[] = {0x31, 0x41, 0x59, 0x26,
0x53, 0x58, 0x97, 0x93,
0x23, 0x84, 0x62, 0x64,
0x33, 0x83, 0x27, 0x95,
0x00};
result = tmp;
}
else
{
// The PDF specification has guidelines for creating IDs, but it
// states clearly that the only thing that's really important is
// that it is very likely to be unique. We can't really follow
// the guidelines in the spec exactly because we haven't written
// the file yet. This scheme should be fine though.
std::string seed;
seed += QUtil::int_to_string((int)QUtil::get_current_time());
seed += " QPDF ";
seed += filename;
seed += " ";
if (trailer.hasKey("/Info"))
{
std::set<std::string> keys = trailer.getKeys();
for (std::set<std::string>::iterator iter = keys.begin();
iter != keys.end(); ++iter)
{
QPDFObjectHandle obj = trailer.getKey(*iter);
if (obj.isString())
{
seed += " ";
seed += obj.getStringValue();
}
}
}
MD5 m;
m.encodeString(seed.c_str());
MD5::Digest digest;
m.digest(digest);
result = std::string((char*)digest, sizeof(MD5::Digest));
}
// If /ID already exists, follow the spec: use the original first
// word and generate a new second word. Otherwise, we'll use the
// generated ID for both.
this->id2 = result;
if (trailer.hasKey("/ID"))
{
// Note: keep /ID from old file even if --static-id was given.
this->id1 = trailer.getKey("/ID").getArrayItem(0).getStringValue();
}
else
{
this->id1 = this->id2;
}
}
void
QPDFWriter::initializeSpecialStreams()
{
// Mark all page content streams in case we are filtering or
// normalizing.
std::vector<QPDFObjectHandle> pages = pdf.getAllPages();
int num = 0;
for (std::vector<QPDFObjectHandle>::iterator iter = pages.begin();
iter != pages.end(); ++iter)
{
QPDFObjectHandle& page = *iter;
this->page_object_to_seq[page.getObjectID()] = ++num;
QPDFObjectHandle contents = page.getKey("/Contents");
std::vector<int> contents_objects;
if (contents.isArray())
{
int n = contents.getArrayNItems();
for (int i = 0; i < n; ++i)
{
contents_objects.push_back(
contents.getArrayItem(i).getObjectID());
}
}
else if (contents.isStream())
{
contents_objects.push_back(contents.getObjectID());
}
for (std::vector<int>::iterator iter = contents_objects.begin();
iter != contents_objects.end(); ++iter)
{
this->contents_to_page_seq[*iter] = num;
this->normalized_streams.insert(*iter);
}
}
}
void
QPDFWriter::preserveObjectStreams()
{
this->pdf.getObjectStreamData(this->object_to_object_stream);
}
void
QPDFWriter::generateObjectStreams()
{
// Basic strategy: make a list of objects that can go into an
// object stream. Then figure out how many object streams are
// needed so that we can distribute objects approximately evenly
// without having any object stream exceed 100 members. We don't
// have to worry about linearized files here -- if the file is
// linearized, we take care of excluding things that aren't
// allowed here later.
// This code doesn't do anything with /Extends.
std::vector<int> const& eligible = this->pdf.getCompressibleObjects();
unsigned int n_object_streams = (eligible.size() + 99) / 100;
unsigned int n_per = eligible.size() / n_object_streams;
if (n_per * n_object_streams < eligible.size())
{
++n_per;
}
unsigned int n = 0;
int cur_ostream = 0;
for (std::vector<int>::const_iterator iter = eligible.begin();
iter != eligible.end(); ++iter)
{
if ((n % n_per) == 0)
{
if (n > 0)
{
QTC::TC("qpdf", "QPDFWriter generate >1 ostream");
}
n = 0;
}
if (n == 0)
{
// Construct a new null object as the "original" object
// stream. The rest of the code knows that this means
// we're creating the object stream from scratch.
cur_ostream = this->pdf.makeIndirectObject(
QPDFObjectHandle::newNull()).getObjectID();
}
this->object_to_object_stream[*iter] = cur_ostream;
++n;
}
}
void
QPDFWriter::write()
{
// Do preliminary setup
if (this->linearized)
{
this->qdf_mode = false;
}
if (this->qdf_mode)
{
if (! this->normalize_content_set)
{
this->normalize_content = true;
}
if (! this->stream_data_mode_set)
{
this->stream_data_mode = qpdf_s_uncompress;
}
}
if (this->encrypted)
{
// Encryption has been explicitly set
this->preserve_encryption = false;
}
else if (this->normalize_content ||
(this->stream_data_mode == qpdf_s_uncompress) ||
this->qdf_mode)
{
// Encryption makes looking at contents pretty useless. If
// the user explicitly encrypted though, we still obey that.
