2
1
mirror of https://github.com/qpdf/qpdf.git synced 2024-12-22 10:58:58 +00:00
qpdf/README-maintainer

731 lines
25 KiB
Plaintext

ROUTINE DEVELOPMENT
**Remember to check pull requests as well as issues in github.**
Default:
cmake -DCMAKE_EXPORT_COMPILE_COMMANDS=1 \
-DMAINTAINER_MODE=1 -DBUILD_STATIC_LIBS=0 \
-DCMAKE_BUILD_TYPE=RelWithDebInfo ..
Debugging:
cmake -DCMAKE_EXPORT_COMPILE_COMMANDS=1 \
-DMAINTAINER_MODE=1 -DBUILD_SHARED_LIBS=0 \
-DCMAKE_BUILD_TYPE=Debug ..
Profiling:
CFLAGS=-pg LDFLAGS=-pg \
cmake -DCMAKE_EXPORT_COMPILE_COMMANDS=1 \
-DMAINTAINER_MODE=1 -DBUILD_SHARED_LIBS=0 \
-DCMAKE_BUILD_TYPE=Debug ..
Then run `gprof gmon.out`. Note that gmon.out is not cumulative.
Memory checks:
CFLAGS="-fsanitize=address -fsanitize=undefined" \
CXXFLAGS="-fsanitize=address -fsanitize=undefined" \
LDFLAGS="-fsanitize=address -fsanitize=undefined" \
CC=clang CXX=clang++ \
cmake -DCMAKE_EXPORT_COMPILE_COMMANDS=1 \
-DMAINTAINER_MODE=1 -DBUILD_SHARED_LIBS=0 \
-DCMAKE_BUILD_TYPE=Debug ..
Windows:
../cmake-win {mingw|msvc} maint
See ./build-scripts for other ways to run the build for different
configurations.
VERSIONS
* The version number on the main branch is whatever the version would
be if the top of the branch were released. If the most recent
release is version a.b.c, then
* If there are any ABI-breaking changes since the last release,
main's version is a+1.0.0
* Else if there is any new public API, main's version is a.b+1.0
* Else if there are any code changes, main's version is a.b.c+1
* Whenever we bump the version number, bump shared library versions as
well.
* Every released major/minor version has an a.b branch which is used
primarily for documentation but could potentially be used to create
a new patch release after main has moved on. We don't do that as a
rule, but there's no reason we couldn't do it if main had unreleased
ABI/API changes that were still in flux and an important bug fix was
needed on the most recent release. In that case, a release can be
cut from a release branch and then either main can be rebased from
there or the changes can be merged back, depending on the amount of
drift.
CHECKING DOCS ON readthedocs
To check docs on readthedocs.io without running all of CI, push to the
doc-check branch. Then visit https://qpdf.readthedocs.io/en/doc-check/
Building docs from pull requests is also enabled.
GOOGLE OSS-FUZZ
* See ../misc/fuzz (not in repo) for unfixed, downloaded fuzz test cases
* qpdf project: https://github.com/google/oss-fuzz/tree/master/projects/qpdf
* Adding new test cases: download the file from oss-fuzz and drop it
in fuzz/qpdf_extra/issue-number.fuzz. When ready to include it, add
to fuzz/CMakeLists.txt. Until ready to use, the file can be stored
anywhere, and the absolute path can be passed to the reproduction
code as described below.
* To test locally, see https://github.com/google/oss-fuzz/tree/master/docs/,
especially new_project_guide.md. Summary:
Clone the oss-fuzz project. From the root directory of the repository:
python3 infra/helper.py build_image --pull qpdf
python3 infra/helper.py build_fuzzers [ --sanitizer memory|undefined|address ] qpdf [path-to-qpdf-source]
python3 infra/helper.py check_build qpdf
python3 infra/helper.py build_fuzzers --sanitizer coverage qpdf
python3 infra/helper.py coverage qpdf
To reproduce a test case, build with the correct sanitizer, then run
python3 infra/helper.py reproduce qpdf <specific-fuzzer> testcase
where fuzzer is the fuzzer used in the crash.
