This removes code that is only used within a backend implementation from
the backend package. The latter now only contains code that also has
external users.
Conceptually the backend configuration should be validated when creating
or opening the backend, but not when filling in information from
environment variables into the configuration.
This unified construction removes most backend-specific code from
global.go. The backend registry will also enable integration tests to
use custom backends if necessary.
In order to change the backend initialization in `global.go` to be able
to generically call cfg.ApplyEnvironment() for supported backends, the
`interface{}` returned by `ParseConfig` must contain a pointer to the
configuration.
An alternative would be to use reflection to convert the type from
`interface{}(Config)` to `interface{}(*Config)` (from value to pointer
type). However, this would just complicate the type mess further.
The SemaphoreBackend now uniformly enforces the limit of concurrent
backend operations. In addition, it unifies the parameter validation.
The List() methods no longer uses a semaphore. Restic already never runs
multiple list operations in parallel.
By managing the semaphore in a wrapper backend, the sections that hold a
semaphore token grow slightly. However, the main bottleneck is IO, so
this shouldn't make much of a difference.
The key insight that enables the SemaphoreBackend is that all of the
complex semaphore handling in `openReader()` still happens within the
original call to `Load()`. Thus, getting and releasing the semaphore
tokens can be refactored to happen directly in `Load()`. This eliminates
the need for wrapping the reader in `openReader()` to release the token.
The Test method was only used in exactly one place, namely when trying
to create a new repository it was used to check whether a config file
already exists.
Use a combination of Stat() and IsNotExist() instead.
... called backend/sema. I resisted the temptation to call the main
type sema.Phore. Also, semaphores are now passed by value to skip a
level of indirection when using them.
For files below 256MB this uses the md5 hash calculated while assembling
the pack file. For larger files the hash for each 100MB part is
calculated on the fly. That hash is also reused as temporary filename.
As restic only uploads encrypted data which includes among others a
random initialization vector, the file hash shouldn't be susceptible to
md5 collision attacks (even though the algorithm is broken).
This enables the backends to request the calculation of a
backend-specific hash. For the currently supported backends this will
always be MD5. The hash calculation happens as early as possible, for
pack files this is during assembly of the pack file. That way the hash
would even capture corruptions of the temporary pack file on disk.
The azureAdapter was used directly without a pointer, but the Len()
method was only defined with a pointer receiver (which means Len() is
not present on a azureAdapter{}, only on a pointer to it).