We always need both values, except in a test, so we don't need to lock
twice and risk scheduling in between.
Also, removed the resetting in Done. This copied a mutex, which isn't
allowed. Static analyzers tend to trip over that.
As long as only a small fraction of the data in a repository is
rewritten, the keepBlobs set will be rather small after cleaning it up.
As golang maps do not shrink their memory usage, just copy the contents
over to a new map. However, only copy the map if the cleanup removed at
least half the entries.
The set covers necessary, existing and duplicate blobs. This removes the
duplicate sets used to track whether all necessary blobs also exist.
This reduces the memory usage of prune by about 20-30%.
The string form was presumably useful before the introduction of
layouts, but right now it just makes call sequences and garbage
collection more expensive (the latter because every string contains
a pointer to be scanned).
if x { return true } return false => return x
fmt.Sprintf("%v", x) => fmt.Sprint(x) or x.String()
The fmt.Sprintf idiom is still used in the SecretString tests, where it
serves security hardening.
ID.UnmarshalJSON accepted non-JSON input with ' as the string delimiter.
Also, the error message for non-hex input was less informative than it
could be and it performed too many checks.
Changed ParseID to keep the error messages consistent.
FindFilteredSnapshots no longer prints errors during snapshot loading on
stderr, but instead passes the error to the callback to allow the caller
to decide on what to do.
In addition, it moves the logic to handle an explicit snapshot list from
the main package to restic.
The helper function uidGidInt used strconv.ParseInt instead of
ParseUint, so it silently ignored some invalid user/group IDs.
Also, improve the error message. "Invalid UID" is more informative than
having "ParseInt" twice (*strconv.NumError displays the function name).
Finally, the user.User struct can be passed by pointer to get reduce
code size.
The backup command failed if a directory contains duplicate entries.
Downgrade the severity of this problem from fatal error to a warning.
This allows users to still create a backup.
SaveTree did not use the TreeSaver but rather managed the tree
collection and upload itself. This prevents using the parallelism
offered by the TreeSaver and duplicates all related code. Using the
TreeSaver can provide some speed-ups as all steps within the backup tree
now rely on FutureNodes. This can be especially relevant for backups
with large amounts of explicitly specified files.
The main difference between SaveTree and SaveDir is, that only the
former can save tree blobs in which nodes have a different name than the
actual file on disk. This is the result of resolving name conflicts
between multiple files with the same name. The filename that must be
used within the snapshot is now passed directly to
restic.NodeFromFileInfo. This ensures that a FutureNode already contains
the correct filename.
The only use cases in the code were in errors.IsFatal, backend/b2,
which needs a workaround, and backend.ParseLayout. The last of these
requires all backends to implement error unwrapping in IsNotExist.
All backends except gs already did that.
While searching for lock file from concurrently running restic
instances, restic ignored unreadable lock files. These can either be
in fact invalid or just be temporarily unreadable. As it is not really
possible to differentiate between both cases, just err on the side of
caution and consider the repository as already locked.
The code retries searching for other locks up to three times to smooth
out temporarily unreadable lock files.
Restic continued e.g. a backup task even when it failed to renew the
lock or failed to do so in time. For example if a backup client enters
standby during the backup this can allow other operations like `prune`
to run in the meantime (after calling `unlock`). After leaving standby
the backup client will continue its backup and upload indexes which
refer pack files that were removed in the meantime.
This commit introduces a goroutine explicitly monitoring for locks that
are not refreshed in time. To simplify the implementation there's now a
separate goroutine to refresh the lock and monitor for timeouts for each
lock. The monitoring goroutine would now cause the backup to fail as the
client has lost it's lock in the meantime.
The lock refresh goroutines are bound to the context used to lock the
repository initially. The context returned by `lockRepo` is also
cancelled when any of the goroutines exits. This ensures that the
context is cancelled whenever for any reason the lock is no longer
refreshed.
Some backends generate additional files for each existing file, e.g.
1234567890abcdef1234567890abcdef1234567890abcdef1234567890abcdef
1234567890abcdef1234567890abcdef1234567890abcdef1234567890abcdef.sha256
For some commands this leads to an "multiple IDs with prefix" error when
trying to reference a snapshot.