The fuzzer is in build/out/qpdf. It can be run with a directory as
an argument to run against files in a directory. You can use
qpdf_fuzzer -merge=1 cur new >& /dev/null&
to add any files from new into cur if they increase coverage. You
need to do this with the coverage build (the one with
--sanitizer coverage)
* General documentation: http://libfuzzer.info
* Build status: https://oss-fuzz-build-logs.storage.googleapis.com/index.html
* Project status: https://oss-fuzz.com/ (private -- log in with Google account)
* Latest corpus:
gs://qpdf-backup.clusterfuzz-external.appspot.com/corpus/libFuzzer/qpdf_fuzzer/latest.zip
CODING RULES
* Code is formatted with clang-format >= 15. See .clang-format and the
"Code Formatting" section in manual/contributing.rst for details.
See also "CODE FORMATTING" below.
* Use std::to_string instead of QUtil::int_to_string et al
* Use of assert:
* Test code: #include <qpdf/assert_test.h> first.
* Debug code: #include <qpdf/assert_debug.h> first and use
qpdf_assert_debug instead of assert.
These rules are enforced by the check-assert test. This practices
serves to
* remind us that assert in release code disappears and so should only
be used for debugging; when doing so use a Debug build
configuration
* protect us from using assert in test code without explicitly
removing the NDEBUG definition, since that would cause the assert
not to actually be testing anything in non-Debug build
configurations.
* In a source file, include the header file that declares the source
class first followed by a blank line. If a config file is needed
first, put a blank line between that and the header followed by
another blank line. This assures that each header file is included
first at least once, thereby ensuring that it explicitly includes
all the headers it needs, which in turn alleviates lots of header
ordering problems. The blank line ensures that formatters don't
mess this up by resorting the headers.
* Avoid atoi. Use QUtil::string_to_int instead. It does
overflow/underflow checking.
* Avoid certain functions that tend to be macros or create compilation
errors on some platforms. Known cases: strcasecmp, abs. Avoid min
and max. If needed, std::min and std::max are okay to use in C++
code with <algorithm> included.
* Remember to avoid using `operator[]` with `std::string` or
`std::vector`. Instead, use `at()`. See README-hardening.md for
details.
* Use QIntC for type conversions -- see casting policy in docs.
* Remember to imbue ostringstreams with std::locale::classic() before
outputting numbers. This protects against the user's global locale
altering otherwise deterministic values. (See github issue #459.)
One could argue that error messages containing numbers should
respect the user's locale, but I think it's more important for
output to be consistent, since the messages in question are not
really targeted at the end user.
* Use QPDF_DLL on all methods that are to be exported in the shared
library/DLL. Use QPDF_DLL_CLASS for all classes whose type
information is needed. This is important for classes that are used
as exceptions, subclassed, or tested with dynamic_cast across the
the shared object boundary (or "shared library boundary" -- we may
use either term in comments and documentation). In particular,
anything new derived from Pipeline or InputSource should be marked
with QPDF_DLL_CLASS. We shouldn't need to do it for QPDFObjectHelper
or QPDFDocumentHelper subclasses since there's no reason to use
dynamic_cast with those, but doing it anyway may help with some
strange cases for mingw or with some code generators that may
systematically do this for other reasons.
IMPORTANT NOTE ABOUT QPDF_DLL_CLASS: On mingw, the vtable for a
class with some virtual methods and no pure virtual methods seems
often (always?) not to be generated if the destructor is inline or
declared with `= default`. Therefore, for any class that is intended
to be used as a base class and doesn't contain any pure virtual
methods, you must declare the destructor in the header without
`= default` and provide a non-inline implementation in the source
file. Add this comment to the implementation:
// Must be explicit and not inline -- see QPDF_DLL_CLASS in
// README-maintainer
* Put private member variables in std::shared_ptr<Members> for all
public classes. Remember to use QPDF_DLL on ~Members(). Exception:
indirection through std::shared_ptr<Members> is expensive, so don't
do it for classes that are copied a lot, like QPDFObjectHandle and
QPDFObject. It may be possible to declare
std::shared_ptr<Members> m_ph;
Member* m;
with m = m_ph.get(), and then indirect through m in
performance-critical settings, though in 2022, std::shared_ptr is
sufficiently performant that this may not be worth it.
