// Copyright 2017 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // linux/mkall.go - Generates all Linux zsysnum, zsyscall, zerror, and ztype // files for all 11 linux architectures supported by the go compiler. See // README.md for more information about the build system. // To run it you must have a git checkout of the Linux kernel and glibc. Once // the appropriate sources are ready, the program is run as: // go run linux/mkall.go // +build ignore package main import ( "bufio" "bytes" "debug/elf" "encoding/binary" "errors" "fmt" "io" "io/ioutil" "os" "os/exec" "path/filepath" "runtime" "strings" "unicode" ) // These will be paths to the appropriate source directories. var LinuxDir string var GlibcDir string const TempDir = "/tmp" const IncludeDir = TempDir + "/include" // To hold our C headers const BuildDir = TempDir + "/build" // To hold intermediate build files const GOOS = "linux" // Only for Linux targets const BuildArch = "amd64" // Must be built on this architecture const MinKernel = "2.6.23" // https://golang.org/doc/install#requirements type target struct { GoArch string // Architecture name according to Go LinuxArch string // Architecture name according to the Linux Kernel GNUArch string // Architecture name according to GNU tools (https://wiki.debian.org/Multiarch/Tuples) BigEndian bool // Default Little Endian SignedChar bool // Is -fsigned-char needed (default no) Bits int } // List of the 11 Linux targets supported by the go compiler. sparc64 is not // currently supported, though a port is in progress. var targets = []target{ { GoArch: "386", LinuxArch: "x86", GNUArch: "i686-linux-gnu", // Note "i686" not "i386" Bits: 32, }, { GoArch: "amd64", LinuxArch: "x86", GNUArch: "x86_64-linux-gnu", Bits: 64, }, { GoArch: "arm64", LinuxArch: "arm64", GNUArch: "aarch64-linux-gnu", SignedChar: true, Bits: 64, }, { GoArch: "arm", LinuxArch: "arm", GNUArch: "arm-linux-gnueabi", Bits: 32, }, { GoArch: "mips", LinuxArch: "mips", GNUArch: "mips-linux-gnu", BigEndian: true, Bits: 32, }, { GoArch: "mipsle", LinuxArch: "mips", GNUArch: "mipsel-linux-gnu", Bits: 32, }, { GoArch: "mips64", LinuxArch: "mips", GNUArch: "mips64-linux-gnuabi64", BigEndian: true, Bits: 64, }, { GoArch: "mips64le", LinuxArch: "mips", GNUArch: "mips64el-linux-gnuabi64", Bits: 64, }, { GoArch: "ppc64", LinuxArch: "powerpc", GNUArch: "powerpc64-linux-gnu", BigEndian: true, Bits: 64, }, { GoArch: "ppc64le", LinuxArch: "powerpc", GNUArch: "powerpc64le-linux-gnu", Bits: 64, }, { GoArch: "s390x", LinuxArch: "s390", GNUArch: "s390x-linux-gnu", BigEndian: true, SignedChar: true, Bits: 64, }, // { // GoArch: "sparc64", // LinuxArch: "sparc", // GNUArch: "sparc64-linux-gnu", // BigEndian: true, // Bits: 64, // }, } // ptracePairs is a list of pairs of targets that can, in some cases, // run each other's binaries. var ptracePairs = []struct{ a1, a2 string }{ {"386", "amd64"}, {"arm", "arm64"}, {"mips", "mips64"}, {"mipsle", "mips64le"}, } func main() { if runtime.GOOS != GOOS || runtime.GOARCH != BuildArch { fmt.Printf("Build system has GOOS_GOARCH = %s_%s, need %s_%s\n", runtime.GOOS, runtime.GOARCH, GOOS, BuildArch) return } // Check that we are using the new build system if we should if os.Getenv("GOLANG_SYS_BUILD") != "docker" { fmt.Println("In