`restic unlock` now only shows `successfully removed locks` if there were locks to be removed.
In addition, it also reports the number of the removed lock files.
Sending data through a channel at very high frequency is extremely
inefficient. Thus use simple callbacks instead of channels.
> name old time/op new time/op delta
> MasterIndexEach-16 6.68s ±24% 0.96s ± 2% -85.64% (p=0.008 n=5+5)
sort.Sort is not guaranteed to be stable. Go 1.19 has changed the
sorting algorithm which resulted in changes of the sort order. When
comparing snapshots with identical timestamp but different paths and
tags lists, there is not meaningful order among them. So just keep their
order stable.
Also make the errors a bit less verbose by not prepending the operation,
since pkg/xattr already does that. Old errors looked like
Listxattr: xattr.list /myfiles/.zfs/snapshot: invalid argument
Use runtime.GOMAXPROCS(0) as worker count for CPU-bound tasks,
repo.Connections() for IO-bound task and a combination if a task can be
both. Streaming packs is treated as IO-bound as adding more worker
cannot provide a speedup.
Typical IO-bound tasks are download / uploading / deleting files.
Decoding / Encoding / Verifying are usually CPU-bound. Several tasks are
a combination of both, e.g. for combined download and decode functions.
In the latter case add both limits together. As the backends have their
own concurrency limits restic still won't download more than
repo.Connections() files in parallel, but the additional workers can
decode already downloaded data in parallel.
Previously, SaveAndEncrypt would assemble blobs into packs and either
return immediately if the pack is not yet full or upload the pack file
otherwise. The upload will block the current goroutine until it
finishes.
Now, the upload is done using separate goroutines. This requires changes
to the error handling. As uploads are no longer tied to a SaveAndEncrypt
call, failed uploads are signaled using an errgroup.
To count the uploaded amount of data, the pack header overhead is no
longer returned by `packer.Finalize` but rather by
`packer.HeaderOverhead`. This helper method is necessary to continue
returning the pack header overhead directly to the responsible call to
`repository.SaveBlob`. Without the method this would not be possible,
as packs are finalized asynchronously.
github.com/pkg/errors is no longer getting updates, because Go 1.13
went with the more flexible errors.{As,Is} function. Use those instead:
errors from pkg/errors already support the Unwrap interface used by 1.13
error handling. Also:
* check for io.EOF with a straight ==. That value should not be wrapped,
and the chunker (whose error is checked in the cases changed) does not
wrap it.
* Give custom Error methods pointer receivers, so there's no ambiguity
when type-switching since the value type will no longer implement error.
* Make restic.ErrAlreadyLocked private, and rename it to
alreadyLockedError to match the stdlib convention that error type
names end in Error.
* Same with rest.ErrIsNotExist => rest.notExistError.
* Make s3.Backend.IsAccessDenied a private function.
These commands filter the snapshots according to some criteria which
essentially requires loading the index before filtering the snapshots.
Thus create a copy of the snapshots list beforehand and use it later on.
Load tree blobs with more than 50MB only from a single goroutine. Very
large tree blobs with for example 400 MB size can otherwise require
roughly 1GB * streamTreeParallelism memory.
This ensures that restic won't create lots of new lock files without
deleting them later on.
In some cases a Delete operation on a backend can return a "File does
not exist" error even though the Delete operation succeeded. This can
for example be caused by request retries. This caused restic to forget
about the new lock file and continue trying to remove the old (already
deleted) lock file.
Currently, `restic backup` (if a `--parent` is not provided)
will choose the most recent matching snapshot as the parent snapshot.
This makes sense in the usual case,
where we tag the snapshot-being-created with the current time.
However, this doesn't make sense if the user has passed `--time`
and is currently creating a snapshot older than the latest snapshot.
Instead, choose the most recent snapshot
which is not newer than the snapshot-being-created's timestamp,
to avoid any time travel.
Impetus for this change:
I'm using restic for the first time!
I have a number of existing BTRFS snapshots
I am backing up via restic to serve as my initial set of backups.