this->preserve_encryption = false;
}
if (preserve_encryption)
{
copyEncryptionParameters();
}
if (! this->forced_pdf_version.empty())
{
int major = 0;
int minor = 0;
parseVersion(this->forced_pdf_version, major, minor);
disableIncompatibleEncryption(major, minor);
if (compareVersions(major, minor, 1, 5) < 0)
{
QTC::TC("qpdf", "QPDFWriter forcing object stream disable");
this->object_stream_mode = qpdf_o_disable;
}
}
if (this->qdf_mode || this->normalize_content ||
(this->stream_data_mode == qpdf_s_uncompress))
{
initializeSpecialStreams();
}
if (this->qdf_mode)
{
// Generate indirect stream lengths for qdf mode since fix-qdf
// uses them for storing recomputed stream length data.
// Certain streams such as object streams, xref streams, and
// hint streams always get direct stream lengths.
this->direct_stream_lengths = false;
}
switch (this->object_stream_mode)
{
case qpdf_o_disable:
// no action required
break;
case qpdf_o_preserve:
preserveObjectStreams();
break;
case qpdf_o_generate:
generateObjectStreams();
break;
// no default so gcc will warn for missing case tag
}
if (this->linearized)
{
// Page dictionaries are not allowed to be compressed objects.
std::vector<QPDFObjectHandle> pages = pdf.getAllPages();
for (std::vector<QPDFObjectHandle>::iterator iter = pages.begin();
iter != pages.end(); ++iter)
{
QPDFObjectHandle& page = *iter;
int objid = page.getObjectID();
if (this->object_to_object_stream.count(objid))
{
QTC::TC("qpdf", "QPDFWriter uncompressing page dictionary");
this->object_to_object_stream.erase(objid);
}
}
}
if (this->linearized || this->encrypted)
{
// The document catalog is not allowed to be compressed in
// linearized files either. It also appears that Adobe Reader
// 8.0.0 has a bug that prevents it from being able to handle
// encrypted files with compressed document catalogs, so we
// disable them in that case as well.
int objid = pdf.getRoot().getObjectID();
if (this->object_to_object_stream.count(objid))
{
QTC::TC("qpdf", "QPDFWriter uncompressing root");
this->object_to_object_stream.erase(objid);
}
}
// Generate reverse mapping from object stream to objects
for (std::map<int, int>::iterator iter =
this->object_to_object_stream.begin();
iter != this->object_to_object_stream.end(); ++iter)
{
int obj = (*iter).first;
int stream = (*iter).second;
this->object_stream_to_objects[stream].insert(obj);
this->max_ostream_index =
std::max(this->max_ostream_index,
(int)this->object_stream_to_objects[stream].size() - 1);
}
if (! this->object_stream_to_objects.empty())
{
setMinimumPDFVersion("1.5");
}
generateID();
pdf.trimTrailerForWrite();
pdf.flattenScalarReferences();
if (this->linearized)
{
writeLinearized();
}
else
{
writeStandard();
}
this->pipeline->finish();
if (this->close_file)
{
fclose(this->file);
}
this->file = 0;
}
void
QPDFWriter::enqueuePart(std::vector<QPDFObjectHandle>& part)
{
for (std::vector<QPDFObjectHandle>::iterator iter = part.begin();
iter != part.end(); ++iter)
{
enqueueObject(*iter);
}
}
void
QPDFWriter::writeEncryptionDictionary()
{
this->encryption_dict_objid = openObject(this->encryption_dict_objid);
writeString("<<");
for (std::map<std::string, std::string>::iterator iter =
this->encryption_dictionary.begin();
iter != this->encryption_dictionary.end(); ++iter)
{
writeString(" ");
writeString((*iter).first);
writeString(" ");
writeString((*iter).second);
}
writeString(" >>");
closeObject(this->encryption_dict_objid);
}
void
QPDFWriter::writeHeader()
{
setMinimumPDFVersion(pdf.getPDFVersion());
std::string version = this->min_pdf_version;
if (! this->forced_pdf_version.empty())
{
QTC::TC("qpdf", "QPDFWriter using forced PDF version");
version = this->forced_pdf_version;
}
writeString("%PDF-");
writeString(version);
// This string of binary characters would not be valid UTF-8, so
// it really should be treated as binary.
