Use runtime.GOMAXPROCS(0) as worker count for CPU-bound tasks,
repo.Connections() for IO-bound task and a combination if a task can be
both. Streaming packs is treated as IO-bound as adding more worker
cannot provide a speedup.
Typical IO-bound tasks are download / uploading / deleting files.
Decoding / Encoding / Verifying are usually CPU-bound. Several tasks are
a combination of both, e.g. for combined download and decode functions.
In the latter case add both limits together. As the backends have their
own concurrency limits restic still won't download more than
repo.Connections() files in parallel, but the additional workers can
decode already downloaded data in parallel.
Previously, SaveAndEncrypt would assemble blobs into packs and either
return immediately if the pack is not yet full or upload the pack file
otherwise. The upload will block the current goroutine until it
finishes.
Now, the upload is done using separate goroutines. This requires changes
to the error handling. As uploads are no longer tied to a SaveAndEncrypt
call, failed uploads are signaled using an errgroup.
To count the uploaded amount of data, the pack header overhead is no
longer returned by `packer.Finalize` but rather by
`packer.HeaderOverhead`. This helper method is necessary to continue
returning the pack header overhead directly to the responsible call to
`repository.SaveBlob`. Without the method this would not be possible,
as packs are finalized asynchronously.
raw-data summed up the size of the blob plaintexts. However, with
compression this makes little sense as the storage size in the
repository is lower due to compression. Thus sum up the actual size each
blob takes in the repository.
The GlobalOptions struct now embeds a backend.TransportOptions, so it
doesn't need to construct one in open and create. The upload and
download limits are similarly now a struct in internal/limiter that is
embedded in GlobalOptions.
There were three loops over the index in restic prune, to find
duplicates, to determine sizes (in pack.Size) and to generate packInfos.
These three are now one loop. This way, prune doesn't need to construct
a set of duplicate blobs, pack.Size doesn't need to contain special
logic for prune's use case (the onlyHdr argument) and pack.Size doesn't
need to construct a map only to have it immediately transformed into a
different map.
Some quick testing on a 160GiB local repo doesn't show running time or
memory use of restic prune --dry-run changing significantly.
github.com/pkg/errors is no longer getting updates, because Go 1.13
went with the more flexible errors.{As,Is} function. Use those instead:
errors from pkg/errors already support the Unwrap interface used by 1.13
error handling. Also:
* check for io.EOF with a straight ==. That value should not be wrapped,
and the chunker (whose error is checked in the cases changed) does not
wrap it.
* Give custom Error methods pointer receivers, so there's no ambiguity
when type-switching since the value type will no longer implement error.
* Make restic.ErrAlreadyLocked private, and rename it to
alreadyLockedError to match the stdlib convention that error type
names end in Error.
* Same with rest.ErrIsNotExist => rest.notExistError.
* Make s3.Backend.IsAccessDenied a private function.
Tree packs are cached locally at clients and thus benefit a lot from
being compressed. Ensure this be having prune always repack pack files
containing uncompressed trees.
The `stats` command checks inodes to not count hardlinked files multiple
times into the restore size. This check applies across all snapshots and
not only within snapshots. As a result the result size was far too low
when calculating it for multiple snapshots and it would vary depending
on the order in which snapshots were listed.
The new option allows prune to operate with nearly no scratch space by only removing
no longer necessary pack files and first deleting the index before
rebuilding it. By first deleting the index it becomes safe to just
delete no longer necessary pack files. However, as a downside there's
now the risk that the repository becomes inaccessible if prune fails.
To recover from that problem a user might have to manually delete the
repository index and then run (a full) `rebuild-index` again.
A compressed index is only about one third the size of an uncompressed
one. Thus increase the number of entries in an index to avoid cluttering
the repository with small indexes.
As an exception prune is still allowed to load the index before
snapshots, as it uses exclusive locks. In case of problems with locking
it is also better to load snapshots created after loading the index, as
this will lead to a prune sanity check failure instead of a broken snapshot.