the new build system, mkall.go should not be called directly.") fmt.Println("See README.md") return } // Parse the command line options if len(os.Args) != 3 { fmt.Println("USAGE: go run linux/mkall.go ") return } LinuxDir = os.Args[1] GlibcDir = os.Args[2] for _, t := range targets { fmt.Printf("----- GENERATING: %s -----\n", t.GoArch) if err := t.generateFiles(); err != nil { fmt.Printf("%v\n***** FAILURE: %s *****\n\n", err, t.GoArch) } else { fmt.Printf("----- SUCCESS: %s -----\n\n", t.GoArch) } } fmt.Printf("----- GENERATING ptrace pairs -----\n") ok := true for _, p := range ptracePairs { if err := generatePtracePair(p.a1, p.a2); err != nil { fmt.Printf("%v\n***** FAILURE: %s/%s *****\n\n", err, p.a1, p.a2) ok = false } } if ok { fmt.Printf("----- SUCCESS ptrace pairs -----\n\n") } } // Makes an exec.Cmd with Stderr attached to os.Stderr func makeCommand(name string, args ...string) *exec.Cmd { cmd := exec.Command(name, args...) cmd.Stderr = os.Stderr return cmd } // Runs the command, pipes output to a formatter, pipes that to an output file. func (t *target) commandFormatOutput(formatter string, outputFile string, name string, args ...string) (err error) { mainCmd := makeCommand(name, args...) fmtCmd := makeCommand(formatter) if formatter == "mkpost" { fmtCmd = makeCommand("go", "run", "mkpost.go") // Set GOARCH_TARGET so mkpost knows what GOARCH is.. fmtCmd.Env = append(os.Environ(), "GOARCH_TARGET="+t.GoArch) // Set GOARCH to host arch for mkpost, so it can run natively. for i, s := range fmtCmd.Env { if strings.HasPrefix(s, "GOARCH=") { fmtCmd.Env[i] = "GOARCH=" + BuildArch } } } // mainCmd | fmtCmd > outputFile if fmtCmd.Stdin, err = mainCmd.StdoutPipe(); err != nil { return } if fmtCmd.Stdout, err = os.Create(outputFile); err != nil { return } // Make sure the formatter eventually closes if err = fmtCmd.Start(); err != nil { return } defer func() { fmtErr := fmtCmd.Wait() if err == nil { err = fmtErr } }() return mainCmd.Run() } // Generates all the files for a Linux target func (t *target) generateFiles() error { // Setup environment variables os.Setenv("GOOS", GOOS) os.Setenv("GOARCH", t.GoArch) // Get appropriate compiler and emulator (unless on x86) if t.LinuxArch != "x86" { // Check/Setup cross compiler compiler := t.GNUArch + "-gcc" if _, err := exec.LookPath(compiler); err != nil { return err } os.Setenv("CC", compiler) // Check/Setup emulator (usually first component of GNUArch) qemuArchName := t.GNUArch[:strings.Index(t.GNUArch, "-")] if t.LinuxArch == "powerpc" { qemuArchName = t.GoArch } os.Setenv("GORUN", "qemu-"+qemuArchName) } else { os.Setenv("CC", "gcc") } // Make the include directory and fill it with headers if err := os.MkdirAll(IncludeDir, os.ModePerm); err != nil { return err } defer os.RemoveAll(IncludeDir) if err := t.makeHeaders(); err != nil { return fmt.Errorf("could not make header files: %v", err) } fmt.Println("header files generated") // Make each of the four files if err := t.makeZSysnumFile(); err != nil { return fmt.Errorf("could not make zsysnum file: %v", err) } fmt.Println("zsysnum file generated") if err := t.makeZSyscallFile(); err != nil { return fmt.Errorf("could not make zsyscall file: %v", err) } fmt.Println("zsyscall file generated") if err := t.makeZTypesFile(); err != nil { return fmt.Errorf("could not make ztypes file: %v", err) } fmt.Println("ztypes file generated") if err := t.makeZErrorsFile(); err != nil { return fmt.Errorf("could not make zerrors file: %v", err) } fmt.Println("zerrors file generated") return nil } // Create the Linux, glibc and ABI (C compiler convention) headers in the include directory. func (t *target) makeHeaders() error { // Make the Linux headers we need for this architecture linuxMake := makeCommand("make", "headers_install", "ARCH="+t.LinuxArch, "INSTALL_HDR_PATH="+TempDir) linuxMake.Dir = LinuxDir if err := linuxMake.Run(); err != nil { return err } // A Temporary build directory for glibc if err := os.MkdirAll(BuildDir, os.ModePerm); err != nil { return err } defer os.RemoveAll(BuildDir) // Make the glibc headers we need for this architecture confScript := filepath.Join(GlibcDir, "configure") glibcConf := makeCommand(confScript, "--prefix="+TempDir, "--host="+t.GNUArch, "--enable-kernel="+MinKernel) glibcConf.Dir = BuildDir if err := glibcConf.Run(); err != nil { return err } glibcMake := makeCommand("make", "install-headers") glibcMake.Dir = BuildDir if err := glibcMake.Run(); err != nil { return err } // We only need an empty stubs file stubsFile := filepath.Join(IncludeDir, "gnu/stubs.h") if file, err := os.Create(stubsFile); err != nil { return err } else { file.Close() } // ABI headers will specify C compiler behavior for the target platform. return t.makeABIHeaders() } // makeABIHeaders generates C header files based on the platform's calling convention. // While many platforms have formal Application Binary Interfaces, in practice, whatever the // dominant C compilers generate is the de-facto calling convention. // // We generate C headers instead of a Go file, so as to enable references to the ABI from Cgo. func (t *target) makeABIHeaders() (err error) { abiDir := filepath.Join(IncludeDir, "abi") if err = os.Mkdir(abiDir, os.ModePerm); err != nil { return err } cc := os.Getenv("CC") if cc == "" { return errors.New("CC (compiler) env var not set") } // Build a sacrificial ELF file, to mine for C compiler behavior. binPath := filepath.Join(TempDir, "tmp_abi.o") bin, err := t.buildELF(cc, cCode, binPath) if err != nil { return fmt.Errorf("cannot build ELF to analyze: %v", err) } defer bin.Close() defer os.Remove(binPath) // Right now, we put everything in abi.h, but we may change this later. abiFile, err := os.Create(filepath.Join(abiDir, "abi.h")) if err != nil { return err } defer func() { if cerr := abiFile.Close(); cerr != nil && err == nil { err = cerr } }() if err = t.writeBitFieldMasks(bin, abiFile); err != nil { return fmt.Errorf("cannot write bitfield masks: %v", err) } return nil } func (t *target) buildELF(cc, src, path string) (*elf.File, error) { // Compile the cCode source using the set compiler - we will need its .data section. // Do not link the binary, so that we can find .data section offsets from the symbol values. ccCmd := makeCommand(cc, "-o", path, "-gdwarf", "-x", "c", "-c", "-") ccCmd.Stdin = strings.NewReader(src) ccCmd.Stdout = os.Stdout if err := ccCmd.Run(); err != nil { return nil, fmt.Errorf("compiler error: %v", err) } bin, err := elf.Open(path) if err != nil { return nil, fmt.Errorf("cannot read ELF