writeString("\n%<25><><EFBFBD><EFBFBD>\n");
writeStringQDF("%QDF-1.0\n\n");
}
void
QPDFWriter::writeHintStream(int hint_id)
{
PointerHolder<Buffer> hint_buffer;
int S = 0;
int O = 0;
pdf.generateHintStream(
this->xref, this->lengths, this->obj_renumber, hint_buffer, S, O);
openObject(hint_id);
setDataKey(hint_id);
unsigned char* hs = hint_buffer->getBuffer();
unsigned long hlen = hint_buffer->getSize();
writeString("<< /Filter /FlateDecode /S ");
writeString(QUtil::int_to_string(S));
if (O)
{
writeString(" /O ");
writeString(QUtil::int_to_string(O));
}
writeString(" /Length ");
adjustAESStreamLength(hlen);
writeString(QUtil::int_to_string(hlen));
writeString(" >>\nstream\n");
if (this->encrypted)
{
QTC::TC("qpdf", "QPDFWriter encrypted hint stream");
}
pushEncryptionFilter();
writeBuffer(hint_buffer);
popPipelineStack();
if (hs[hlen - 1] != '\n')
{
writeString("\n");
}
writeString("endstream");
closeObject(hint_id);
}
int
QPDFWriter::writeXRefTable(trailer_e which, int first, int last, int size)
{
return writeXRefTable(which, first, last, size, 0, false, 0, 0, 0);
}
int
QPDFWriter::writeXRefTable(trailer_e which, int first, int last, int size,
int prev, bool suppress_offsets,
int hint_id, int hint_offset, int hint_length)
{
writeString("xref\n");
writeString(QUtil::int_to_string(first));
writeString(" ");
writeString(QUtil::int_to_string(last - first + 1));
int space_before_zero = this->pipeline->getCount();
writeString("\n");
for (int i = first; i <= last; ++i)
{
if (i == 0)
{
writeString("0000000000 65535 f \n");
}
else
{
int offset = 0;
if (! suppress_offsets)
{
offset = this->xref[i].getOffset();
if ((hint_id != 0) &&
(i != hint_id) &&
(offset >= hint_offset))
{
offset += hint_length;
}
}
writeString(QUtil::int_to_string(offset, 10));
writeString(" 00000 n \n");
}
}
writeTrailer(which, size, false, prev);
writeString("\n");
return space_before_zero;
}
int
QPDFWriter::writeXRefStream(int objid, int max_id, int max_offset,
trailer_e which, int first, int last, int size)
{
return writeXRefStream(objid, max_id, max_offset,
which, first, last, size, 0, 0, 0, 0, false);
}
int
QPDFWriter::writeXRefStream(int xref_id, int max_id, int max_offset,
trailer_e which, int first, int last, int size,
int prev, int hint_id,
int hint_offset, int hint_length,
bool skip_compression)
{
int xref_offset = this->pipeline->getCount();
int space_before_zero = xref_offset - 1;
// field 1 contains offsets and object stream identifiers
int f1_size = std::max(bytesNeeded(max_offset),
bytesNeeded(max_id));
// field 2 contains object stream indices
int f2_size = bytesNeeded(this->max_ostream_index);
unsigned int esize = 1 + f1_size + f2_size;
// Must store in xref table in advance of writing the actual data
// rather than waiting for openObject to do it.
this->xref[xref_id] = QPDFXRefEntry(1, pipeline->getCount(), 0);
Pipeline* p = pushPipeline(new Pl_Buffer("xref stream"));
bool compressed = false;
if (! ((this->stream_data_mode == qpdf_s_uncompress) || this->qdf_mode))
{
compressed = true;
if (! skip_compression)
{
// Write the stream dictionary for compression but don't
// actually compress. This helps us with computation of
// padding for pass 1 of linearization.