When resolving snapshotIDs in FindFilteredSnapshots either
FindLatestSnapshot or FindSnapshot is called. Both operations issue a
list operation to the backend. When for example passing a long list of
snapshot ids to `forget` this could lead to a large number of list
operations.
These commands filter the snapshots according to some criteria which
essentially requires loading the index before filtering the snapshots.
Thus create a copy of the snapshots list beforehand and use it later on.
During a backup the index is written before the corresponding snapshots.
To ensure that a concurrent/later restic run can read a snapshot's data,
restic thus must first load the snapshots and only afterwards the index.
Otherwise it is not possible to ensure that the loaded index is recent
enough to cover all of the snapshot's data.
Nodes in trees were always printed with a `+` in diff, regardless of
whether or not a dir was added or removed. Let's use the mode we were
passed in printDir().
Closes #3685
The repack operation copies all selected blobs from a set of pack files
into new pack files. For prune the source and destination repositories
are identical. To implement copy, just use a different source and
destination repository.
Removing data based on a policy when the attacker had the opportunity to
add data to your repository comes with some considerations. This is
added to the 060_forget.rst documentation.
That document is also updated to reflect that restic now considers
the current system time while running "forget".
References to the security considerations section are added:
- In `restic forget --help`
- In the threat model (design.rst)
- In the (030) setup section where an append-only setup is referenced
A reference is also to be added to the `rest-server` readme's
append-only paragraph (see my fork).
This commit also resolves a typo (amount->number for countable noun),
changes a password length recommendation into the metric that
actually matters when creating passwords (entropy) since I was editing
these doc files anyway, and updates the outdated copyright year in
`conf.py`.
Some wording in 060_forget (line 21..22) was changed to clarify what
"forget" and "prune" do, to try and avoid the apparent misconception
that "forget" does not remove any data.
There's no point in locking the repository just to list the currently
existing lock files. This won't work for an exclusively locked
repository and is also confusing to users.
Loading any parent tree for these only wastes time and memory.
Fixes #3641, where it was shown that the most recent tree will get
picked.
--parent is now implicitly ignored when --stdin is given.
cleanup handlers run in the order in which they are added. As Go calls
init() functions in lexical order, the cleanup handler from global.go
was registered before that from lock.go, which is the correct order.
Make this order explicit to ensure that this won't break accidentally.
Currently, `restic backup` (if a `--parent` is not provided)
will choose the most recent matching snapshot as the parent snapshot.
This makes sense in the usual case,
where we tag the snapshot-being-created with the current time.
However, this doesn't make sense if the user has passed `--time`
and is currently creating a snapshot older than the latest snapshot.
Instead, choose the most recent snapshot
which is not newer than the snapshot-being-created's timestamp,
to avoid any time travel.
Impetus for this change:
I'm using restic for the first time!
I have a number of existing BTRFS snapshots
I am backing up via restic to serve as my initial set of backups.
I initially `restic backup`'d the most recent snapshot to test,
then started backing up each of the other snapshots.
I noticed in `restic cat snapshot <id>` output
that all the remaining snapshots have the most recent as the parent.
Currently restic copy will copy each blob from every snapshot serially,
which has performance implications on high-latency backends such as b2.
This commit introduces 8x parallelism for blob downloads/uploads which
can improve restic copy operations up to 8x for repositories with many
small blobs on b2.
This commit also addresses the TODO comment in the copyTree function.
Related work:
A more thorough improvement of the restic copy performance can be found
in PR #3513
Closes #3595
Choosing to include `stdoutIsTerminal()` as:
- all other instances with `!opts.JSON` do so
- this likely will not affect anything, especially when autorun
- this seems to not be a meaningful enough summary
to include in auto-backup reports
JSON is still likely not guaranteed to work and this is a suboptimal
solution to this. Ideally, #1804 should refactor all print statements,
and define+document(+handle) when stdoutIsTerminal() should be used.
Else, it may end up more inconsistent and bulky
(duplicate lines, longer files).