I initially `restic backup`'d the most recent snapshot to test,
then started backing up each of the other snapshots.
I noticed in `restic cat snapshot <id>` output
that all the remaining snapshots have the most recent as the parent.
This enables the backends to request the calculation of a
backend-specific hash. For the currently supported backends this will
always be MD5. The hash calculation happens as early as possible, for
pack files this is during assembly of the pack file. That way the hash
would even capture corruptions of the temporary pack file on disk.
Ensure that only snapshots made in the past are taken into account when running restic forget with the within switches (--keep-within, --keep-within- hourly, and friends)
Allow keeping hourly/daily/weekly/monthly/yearly snapshots for a given time period.
This adds the following flags/parameters to restic forget:
--keep-within-hourly duration
--keep-within-daily duration
--keep-within-weekly duration
--keep-within-monthly duration
--keep-within-yearly duration
Includes following changes:
- Add tests for --keep-within-hourly (and friends)
- Add documentation for --keep-within-hourly (and friends)
- Add changelog for --keep-within-hourly (and friends)
This assigns an id to each tree root and then keeps track of how many
tree loads (i.e. trees referenced for the first time) are pending per
tree root. Once a tree root and its subtrees were fully processed there
are no more pending tree loads and the tree root is reported as
processed.
The io.Reader interface does not support contexts, such that it is
necessary to embed the context into the backendReaderAt struct. This has
the problem that a reader might suddenly stop working when it's
contained context is canceled. However, this is now problem here as the
reader instances never escape the calling function.
The list operation used by RemoveStaleLocks or RemoveAllLocks will
already be canceled by the passed in context. Therefore we can also just
cancel the remove operation as the unlock command won't process all lock
files anyways.
Makes the following corrections to the "Applying Policy:" output:
- keep the last 1 snapshots snapshots => keep 1 latest snapshots
- keep the last 1 snapshots, 3 hourly, 5 yearly snapshots => keep 1 latest, 3 hourly, 5 yearly snapshots
The seen BlobSet always contained a subset of the entries in blobs.
Thus use blobs instead and avoid the memory overhead of the second set.
Suggested-by: Alexander Weiss <alex@weissfam.de>
If a data blob and a tree blob with the same ID (= same content) exist,
then the checker did not report a data or tree blob as unused when the
blob of the other type was still in use.
- The SaveBlob method now checks for duplicates.
- Moves handling of pending blobs to MasterIndex.
-> also cleans up pending index entries when they are saved in the index
-> when using SaveBlob no need to care about index any longer
- Always check for full index and save it when storing packs.
-> removes the need of an index uploader
-> also removes the verbose "uploaded intermediate index" messages
- The Flush method now also saves the index
- Fix race condition when checking and saving full/non-finalized indexes
The `dump`, `find`, `forget`, `ls`, `mount`, `restore`, `snapshots`,
`stats` and `tag` commands will now take into account multiple
`--host` and `-H` flags.
Windows does not have a concept of a `change time` in the sense as Unix
has it: the field `CreationTime` of the `Win32FileAttributeData` struct
is not updated when attributes or content is changed. So from now on
we're using the `LastWriteTime` as the `change time` on Windows.
Sometimes restic gets bogus timestamps which cannot be converted to
JSON, because the stdlib JSON encoder returns an error if the year is
not within [0, 9999]. We now make sure that we at least record _some_
timestamp and cap the year either to 0000 or 9999. Before, restic would
refuse to save the file at all, so this improves the status quo.
This fixes #2174 and #1173
This commit is a followup to the addition of the --group-by flag for the
snapshots command. Adding the grouping code there introduced duplicated
code (the forget command also does grouping). This commit refactors
boths sides to only use shared code.
This commit changes the signatures for repository.LoadAndDecrypt and
utils.LoadAll to allow passing in a []byte as the buffer to use. This
buffer is enlarged as needed, and returned back to the caller for
further use.
In later commits, this allows reducing allocations by reusing a buffer
for multiple calls, e.g. in a worker function.
Make restic forget --keep-within accept time ranges measured in hours and choose
accordingly which snapshots to keep and which to forget. Add relative tests.