* Traversal of objects is expensive. It's worth adding some complexity
to avoid needless traversals of objects.
* Avoid attaching too much metadata to objects and object handles
since those have to get copied around a lot.
HOW TO ADD A COMMAND-LINE ARGUMENT
Quick reminder:
* Add an entry to the top half of job.yml for the command-line
argument
* Add an entry to the bottom half of job.yml for the job JSON field
* Add documentation for the new option to cli.rst
* Implement the QPDFJob::Config method in QPDFJob_config.cc.
QPDFJob is documented in three places:
* This section provides a quick reminder for how to add a command-line
argument
* generate_auto_job has a detailed explanation about how QPDFJob and
generate_auto_job work together
* The manual ("QPDFJob Design" in qpdf-job.rst) discusses the design
approach, rationale, and evolution of QPDFJob.
Command-line arguments are closely coupled with QPDFJob. To add a new
command-line argument, add the option to the appropriate table in
job.yml. This will automatically declare a method in the private
ArgParser class in QPDFJob_argv.cc which you have to implement. The
implementation should make calls to methods in QPDFJob via its Config
classes. Then, add the same option to either the no-json section of
job.yml if it is to be excluded from the job json structure, or add it
under the json structure to the place where it should appear in the
json structure.
In most cases, adding a new option will automatically declare and call
the appropriate Config method, which you then have to implement. If
you need a manual handler, you have to declare the option as manual in
job.yml and implement the handler yourself, though the automatically
generated code will declare it for you.
The build will fail until the new option is documented in
manual/cli.rst. To do that, create documentation for the option by
adding a ".. qpdf:option::" directive followed by a magic help comment
as described at the top of manual/cli.rst. Put this in the correct
help topic. Help topics roughly correspond with sections in that
chapter and are created using a special ".. help-topic" comment.
Follow the example of other options for style.
When done, the following should happen:
* qpdf --new-option should work as expected
* qpdf --help=--new-option should show the help from the comment in cli.rst
* qpdf --help=topic should list --new-option for the correct topic
* --new-option should appear in the manual
* --new-option should be in the command-line option index in the manual
* A Config method (in Config or one of the other Config classes in
QPDFJob) should exist that corresponds to the command-line flag
* The job JSON file should have a new key in the schema corresponding
to the new option
RELEASE PREPARATION
* Each year, update copyright notices. This will find all relevant
places (assuming current copyright is from last year):
git --no-pager grep -i -n -P "copyright.*$(expr $(date +%Y) - 1).*berkenbilt"
Also update the copyright in these places:
* debian package -- search for copyright.*berkenbilt in debian/copyright
* qtest-driver, TestDriver.pm in qtest source
Copyright last updated: 2023.
* Take a look at "External Libraries" in TODO to see if we need to
make any changes. There is still some automation work left to do, so
handling external-libs releases is still manual. See also
README-maintainer in external-libs.
* Check for open fuzz crashes at https://oss-fuzz.com
* Check all open issues and pull requests in github and the
sourceforge trackers. See ~/scripts/github-issues. Don't forget pull
requests. Note: If the location for reporting issues changes, do a
careful check of documentation and code to make sure any comments
that include the issue creation URL are updated.
* Check `TODO` file to make sure all planned items for the release are
done or retargeted.
* Check work `qpdf` project for private issues
* Make sure the code is formatted.
./format-code
* Run a spelling checker over the source code to catch errors in
variable names, strings, and comments.
./spell-check
This uses cspell. Install with `npm install -g cspell`. The output
of cspell is suitable for use with `M-x grep` in emacs. Add
exceptions to cSpell.json.
* If needed, run large file and image comparison tests by setting
these environment variables:
QPDF_LARGE_FILE_TEST_PATH=/full/path
QPDF_TEST_COMPARE_IMAGES=1
For Windows, use a Windows style path, not an MSYS path for large files.
* If any interfaces were added or changed, check C API to see whether
changes are appropriate there as well. If necessary, review the
casting policy in the manual, and ensure that integer types are
properly handled with QIntC or the appropriate cast. Remember to
ensure that any exceptions thrown by the library are caught and
converted. See `trap_errors` in qpdf-c.cc.
