The Test method was only used in exactly one place, namely when trying
to create a new repository it was used to check whether a config file
already exists.
Use a combination of Stat() and IsNotExist() instead.
Since #3940 the rclone backend returns the commands exit code if it
fails to start. The list of expected errors was missing the "file
already closed"-error which can occur if the http test request first
learns about the closed pipe to rclone before noticing the canceled
context.
Go internally makes sure that a file descriptor is unusable once it was
closed, thus this cannot have unintended side effects (like accidentally
reading from the wrong file due to a reused file descriptor).
The ioutil functions are deprecated since Go 1.17 and only wrap another
library function. Thus directly call the underlying function.
This commit only mechanically replaces the function calls.
Without comma-ok, the runtime inserts the same check with a similar
enough panic message:
interface conversion: interface {} is nil, not *syscall.Stat_t
The new genericized LRU cache no longer needs to have the IDs separately
allocated:
name old time/op new time/op delta
Add-8 494ns ± 2% 388ns ± 2% -21.46% (p=0.000 n=10+9)
name old alloc/op new alloc/op delta
Add-8 176B ± 0% 152B ± 0% -13.64% (p=0.000 n=10+10)
name old allocs/op new allocs/op delta
Add-8 5.00 ± 0% 3.00 ± 0% -40.00% (p=0.000 n=10+10)
Hard links to the same file now get the same inode within the FUSE
mount. Also, inode generation is faster and, more importantly, no longer
allocates.
Benchmarked on Linux/amd64. Old means the benchmark with
sink = fs.GenerateDynamicInode(1, sub.node.Name)
instead of calling inodeFromNode. Results:
name old time/op new time/op delta
Inode/no_hard_links-8 137ns ± 4% 34ns ± 1% -75.20% (p=0.000 n=10+10)
Inode/hard_link-8 33.6ns ± 1% 9.5ns ± 0% -71.82% (p=0.000 n=9+8)
name old alloc/op new alloc/op delta
Inode/no_hard_links-8 48.0B ± 0% 0.0B -100.00% (p=0.000 n=10+10)
Inode/hard_link-8 0.00B 0.00B ~ (all equal)
name old allocs/op new allocs/op delta
Inode/no_hard_links-8 1.00 ± 0% 0.00 -100.00% (p=0.000 n=10+10)
Inode/hard_link-8 0.00 0.00 ~ (all equal)
In principle, the JSON format of Tree objects is extensible without
requiring a format change. In order to not loose information just play
it safe and reject rewriting trees for which we could loose data.
The lock test creates a lock and checks that it is not stale. However,
it is possible that the lock is refreshed concurrently, which updates
the lock timestamp. Checking the timestamp in `Stale()` without
synchronization results in a data race. Thus add a lock to prevent
concurrent accesses.
The lock test creates a lock and checks that it is not stale. This also
tests whether the corresponding process still exists. However, it is
possible that the lock is refreshed concurrently, which updates the lock
timestamp. Calling `processExists()` with a value receiver, however,
creates an unsynchronized copy of this field. Thus call the method using
a pointer receiver.
In some rare cases files could be created which contain null IDs (all
zero) in their content list. This was caused by a race condition between
growing the `Content` slice and inserting the blob IDs into it. In some
cases the blob ID was written to the old slice, which a short time
afterwards was replaced with a larger copy, that did not yet contain the
blob ID.
We previously checked whether the set of snapshots might have changed
based only on their number, which fails when as many snapshots are
forgotten as are added. Check for the SHA-256 of their id's instead.
The status bar got stuck once the first error was reported, the scanner
completed or some file was backed up. Either case sets a flag that the
scanner has started.
This flag is used to hide the progress bar until the flag is set. Due to
an inverted condition, the opposite happened and the status stopped
refreshing once the flag was set.
In addition, the scannerStarted flag was not set when the scanner just
reported progress information.
As the FileSaver is asynchronously waiting for all blobs of a file to be
stored, the number of active files is higher than the number of files
from which restic is reading concurrently. Thus to not confuse users,
only display files in the status from which restic is currently reading.
After reading and chunking all data in a file, the FutureFile still has
to wait until the FutureBlobs are completed. This was done synchronously
which results in blocking the file saver and prevents the next file from
being read.
By replacing the FutureBlob with a callback, it becomes possible to
complete the FutureFile asynchronously.