p = pushPipeline(
new Pl_Flate("compress xref", p, Pl_Flate::a_deflate));
}
p = pushPipeline(
new Pl_PNGFilter(
"pngify xref", p, Pl_PNGFilter::a_encode, esize, 0));
}
activatePipelineStack();
for (int i = first; i <= last; ++i)
{
QPDFXRefEntry& e = this->xref[i];
switch (e.getType())
{
case 0:
writeBinary(0, 1);
writeBinary(0, f1_size);
writeBinary(0, f2_size);
break;
case 1:
{
int offset = e.getOffset();
if ((hint_id != 0) &&
(i != hint_id) &&
(offset >= hint_offset))
{
offset += hint_length;
}
writeBinary(1, 1);
writeBinary(offset, f1_size);
writeBinary(0, f2_size);
}
break;
case 2:
writeBinary(2, 1);
writeBinary(e.getObjStreamNumber(), f1_size);
writeBinary(e.getObjStreamIndex(), f2_size);
break;
default:
throw std::logic_error("invalid type writing xref stream");
break;
}
}
PointerHolder<Buffer> xref_data;
popPipelineStack(&xref_data);
openObject(xref_id);
writeString("<<");
writeStringQDF("\n ");
writeString(" /Type /XRef");
writeStringQDF("\n ");
writeString(" /Length " + QUtil::int_to_string(xref_data->getSize()));
if (compressed)
{
writeStringQDF("\n ");
writeString(" /Filter /FlateDecode");
writeStringQDF("\n ");
writeString(" /DecodeParms << /Columns " +
QUtil::int_to_string(esize) + " /Predictor 12 >>");
}
writeStringQDF("\n ");
writeString(" /W [ 1 " +
QUtil::int_to_string(f1_size) + " " +
QUtil::int_to_string(f2_size) + " ]");
if (! ((first == 0) && (last == size - 1)))
{
writeString(" /Index [ " +
QUtil::int_to_string(first) + " " +
QUtil::int_to_string(last - first + 1) + " ]");
}
writeTrailer(which, size, true, prev);
writeString("\nstream\n");
writeBuffer(xref_data);
writeString("\nendstream");
closeObject(xref_id);
return space_before_zero;
}
int
QPDFWriter::calculateXrefStreamPadding(int xref_bytes)
{
// This routine is called right after a linearization first pass
// xref stream has been written without compression. Calculate
// the amount of padding that would be required in the worst case,
// assuming the number of uncompressed bytes remains the same.
// The worst case for zlib is that the output is larger than the
// input by 6 bytes plus 5 bytes per 16K, and then we'll add 10
// extra bytes for number length increases.
return 16 + (5 * ((xref_bytes + 16383) / 16384));
}
void
QPDFWriter::writeLinearized()
{
// Optimize file and enqueue objects in order
bool need_xref_stream = (! this->object_to_object_stream.empty());
pdf.optimize(this->object_to_object_stream);
std::vector<QPDFObjectHandle> part4;
std::vector<QPDFObjectHandle> part6;
std::vector<QPDFObjectHandle> part7;
std::vector<QPDFObjectHandle> part8;
std::vector<QPDFObjectHandle> part9;
pdf.getLinearizedParts(this->object_to_object_stream,
part4, part6, part7, part8, part9);
// Object number sequence:
//
// second half
// second half uncompressed objects
// second half xref stream, if any
// second half compressed objects
// first half
// linearization dictionary
// first half xref stream, if any
// part 4 uncompresesd objects
// encryption dictionary, if any
// hint stream
// part 6 uncompressed objects
// first half compressed objects
//
// Second half objects
int second_half_uncompressed = part7.size() + part8.size() + part9.size();
int second_half_first_obj = 1;
int after_second_half = 1 + second_half_uncompressed;
this->next_objid = after_second_half;
int second_half_xref = 0;
if (need_xref_stream)
{
second_half_xref = this->next_objid++;
}
// Assign numbers to all compressed objects in the second half.