* Double check versions and shared library details. They should
already be up to date in the code.
* Make sure version numbers are consistent in the following locations:
* CMakeLists.txt
* include/qpdf/DLL.h
* manual/conf.py
`make_dist` verifies this consistency.
* Update release notes in manual. Look at diffs and ChangeLog.
Update release date in `manual/release-notes.rst`. Change "not yet
released" to an actual date for the release.
* Add a release entry to ChangeLog: "x.y.z: release"
* Commit changes with title "Prepare x.y.z release"
* Performance test is included with binary compatibility steps. Even
if releasing a new major release and not doing binary compatibility
testing, do performance testing.
* Test for performance and binary compatibility:
./abi-perf-test v<old> @
Prefix with SKIP_PERF=1 to skip performance test.
Prefix with SKIP_TESTS=1 to skip test suite run.
See "ABI checks" for details about the process.
End state:
* /tmp/check-abi/perf contains the performance comparison
* /tmp/check-abi/old contains old sizes and library
* /tmp/check-abi/new contains new sizes and library
* run check_abi manually to compare
* Run package tests:
(Note: can't use DESTDIR because pkg-config won't know about it.)
\rm -rf /tmp/inst build.tmp
cmake -S . -B build.tmp \
-DCMAKE_BUILD_TYPE=RelWithDebInfo -DCMAKE_INSTALL_PREFIX=/tmp/inst
cmake --build build.tmp -j$(nproc)
cmake --install build.tmp
env PKG_CONFIG_PATH=/tmp/inst/lib/pkgconfig \
LD_LIBRARY_PATH=/tmp/inst/lib \
CMAKE_PREFIX_PATH=/tmp/inst \
./pkg-test/run-all
CREATING A RELEASE
* Push to main. This will create an artifact called distribution
which will contain all the distribution files. Download these,
verify the checksums from the job output, rename to remove -ci from
the names, and extract to the release archive area.
* Sign the source distribution:
version=x.y.z
gpg --detach-sign --armor qpdf-$version.tar.gz
* Build and test the debian package. This includes running autopkgtest.
* Add a calendar reminder to check the status of the debian package to
make sure it is transitioning properly and to resolve any issues.
* From the release archive area, sign the releases.
\rm -f *.sha256
files=(*)
sha256sum ${files[*]} >| qpdf-$version.sha256
gpg --clearsign --armor qpdf-$version.sha256
mv qpdf-$version.sha256.asc qpdf-$version.sha256
chmod 444 *
chmod 555 *.AppImage
* When creating releases on github and sourceforge, remember to copy
`README-what-to-download.md` separately onto the download area if
needed.
* Ensure that the main branch has been pushed to github. The
rev-parse command below should show the same commit hash for all its
arguments. Create and push a signed tag. This should be run with
HEAD pointing to the tip of main.
git rev-parse qpdf/main @
git tag -s v$version @ -m"qpdf $version"
git push qpdf v$version
* Update documentation branches
git push qpdf @:$(echo $version | sed -E 's/\.[^\.]+$//')
git push qpdf @:stable
* If this is an x.y.0 release, visit
https://readthedocs.org/projects/qpdf/versions/ (log in with
github), and activate the latest major/minor version
* Create a github release after pushing the tag. `gcurl` is an alias
that includes the auth token.
# Create release
GITHUB_TOKEN=$(qdata-show cred github-token)
function gcurl() { curl -H "Authorization: token $GITHUB_TOKEN" ${1+"$@"}; }
url=$(gcurl -s -XPOST https://api.github.com/repos/qpdf/qpdf/releases -d'{"tag_name": "v'$version'", "name": "qpdf '$version'", "draft": true}' | jq -r '.url')
# Get upload url
upload_url=$(gcurl -s $url | jq -r '.upload_url' | sed -E -e 's/\{.*\}//')
echo $upload_url
# Upload all the files. You can add a label attribute too, which
# overrides the name.
for i in *; do
mime=$(file -b --mime-type $i)
gcurl -H "Content-Type: $mime" --data-binary @$i "$upload_url?name=$i"
done
If needed, go onto github and make any manual updates such as
indicating a pre-release, adding release notes, etc.