file %s: %v", path, err) } return bin, nil } func (t *target) writeBitFieldMasks(bin *elf.File, out io.Writer) error { symbols, err := bin.Symbols() if err != nil { return fmt.Errorf("getting ELF symbols: %v", err) } var masksSym *elf.Symbol for _, sym := range symbols { if sym.Name == "masks" { masksSym = &sym } } if masksSym == nil { return errors.New("could not find the 'masks' symbol in ELF symtab") } dataSection := bin.Section(".data") if dataSection == nil { return errors.New("ELF file has no .data section") } data, err := dataSection.Data() if err != nil { return fmt.Errorf("could not read .data section: %v\n", err) } var bo binary.ByteOrder if t.BigEndian { bo = binary.BigEndian } else { bo = binary.LittleEndian } // 64 bit masks of type uint64 are stored in the data section starting at masks.Value. // Here we are running on AMD64, but these values may be big endian or little endian, // depending on target architecture. for i := uint64(0); i < 64; i++ { off := masksSym.Value + i*8 // Define each mask in native by order, so as to match target endian. fmt.Fprintf(out, "#define BITFIELD_MASK_%d %dULL\n", i, bo.Uint64(data[off:off+8])) } return nil } // makes the zsysnum_linux_$GOARCH.go file func (t *target) makeZSysnumFile() error { zsysnumFile := fmt.Sprintf("zsysnum_linux_%s.go", t.GoArch) unistdFile := filepath.Join(IncludeDir, "asm/unistd.h") args := append(t.cFlags(), unistdFile) return t.commandFormatOutput("gofmt", zsysnumFile, "linux/mksysnum.pl", args...) } // makes the zsyscall_linux_$GOARCH.go file func (t *target) makeZSyscallFile() error { zsyscallFile := fmt.Sprintf("zsyscall_linux_%s.go", t.GoArch) // Find the correct architecture syscall file (might end with x.go) archSyscallFile := fmt.Sprintf("syscall_linux_%s.go", t.GoArch) if _, err := os.Stat(archSyscallFile); os.IsNotExist(err) { shortArch := strings.TrimSuffix(t.GoArch, "le") archSyscallFile = fmt.Sprintf("syscall_linux_%sx.go", shortArch) } args := append(t.mksyscallFlags(), "-tags", "linux,"+t.GoArch, "syscall_linux.go", archSyscallFile) return t.commandFormatOutput("gofmt", zsyscallFile, "./mksyscall.pl", args...) } // makes the zerrors_linux_$GOARCH.go file func (t *target) makeZErrorsFile() error { zerrorsFile := fmt.Sprintf("zerrors_linux_%s.go", t.GoArch) return t.commandFormatOutput("gofmt", zerrorsFile, "./mkerrors.sh", t.cFlags()...) } // makes the ztypes_linux_$GOARCH.go file func (t *target) makeZTypesFile() error { ztypesFile := fmt.Sprintf("ztypes_linux_%s.go", t.GoArch) args := []string{"tool", "cgo", "-godefs", "--"} args = append(args, t.cFlags()...) args = append(args, "linux/types.go") return t.commandFormatOutput("mkpost", ztypesFile, "go", args...) } // Flags that should be given to gcc and cgo for this target func (t *target) cFlags() []string { // Compile statically to avoid cross-architecture dynamic linking. flags := []string{"-Wall", "-Werror", "-static", "-I" + IncludeDir} // Architecture-specific flags if t.SignedChar { flags = append(flags, "-fsigned-char") } if t.LinuxArch == "x86" { flags = append(flags, fmt.Sprintf("-m%d", t.Bits)) } return flags } // Flags that should be given to mksyscall for this target func (t *target) mksyscallFlags() (flags []string) { if t.Bits == 32 { if t.BigEndian { flags = append(flags, "-b32") } else { flags = append(flags, "-l32") } } // This flag menas a 64-bit value should use (even, odd)-pair. if t.GoArch == "arm" || (t.LinuxArch == "mips" && t.Bits == 32) { flags = append(flags, "-arm") } return } // generatePtracePair takes a pair of GOARCH values that can run each // other's binaries, such as 386 and amd64. It extracts the PtraceRegs // type for each one. It writes a new file defining the types // PtraceRegsArch1 and PtraceRegsArch2 and the corresponding functions // Ptrace{Get,Set}Regs{arch1,arch2}. This permits debugging the other // binary on a native system. func generatePtracePair(arch1, arch2 string) error { def1, err := ptraceDef(arch1) if err != nil { return err } def2, err := ptraceDef(arch2) if err != nil { return err } f, err := os.Create(fmt.Sprintf("zptrace%s_linux.go", arch1)) if err != nil { return err } buf := bufio.NewWriter(f) fmt.Fprintf(buf, "// Code generated by linux/mkall.go generatePtracePair(%s, %s). DO NOT EDIT.\n", arch1, arch2) fmt.Fprintf(buf, "\n") fmt.Fprintf(buf, "// +build linux\n") fmt.Fprintf(buf, "// +build %s %s\n", arch1, arch2) fmt.Fprintf(buf, "\n") fmt.Fprintf(buf, "package unix\n") fmt.Fprintf(buf, "\n") fmt.Fprintf(buf, "%s\n", `import "unsafe"`) fmt.Fprintf(buf, "\n") writeOnePtrace(buf, arch1, def1) fmt.Fprintf(buf, "\n") writeOnePtrace(buf, arch2, def2) if err := buf.Flush(); err != nil { return err } if err := f.Close(); err != nil { return err } return nil } // ptraceDef returns the definition of PtraceRegs for arch. func ptraceDef(arch string) (string, error) { filename := fmt.Sprintf("ztypes_linux_%s.go", arch) data, err := ioutil.ReadFile(filename) if err != nil { return "", fmt.Errorf("reading %s: %v", filename, err) } start := bytes.Index(data, []byte("type PtraceRegs struct")) if start < 0 { return "", fmt.Errorf("%s: no definition of PtraceRegs", filename) } data = data[start:] end := bytes.Index(data, []byte("\n}\n")) if end < 0 { return "", fmt.Errorf("%s: can't find end of PtraceRegs definition", filename) } return string(data[:end+2]), nil } // writeOnePtrace writes out the ptrace definitions for arch. func writeOnePtrace(w io.Writer, arch, def string) { uarch := string(unicode.ToUpper(rune(arch[0]))) + arch[1:] fmt.Fprintf(w, "// PtraceRegs%s is the registers used by %s binaries.\n", uarch, arch) fmt.Fprintf(w, "%s\n", strings.Replace(def, "PtraceRegs", "PtraceRegs"+uarch, 1)) fmt.Fprintf(w, "\n") fmt.Fprintf(w, "// PtraceGetRegs%s fetches the registers used by %s binaries.\n", uarch, arch) fmt.Fprintf(w, "func PtraceGetRegs%s(pid int, regsout *PtraceRegs%s) error {\n", uarch, uarch) fmt.Fprintf(w, "\treturn ptrace(PTRACE_GETREGS, pid, 0, uintptr(unsafe.Pointer(regsout)))\n") fmt.Fprintf(w, "}\n") fmt.Fprintf(w, "\n") fmt.Fprintf(w, "// PtraceSetRegs%s sets the registers used by %s binaries.