Conceptually the backend configuration should be validated when creating
or opening the backend, but not when filling in information from
environment variables into the configuration.
This unified construction removes most backend-specific code from
global.go. The backend registry will also enable integration tests to
use custom backends if necessary.
In order to change the backend initialization in `global.go` to be able
to generically call cfg.ApplyEnvironment() for supported backends, the
`interface{}` returned by `ParseConfig` must contain a pointer to the
configuration.
An alternative would be to use reflection to convert the type from
`interface{}(Config)` to `interface{}(*Config)` (from value to pointer
type). However, this would just complicate the type mess further.
As the `Fatal` error type only includes a string, it becomes impossible
to inspect the contained error. This is for a example a problem for the
fuse implementation, which must be able to detect context.Canceled
errors.
Co-authored-by: greatroar <61184462+greatroar@users.noreply.github.com>
The SemaphoreBackend now uniformly enforces the limit of concurrent
backend operations. In addition, it unifies the parameter validation.
The List() methods no longer uses a semaphore. Restic already never runs
multiple list operations in parallel.
By managing the semaphore in a wrapper backend, the sections that hold a
semaphore token grow slightly. However, the main bottleneck is IO, so
this shouldn't make much of a difference.
The key insight that enables the SemaphoreBackend is that all of the
complex semaphore handling in `openReader()` still happens within the
original call to `Load()`. Thus, getting and releasing the semaphore
tokens can be refactored to happen directly in `Load()`. This eliminates
the need for wrapping the reader in `openReader()` to release the token.
The output is now
```
-v, --verbose be verbose (specify multiple times or a level using --verbose=n, max level/times is 2)
```
instead of
```
-v, --verbose n be verbose (specify multiple times or a level using --verbose=n, max level/times is 2)
```
Fixes restic#719
If the option is passed, restic will wait the specified duration of time
and retry locking the repo every 10 seconds (or more often if the total
timeout is relatively small).
- Play nice with json output
- Reduce wait time in lock tests
- Rework timeout last attempt
- Reduce test wait time to 0.1s
- Use exponential back off for the retry lock
- Don't pass gopts to lockRepo functions
- Use global variable for retry sleep setup
- Exit retry lock on cancel
- Better wording for flag help
- Reorder debug statement
- Refactor tests
- Lower max sleep time to 1m
- Test that we cancel/timeout in time
- Use non blocking sleep function
- Refactor into minDuration func
Co-authored-by: Julian Brost <julian@0x4a42.net>
The output is now
```
-v, --verbose be verbose (specify multiple times or a level using --verbose=n, max level/times is 2)
```
instead of
```
-v, --verbose n be verbose (specify multiple times or a level using --verbose=n, max level/times is 2)
```
The maximum for `--verbose=n` is n=2. Internally it is translated into a
scale from 0 to 3. However, the default (without verbose) is 1, thus the
verbosity level can only be increased two times.
Commands should use the normal shutdown path. In addition, the Exitf
function was only used by `dump` and `restore` but not any other command
which introduces the risk of inconsistent behavior.
The RetryBackend tests depend on the mock backend. When the Backend
interface is eventually split from the restic package, this will lead to
a dependency cycle between backend and backend/mock. Thus split the
RetryBackend into a separate package to avoid this problem.
Previously the global context was either accessed via gopts.ctx,
stored in a local variable and then used within that function or
sometimes both. This makes it very hard to follow which ctx or a wrapped
version of it reaches which method.
Thus just drop the context from the globalOptions struct and pass it
explicitly to every command line handler method.