package chunker import ( "crypto/rand" "encoding/binary" "errors" "fmt" "strconv" ) // Pol is a polynomial from F_2[X]. type Pol uint64 // Add returns x+y. func (x Pol) Add(y Pol) Pol { r := Pol(uint64(x) ^ uint64(y)) return r } // mulOverflows returns true if the multiplication would overflow uint64. // Code by Rob Pike, see // https://groups.google.com/d/msg/golang-nuts/h5oSN5t3Au4/KaNQREhZh0QJ func mulOverflows(a, b Pol) bool { if a <= 1 || b <= 1 { return false } c := a.mul(b) d := c.Div(b) if d != a { return true } return false } func (x Pol) mul(y Pol) Pol { if x == 0 || y == 0 { return 0 } var res Pol for i := 0; i <= y.Deg(); i++ { if (y & (1 << uint(i))) > 0 { res = res.Add(x << uint(i)) } } return res } // Mul returns x*y. When an overflow occurs, Mul panics. func (x Pol) Mul(y Pol) Pol { if mulOverflows(x, y) { panic("multiplication would overflow uint64") } return x.mul(y) } // Deg returns the degree of the polynomial x. If x is zero, -1 is returned. func (x Pol) Deg() int { // the degree of 0 is -1 if x == 0 { return -1 } for i := 63; i >= 0; i-- { // test if bit i is set if x&(1< 0 { // this is the degree of x return i } } // fall-through, return -1 return -1 } // String returns the coefficients in hex. func (x Pol) String() string { return "0x" + strconv.FormatUint(uint64(x), 16) } // Expand returns the string representation of the polynomial x. func (x Pol) Expand() string { if x == 0 { return "0" } s := "" for i := x.Deg(); i > 1; i-- { if x&(1< 0 { s += fmt.Sprintf("+x^%d", i) } } if x&2 > 0 { s += "+x" } if x&1 > 0 { s += "+1" } return s[1:] } // DivMod returns x / d = q, and remainder r, // see https://en.wikipedia.org/wiki/Division_algorithm func (x Pol) DivMod(d Pol) (Pol, Pol) { if x == 0 { return 0, 0 } if d == 0 { panic("division by zero") } D := d.Deg() diff := x.Deg() - D if diff < 0 { return 0, x } var q Pol for diff >= 0 { m := d << uint(diff) q |= (1 << uint(diff)) x = x.Add(m) diff = x.Deg() - D } return q, x } // Div returns the integer division result x / d. func (x Pol) Div(d Pol) Pol { q, _ := x.DivMod(d) return q } // Mod returns the remainder of x / d func (x Pol) Mod(d Pol) Pol { _, r := x.DivMod(d) return r } // I really dislike having a function that does not terminate, so specify a // really large upper bound for finding a new irreducible polynomial, and // return an error when no irreducible polynomial has been found within // randPolMaxTries. const randPolMaxTries = 1e6 // RandomPolynomial returns a new random irreducible polynomial of degree 53 // (largest prime number below 64-8). There are (2^53-2/53) irreducible // polynomials of degree 53 in F_2[X], c.f. Michael O. Rabin (1981): // "Fingerprinting by Random Polynomials", page 4. If no polynomial could be // found in one million tries, an error is returned. func RandomPolynomial() (Pol, error) { for i := 0; i < randPolMaxTries; i++ { var f Pol // choose polynomial at random err := binary.Read(rand.Reader, binary.LittleEndian, &f) if err != nil { return 0, err } // mask away bits above bit 53 f &= Pol((1 << 54) - 1) // set highest and lowest bit so that the degree is 53 and the // polynomial is not trivially reducible f |= (1 << 53) | 1 // test if f is irreducible if f.Irreducible() { return f, nil } } // If this is reached, we haven't found an irreducible polynomial in // randPolMaxTries. This error is very unlikely to occur. return 0, errors.New("unable to find new random irreducible polynomial") } // GCD computes the Greatest Common Divisor x and f. func (x Pol) GCD(f Pol) Pol { if f == 0 { return x } if x == 0 { return f } if x.Deg() < f.Deg() { x, f = f, x } return f.GCD(x.Mod(f)) } // Irreducible returns true iff x is irreducible over F_2. This function // uses Ben Or's reducibility test. // // For details see "Tests and Constructions of Irreducible Polynomials over // Finite Fields". func (x Pol) Irreducible() bool { for i := 1; i <= x.Deg()/2; i++ { if x.GCD(qp(uint(i), x)) != 1 { return false } } return true } // MulMod computes x*f mod g func (x Pol) MulMod(f, g Pol) Pol { if x == 0 || f == 0 { return 0 } var res Pol for i := 0; i <= f.Deg(); i++ { if (f & (1 << uint(i))) > 0 { a := x for j := 0; j < i; j++ { a = a.Mul(2).Mod(g) } res = res.Add(a).Mod(g) } } return res } // qp computes the polynomial (x^(2^p)-x) mod g. This is needed for the // reducibility test. func qp(p uint, g Pol) Pol { num := (1 << p) i := 1 // start with x res := Pol(2) for i < num { // repeatedly square res res = res.MulMod(res, g) i *= 2 } // add x return res.Add(2).Mod(g) }