\n", uarch, arch) fmt.Fprintf(w, "func PtraceSetRegs%s(pid int, regs *PtraceRegs%s) error {\n", uarch, uarch) fmt.Fprintf(w, "\treturn ptrace(PTRACE_SETREGS, pid, 0, uintptr(unsafe.Pointer(regs)))\n") fmt.Fprintf(w, "}\n") } // cCode is compiled for the target architecture, and the resulting data section is carved for // the statically initialized bit masks. const cCode = ` // Bit fields are used in some system calls and other ABIs, but their memory layout is // implementation-defined [1]. Even with formal ABIs, bit fields are a source of subtle bugs [2]. // Here we generate the offsets for all 64 bits in an uint64. // 1: http://en.cppreference.com/w/c/language/bit_field // 2: https://lwn.net/Articles/478657/ #include struct bitfield { union { uint64_t val; struct { uint64_t u64_bit_0 : 1; uint64_t u64_bit_1 : 1; uint64_t u64_bit_2 : 1; uint64_t u64_bit_3 : 1; uint64_t u64_bit_4 : 1; uint64_t u64_bit_5 : 1; uint64_t u64_bit_6 : 1; uint64_t u64_bit_7 : 1; uint64_t u64_bit_8 : 1; uint64_t u64_bit_9 : 1; uint64_t u64_bit_10 : 1; uint64_t u64_bit_11 : 1; uint64_t u64_bit_12 : 1; uint64_t u64_bit_13 : 1; uint64_t u64_bit_14 : 1; uint64_t u64_bit_15 : 1; uint64_t u64_bit_16 : 1; uint64_t u64_bit_17 : 1; uint64_t u64_bit_18 : 1; uint64_t u64_bit_19 : 1; uint64_t u64_bit_20 : 1; uint64_t u64_bit_21 : 1; uint64_t u64_bit_22 : 1; uint64_t u64_bit_23 : 1; uint64_t u64_bit_24 : 1; uint64_t u64_bit_25 : 1; uint64_t u64_bit_26 : 1; uint64_t u64_bit_27 : 1; uint64_t u64_bit_28 : 1; uint64_t u64_bit_29 : 1; uint64_t u64_bit_30 : 1; uint64_t u64_bit_31 : 1; uint64_t u64_bit_32 : 1; uint64_t u64_bit_33 : 1; uint64_t u64_bit_34 : 1; uint64_t u64_bit_35 : 1; uint64_t u64_bit_36 : 1; uint64_t u64_bit_37 : 1; uint64_t u64_bit_38 : 1; uint64_t u64_bit_39 : 1; uint64_t u64_bit_40 : 1; uint64_t u64_bit_41 : 1; uint64_t u64_bit_42 : 1; uint64_t u64_bit_43 : 1; uint64_t u64_bit_44 : 1; uint64_t u64_bit_45 : 1; uint64_t u64_bit_46 : 1; uint64_t u64_bit_47 : 1; uint64_t u64_bit_48 : 1; uint64_t u64_bit_49 : 1; uint64_t u64_bit_50 : 1; uint64_t u64_bit_51 : 1; uint64_t u64_bit_52 : 1; uint64_t u64_bit_53 : 1; uint64_t u64_bit_54 : 1; uint64_t u64_bit_55 : 1; uint64_t u64_bit_56 : 1; uint64_t u64_bit_57 : 1; uint64_t u64_bit_58 : 1; uint64_t u64_bit_59 : 1; uint64_t u64_bit_60 : 1; uint64_t u64_bit_61 : 1; uint64_t u64_bit_62 : 1; uint64_t u64_bit_63 : 1; }; }; }; struct bitfield masks[] = { {.u64_bit_0 = 1}, {.u64_bit_1 = 1}, {.u64_bit_2 = 1}, {.u64_bit_3 = 1}, {.u64_bit_4 = 1}, {.u64_bit_5 = 1}, {.u64_bit_6 = 1}, {.u64_bit_7 = 1}, {.u64_bit_8 = 1}, {.u64_bit_9 = 1}, {.u64_bit_10 = 1}, {.u64_bit_11 = 1}, {.u64_bit_12 = 1}, {.u64_bit_13 = 1}, {.u64_bit_14 = 1}, {.u64_bit_15 = 1}, {.u64_bit_16 = 1}, {.u64_bit_17 = 1}, {.u64_bit_18 = 1}, {.u64_bit_19 = 1}, {.u64_bit_20 = 1}, {.u64_bit_21 = 1}, {.u64_bit_22 = 1}, {.u64_bit_23 = 1}, {.u64_bit_24 = 1}, {.u64_bit_25 = 1}, {.u64_bit_26 = 1}, {.u64_bit_27 = 1}, {.u64_bit_28 = 1}, {.u64_bit_29 = 1}, {.u64_bit_30 = 1}, {.u64_bit_31 = 1}, {.u64_bit_32 = 1}, {.u64_bit_33 = 1}, {.u64_bit_34 = 1}, {.u64_bit_35 = 1}, {.u64_bit_36 = 1}, {.u64_bit_37 = 1}, {.u64_bit_38 = 1}, {.u64_bit_39 = 1}, {.u64_bit_40 = 1}, {.u64_bit_41 = 1}, {.u64_bit_42 = 1}, {.u64_bit_43 = 1}, {.u64_bit_44 = 1}, {.u64_bit_45 = 1}, {.u64_bit_46 = 1}, {.u64_bit_47 = 1}, {.u64_bit_48 = 1}, {.u64_bit_49 = 1}, {.u64_bit_50 = 1}, {.u64_bit_51 = 1}, {.u64_bit_52 = 1}, {.u64_bit_53 = 1}, {.u64_bit_54 = 1}, {.u64_bit_55 = 1}, {.u64_bit_56 = 1}, {.u64_bit_57 = 1}, {.u64_bit_58 = 1}, {.u64_bit_59 = 1}, {.u64_bit_60 = 1}, {.u64_bit_61 = 1}, {.u64_bit_62 = 1}, {.u64_bit_63 = 1} }; int main(int argc, char **argv) { struct bitfield *mask_ptr = &masks[0]; return mask_ptr->val; } `