std::vector<QPDFObjectHandle>* vecs2[] = {&part7, &part8, &part9};
for (int i = 0; i < 3; ++i)
{
for (std::vector<QPDFObjectHandle>::iterator iter = (*vecs2[i]).begin();
iter != (*vecs2[i]).end(); ++iter)
{
assignCompressedObjectNumbers((*iter).getObjectID());
}
}
int second_half_end = this->next_objid - 1;
int second_trailer_size = this->next_objid;
// First half objects
int first_half_start = this->next_objid;
int lindict_id = this->next_objid++;
int first_half_xref = 0;
if (need_xref_stream)
{
first_half_xref = this->next_objid++;
}
int part4_first_obj = this->next_objid;
this->next_objid += part4.size();
int after_part4 = this->next_objid;
if (this->encrypted)
{
this->encryption_dict_objid = this->next_objid++;
}
int hint_id = this->next_objid++;
int part6_first_obj = this->next_objid;
this->next_objid += part6.size();
int after_part6 = this->next_objid;
// Assign numbers to all compressed objects in the first half
std::vector<QPDFObjectHandle>* vecs1[] = {&part4, &part6};
for (int i = 0; i < 2; ++i)
{
for (std::vector<QPDFObjectHandle>::iterator iter = (*vecs1[i]).begin();
iter != (*vecs1[i]).end(); ++iter)
{
assignCompressedObjectNumbers((*iter).getObjectID());
}
}
int first_half_end = this->next_objid - 1;
int first_trailer_size = this->next_objid;
int part4_end_marker = part4.back().getObjectID();
int part6_end_marker = part6.back().getObjectID();
int space_before_zero = 0;
int file_size = 0;
int part6_end_offset = 0;
int first_half_max_obj_offset = 0;
int second_xref_offset = 0;
int first_xref_end = 0;
int second_xref_end = 0;
this->next_objid = part4_first_obj;
enqueuePart(part4);
assert(this->next_objid = after_part4);
this->next_objid = part6_first_obj;
enqueuePart(part6);
assert(this->next_objid == after_part6);
this->next_objid = second_half_first_obj;
enqueuePart(part7);
enqueuePart(part8);
enqueuePart(part9);
assert(this->next_objid == after_second_half);
int hint_length = 0;
PointerHolder<Buffer> hint_buffer;
// Write file in two passes. Part numbers refer to PDF spec 1.4.
for (int pass = 1; pass <= 2; ++pass)
{
if (pass == 1)
{
pushDiscardFilter();
}
// Part 1: header
writeHeader();
// Part 2: linearization parameter dictionary. Save enough
// space to write real dictionary. 150 characters is enough
// space if all numerical values in the parameter dictionary
// are 10 digits long plus a few extra characters for safety.
int pos = this->pipeline->getCount();
openObject(lindict_id);
writeString("<<");
if (pass == 2)
{
std::vector<QPDFObjectHandle> const& pages = pdf.getAllPages();
int first_page_object = obj_renumber[pages[0].getObjectID()];
int npages = pages.size();
writeString(" /Linearized 1 /L ");
writeString(QUtil::int_to_string(file_size + hint_length));
// Implementation note 121 states that a space is
// mandatory after this open bracket.
writeString(" /H [ ");
writeString(QUtil::int_to_string(this->xref[hint_id].getOffset()));
writeString(" ");
writeString(QUtil::int_to_string(hint_length));
writeString(" ] /O ");
writeString(QUtil::int_to_string(first_page_object));
writeString(" /E ");
writeString(QUtil::int_to_string(part6_end_offset + hint_length));
writeString(" /N ");
writeString(QUtil::int_to_string(npages));
writeString(" /T ");
writeString(QUtil::int_to_string(space_before_zero + hint_length));
}
writeString(" >>");
closeObject(lindict_id);
static int const pad = 150;
int spaces = (pos + pad - this->pipeline->getCount());
assert(spaces >= 0);
writePad(spaces);
writeString("\n");
// Part 3: first page cross reference table and trailer.
int first_xref_offset = this->pipeline->getCount();
int hint_offset = 0;
if (pass == 2)
{
hint_offset = this->xref[hint_id].getOffset();
}
if (need_xref_stream)
{
// Must pad here too.
if (pass == 1)
{
// Set first_half_max_obj_offset to a value large
// enough to force four bytes to be reserved for each
// file offset. This would provide adequate space for
// the xref stream as long as the last object in page
// 1 starts with in the first 4 GB of the file, which
// is extremely likely. In the second pass, we will
// know the actual value for this, but it's okay if
// it's smaller.
first_half_max_obj_offset = 1 << 25;
}
pos = this->pipeline->getCount();
writeXRefStream(first_half_xref, first_half_end,
first_half_max_obj_offset,
t_lin_first, first_half_start, first_half_end,
first_trailer_size,
hint_length + second_xref_offset,
hint_id, hint_offset, hint_length,
(pass == 1));
int endpos = this->pipeline->getCount();
if (pass == 1)
{
// Pad so we have enough room for the real xref
// stream.
writePad(calculateXrefStreamPadding(endpos - pos));
first_xref_end = this->pipeline->getCount();
}
else
{
// Pad so that the next object starts at the same
// place as in pass 1.
writePad(first_xref_end - endpos);
// A failure of this insertion means we didn't allow
// enough padding for the first pass xref stream.