Template for release notes:
```
This is qpdf version x.y.z. (Brief description)
For a full list of changes from previous releases, please see the [release notes](https://qpdf.readthedocs.io/en/stable/release-notes.html). See also [README-what-to-download](./README-what-to-download.md) for details about the available source and binary distributions.
```
# Publish release
gcurl -XPOST $url -d'{"draft": false}'
* Upload files to sourceforge.
rsync -vrlcO ./ jay_berkenbilt,qpdf@frs.sourceforge.net:/home/frs/project/q/qp/qpdf/qpdf/$version/
* On sourceforge, make the source package the default for all but
Windows, and make the 64-bit msvc build the default for Windows.
* Publish a news item manually on sourceforge.
* Upload the debian package and Ubuntu ppa backports.
* Email the qpdf-announce list.
RUNNING pikepdf's TEST SUITE
We run pikepdf's test suite from CI. These instructions show how to do
it manually.
Do this in a separate shell.
cd ...qpdf-source-tree...
export QPDF_SOURCE_TREE=$PWD
export QPDF_BUILD_LIBDIR=$QPDF_SOURCE_TREE/build/libqpdf
export LD_LIBRARY_PATH=$QPDF_BUILD_LIBDIR
rm -rf /tmp/z
mkdir /tmp/z
cd /tmp/z
git clone git@github.com:pikepdf/pikepdf
python3 -m venv v
source v/bin/activate
cd pikepdf
python3 -m pip install --upgrade pip
python3 -m pip install '.[test]'
rehash
python3 -m pip install .
pytest -n auto
If there are failures, use git bisect to figure out where the failure
was introduced. For example, set up a work area like this:
rm -rf /tmp/z
mkdir /tmp/z
cd /tmp/z
git clone file://$HOME/source/qpdf/qpdf/.git qpdf
git clone git@github.com:pikepdf/pikepdf
export QPDF_SOURCE_TREE=/tmp/z/qpdf
export QPDF_BUILD_LIBDIR=$QPDF_SOURCE_TREE/build/libqpdf
export LD_LIBRARY_PATH=$QPDF_BUILD_LIBDIR
cd qpdf
mkdir build
cmake -B build -DCMAKE_EXPORT_COMPILE_COMMANDS=1 \
-DMAINTAINER_MODE=1 -DBUILD_STATIC_LIBS=0 \
-DCMAKE_BUILD_TYPE=RelWithDebInfo
cat <<'EOF'
#!/bin/bash
cd /tmp/z/pikepdf
cmake --build /tmp/z/qpdf/build -j16 --target libqpdf -- -k
git clean -dfx
rm -rf ../v
python3 -m venv ../v
source ../v/bin/activate
python3 -m pip install --upgrade pip
python3 -m pip install '.[test]'
python3 -m pip install .
pytest -n auto
EOF
chmod +x /tmp/check
Then in /tmp/z/qpdf, run git bisect. Use /tmp/check at each stage to
test whether it's a good or bad commit.
OTHER NOTES
For local iteration on the AppImage generation, it works to just
./build-scripts/build-appimage and get the resulting AppImage from the
distribution directory. You can pass additional arguments to
build-appimage, which passes them along to to docker.
Use -e SKIP_TESTS=1 to skip the test suite.
Use -ti -e RUN_SHELL=1 to run a shell instead of the build script.
To iterate on the scripts directly in the source tree, you can run
docker build -t qpdfbuild appimage
docker run --privileged --rm -ti -e SKIP_TESTS=1 -e RUN_SHELL=1 \
-v $PWD/..:/tmp/build ${1+"$@"} qpdfbuild
This will put you at a shell prompt inside the container with your
current directory set to the top of the source tree and your uid equal
to the owner of the parent directory source tree.
Note: this will leave some extra files (like .bash_history) in the
parent directory of the source tree. You will want to clean those up.
DEPRECATION
This is a reminder of how to use and test deprecation.
To temporarily disable deprecation warnings for testing:
#ifdef _MSC_VER
# pragma warning(disable : 4996)
#endif
#if (defined(__GNUC__) || defined(__clang__))
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wdeprecated-declarations"
#endif
// Do deprecated thing here
#if (defined(__GNUC__) || defined(__clang__))
# pragma GCC diagnostic pop
#endif
To declare something as deprecated:
[[deprecated("explanation")]]
LOCAL WINDOWS TESTING PROCEDURE
This is what I do for routine testing on Windows.
* From Windows, git clone from my Linux clone, and unzip
`external-libs`.
* Start a command-line shell for x86_64 and x86 tools from Visual
studio. From there, start C:\msys64\mingw64 twice and
C:\msys64\mingw32 twice.
* Create a build directory for each of the four permutations. Then, in
each build directory, run `../cmake-win <tool> maint`.
* Run `cmake --build . -j4`. For MSVC, add `--config Release`
* Test with with msvc: `ctest --verbose -C Release`
* Test with mingw: `ctest --verbose -C RelWithDebInfo`
DOCS ON readthedocs.org
* Registered for an account at readthedocs.org with my github account
* Project page: https://readthedocs.org/projects/qpdf/
* Docs: https://qpdf.readthedocs.io/
* Admin -> Settings
* Set project home page
* Advanced
* Show version warning
* Default version: stable
* Email Notifications: set email address for build failures
At this time, there is nothing in .github/workflows to support this.
It's all set up as an integration directly between github and
readthedocs.
The way readthedocs.org does stable and versions doesn't exactly work
for qpdf. My tagging convention is different from what they expect,
and I don't need versions for every point release. I have the
following branching strategy to support docs:
* x.y -- points to the latest x.y.z release
* stable -- points to the latest release
The release process includes updating the approach branches and
activating versions.
CMAKE notes
To verify the various cmake options and their interactions, several
manual tests were done:
* Break installed qpdf executables (qpdf, fix-qdf, zlib-flate), the
shared library, and DLL.h to ensure that other qpdf installations do
not interfere with building from source
* Build static only and shared only
* Install separate components separately
* Build only HTML docs and only PDF docs
* Try MAINTAINER_MODE without BUILD_DOC
We are using RelWithDebInfo for mingw and other non-Windows builds but
Release for MSVC. There are linker warnings if MSVC is built with
RelWithDebInfo when using external-libs.
ABI checks
Until the conversion of the build to cmake, we relied on running the
test suite with old executables and a new library. When QPDFJob was
introduced, this method got much less reliable since a lot of public
API doesn't cross the shared library boundary. Also, when switching to
cmake, we wanted a stronger check that the library had the expected
ABI.
Our ABI check now consists of three parts:
* The same check as before: run the test suite with old executables
and a new library
* Do a literal comparison of the symbols in the old and new shared
libraries -- this is a strong test of ABI change
* Do a check to ensure that object sizes didn't change -- even with no
changes to the API of exported functions, size changes break API
The combination of these checks is pretty strong, though there are
still things that could potentially break ABI, such as
* Changes to the types of public or protected data members without
changing the size
* Changes to the meanings of parameters with changing the signature
Not breaking ABI/API still requires care.
The check_abi script is responsible for performing many of these
steps. See comments in check_abi for additional notes. Running
"check_abi check-sizes" is run by ctest on Linux when CHECK_SIZES is
on.
CODE FORMATTING
* Emacs doesn't indent breaking strings concatenated with + over
lines but clang-format does. It's clearer with clang-format. To
get emacs and clang-format to agree, parenthesize the expression
that builds the concatenated string.
* With
long_function(long_function(
args)
clang-format anchors relative to the first function, and emacs
anchors relative to the second function. Use
long_function(
// line-break
long_function(
args)
to resolve.
In the revision control history, there is a commit around April 3,
2022 with the title "Update some code manually to get better
formatting results" that shows several examples of changing code so
that clang-format produces several results. (In git this is commit
77e889495f7c513ba8677df5fe662f08053709eb.)
The commit that has the bulk of the automatic reformatting is
12f1eb15ca3fed6310402847559a7c99d3c77847. This could go in a
blame.ignoreRevsFile file for `git blame` if needed.