assert(this->pipeline->getCount() == first_xref_end);
}
writeString("\n");
}
else
{
writeXRefTable(t_lin_first, first_half_start, first_half_end,
first_trailer_size, hint_length + second_xref_offset,
(pass == 1), hint_id, hint_offset, hint_length);
writeString("startxref\n0\n%%EOF\n");
}
// Parts 4 through 9
for (std::list<QPDFObjectHandle>::iterator iter =
this->object_queue.begin();
iter != this->object_queue.end(); ++iter)
{
QPDFObjectHandle cur_object = (*iter);
if (cur_object.getObjectID() == part6_end_marker)
{
first_half_max_obj_offset = this->pipeline->getCount();
}
writeObject(cur_object);
if (cur_object.getObjectID() == part4_end_marker)
{
if (this->encrypted)
{
writeEncryptionDictionary();
}
if (pass == 1)
{
this->xref[hint_id] =
QPDFXRefEntry(1, this->pipeline->getCount(), 0);
}
else
{
// Part 5: hint stream
writeBuffer(hint_buffer);
}
}
if (cur_object.getObjectID() == part6_end_marker)
{
part6_end_offset = this->pipeline->getCount();
}
}
// Part 10: overflow hint stream -- not used
// Part 11: main cross reference table and trailer
second_xref_offset = this->pipeline->getCount();
if (need_xref_stream)
{
pos = this->pipeline->getCount();
space_before_zero =
writeXRefStream(second_half_xref,
second_half_end, second_xref_offset,
t_lin_second, 0, second_half_end,
second_trailer_size,
0, 0, 0, 0, (pass == 1));
int endpos = this->pipeline->getCount();
if (pass == 1)
{
// Pad so we have enough room for the real xref
// stream. See comments for previous xref stream on
// how we calculate the padding.
writePad(calculateXrefStreamPadding(endpos - pos));
writeString("\n");
second_xref_end = this->pipeline->getCount();
}
else
{
// Make the file size the same.
int pos = this->pipeline->getCount();
writePad(second_xref_end + hint_length - 1 - pos);
writeString("\n");
// If this assertion fails, maybe we didn't have
// enough padding above.
assert(this->pipeline->getCount() ==
second_xref_end + hint_length);
}
}
else
{
space_before_zero =
writeXRefTable(t_lin_second, 0, second_half_end,
second_trailer_size);
}
writeString("startxref\n");
writeString(QUtil::int_to_string(first_xref_offset));
writeString("\n%%EOF\n");
if (pass == 1)
{
// Close first pass pipeline
file_size = this->pipeline->getCount();
popPipelineStack();
// Save hint offset since it will be set to zero by
// calling openObject.
int hint_offset = this->xref[hint_id].getOffset();
// Write hint stream to a buffer
pushPipeline(new Pl_Buffer("hint buffer"));
activatePipelineStack();
writeHintStream(hint_id);
popPipelineStack(&hint_buffer);
hint_length = hint_buffer->getSize();
// Restore hint offset
this->xref[hint_id] = QPDFXRefEntry(1, hint_offset, 0);
}
}
}
void
QPDFWriter::writeStandard()
{
// Start writing
writeHeader();
// Put root first on queue.
QPDFObjectHandle trailer = pdf.getTrailer();
enqueueObject(trailer.getKey("/Root"));
// Next place any other objects referenced from the trailer
// dictionary into the queue, handling direct objects recursively.
// Root is already there, so enqueuing it a second time is a
// no-op.
std::set<std::string> keys = trailer.getKeys();
for (std::set<std::string>::iterator iter = keys.begin();
iter != keys.end(); ++iter)
{
enqueueObject(trailer.getKey(*iter));
}
// Now start walking queue, output each object
while (this->object_queue.size())
{
QPDFObjectHandle cur_object = this->object_queue.front();
this->object_queue.pop_front();
writeObject(cur_object);
}
// Write out the encryption dictionary, if any
if (this->encrypted)
{
writeEncryptionDictionary();
}
// Now write out xref. next_objid is now the number of objects.
off_t xref_offset = this->pipeline->getCount();
if (this->object_stream_to_objects.empty())
{
// Write regular cross-reference table
// Write regular cross-reference table
writeXRefTable(t_normal, 0, this->next_objid - 1, this->next_objid);
}
else
{
// Write cross-reference stream.
int xref_id = this->next_objid++;
writeXRefStream(xref_id, xref_id, xref_offset, t_normal,
0, this->next_objid - 1, this->next_objid);
}
writeString("startxref\n");
writeString(QUtil::int_to_string(xref_offset));
writeString("\n%%EOF\n");
}