2
2
mirror of https://github.com/octoleo/restic.git synced 2025-01-04 07:37:57 +00:00
restic/vendor/github.com/elithrar/simple-scrypt/scrypt.go
Alexander Neumann 92f516b1d4 Update github.com/elithrar/simple-scrypt
For details see #1697
2018-04-02 19:48:25 +02:00

310 lines
9.1 KiB
Go

// Package scrypt provides a convenience wrapper around Go's existing scrypt package
// that makes it easier to securely derive strong keys from weak
// inputs (i.e. user passwords).
// The package provides password generation, constant-time comparison and
// parameter upgrading for scrypt derived keys.
package scrypt
import (
"crypto/rand"
"crypto/subtle"
"encoding/hex"
"errors"
"fmt"
"strconv"
"strings"
"time"
"golang.org/x/crypto/scrypt"
)
// Constants
const (
maxInt = 1<<31 - 1
minDKLen = 16 // the minimum derived key length in bytes.
minSaltLen = 8 // the minimum allowed salt length in bytes.
)
// Params describes the input parameters to the scrypt
// key derivation function as per Colin Percival's scrypt
// paper: http://www.tarsnap.com/scrypt/scrypt.pdf
type Params struct {
N int // CPU/memory cost parameter (logN)
R int // block size parameter (octets)
P int // parallelisation parameter (positive int)
SaltLen int // bytes to use as salt (octets)
DKLen int // length of the derived key (octets)
}
// DefaultParams provides sensible default inputs into the scrypt function
// for interactive use (i.e. web applications).
// These defaults will consume approxmiately 16MB of memory (128 * r * N).
// The default key length is 256 bits.
var DefaultParams = Params{N: 16384, R: 8, P: 1, SaltLen: 16, DKLen: 32}
// ErrInvalidHash is returned when failing to parse a provided scrypt
// hash and/or parameters.
var ErrInvalidHash = errors.New("scrypt: the provided hash is not in the correct format")
// ErrInvalidParams is returned when the cost parameters (N, r, p), salt length
// or derived key length are invalid.
var ErrInvalidParams = errors.New("scrypt: the parameters provided are invalid")
// ErrMismatchedHashAndPassword is returned when a password (hashed) and
// given hash do not match.
var ErrMismatchedHashAndPassword = errors.New("scrypt: the hashed password does not match the hash of the given password")
// GenerateRandomBytes returns securely generated random bytes.
// It will return an error if the system's secure random
// number generator fails to function correctly, in which
// case the caller should not continue.
func GenerateRandomBytes(n int) ([]byte, error) {
b := make([]byte, n)
_, err := rand.Read(b)
// err == nil only if len(b) == n
if err != nil {
return nil, err
}
return b, nil
}
// GenerateFromPassword returns the derived key of the password using the
// parameters provided. The parameters are prepended to the derived key and
// separated by the "$" character (0x24).
// If the parameters provided are less than the minimum acceptable values,
// an error will be returned.
func GenerateFromPassword(password []byte, params Params) ([]byte, error) {
salt, err := GenerateRandomBytes(params.SaltLen)
if err != nil {
return nil, err
}
if err := params.Check(); err != nil {
return nil, err
}
// scrypt.Key returns the raw scrypt derived key.
dk, err := scrypt.Key(password, salt, params.N, params.R, params.P, params.DKLen)
if err != nil {
return nil, err
}
// Prepend the params and the salt to the derived key, each separated
// by a "$" character. The salt and the derived key are hex encoded.
return []byte(fmt.Sprintf("%d$%d$%d$%x$%x", params.N, params.R, params.P, salt, dk)), nil
}
// CompareHashAndPassword compares a derived key with the possible cleartext
// equivalent. The parameters used in the provided derived key are used.
// The comparison performed by this function is constant-time. It returns nil
// on success, and an error if the derived keys do not match.
func CompareHashAndPassword(hash []byte, password []byte) error {
// Decode existing hash, retrieve params and salt.
params, salt, dk, err := decodeHash(hash)
if err != nil {
return err
}
// scrypt the cleartext password with the same parameters and salt
other, err := scrypt.Key(password, salt, params.N, params.R, params.P, params.DKLen)
if err != nil {
return err
}
// Constant time comparison
if subtle.ConstantTimeCompare(dk, other) == 1 {
return nil
}
return ErrMismatchedHashAndPassword
}
// Check checks that the parameters are valid for input into the
// scrypt key derivation function.
func (p *Params) Check() error {
// Validate N
if p.N > maxInt || p.N <= 1 || p.N%2 != 0 {
return ErrInvalidParams
}
// Validate r
if p.R < 1 || p.R > maxInt {
return ErrInvalidParams
}
// Validate p
if p.P < 1 || p.P > maxInt {
return ErrInvalidParams
}
// Validate that r & p don't exceed 2^30 and that N, r, p values don't
// exceed the limits defined by the scrypt algorithm.
if uint64(p.R)*uint64(p.P) >= 1<<30 || p.R > maxInt/128/p.P || p.R > maxInt/256 || p.N > maxInt/128/p.R {
return ErrInvalidParams
}
// Validate the salt length
if p.SaltLen < minSaltLen || p.SaltLen > maxInt {
return ErrInvalidParams
}
// Validate the derived key length
if p.DKLen < minDKLen || p.DKLen > maxInt {
return ErrInvalidParams
}
return nil
}
// decodeHash extracts the parameters, salt and derived key from the
// provided hash. It returns an error if the hash format is invalid and/or
// the parameters are invalid.
func decodeHash(hash []byte) (Params, []byte, []byte, error) {
vals := strings.Split(string(hash), "$")
// P, N, R, salt, scrypt derived key
if len(vals) != 5 {
return Params{}, nil, nil, ErrInvalidHash
}
var params Params
var err error
params.N, err = strconv.Atoi(vals[0])
if err != nil {
return params, nil, nil, ErrInvalidHash
}
params.R, err = strconv.Atoi(vals[1])
if err != nil {
return params, nil, nil, ErrInvalidHash
}
params.P, err = strconv.Atoi(vals[2])
if err != nil {
return params, nil, nil, ErrInvalidHash
}
salt, err := hex.DecodeString(vals[3])
if err != nil {
return params, nil, nil, ErrInvalidHash
}
params.SaltLen = len(salt)
dk, err := hex.DecodeString(vals[4])
if err != nil {
return params, nil, nil, ErrInvalidHash
}
params.DKLen = len(dk)
if err := params.Check(); err != nil {
return params, nil, nil, err
}
return params, salt, dk, nil
}
// Cost returns the scrypt parameters used to generate the derived key. This
// allows a package user to increase the cost (in time & resources) used as
// computational performance increases over time.
func Cost(hash []byte) (Params, error) {
params, _, _, err := decodeHash(hash)
return params, err
}
// Calibrate returns the hardest parameters, allowed by the given limits.
// The returned params will not use more memory than the given (MiB);
// will not take more time than the given timeout, but more than timeout/2.
//
//
// The default timeout (when the timeout arg is zero) is 200ms.
// The default memMiBytes (when memMiBytes is zero) is 16MiB.
// The default parameters (when params == Params{}) is DefaultParams.
func Calibrate(timeout time.Duration, memMiBytes int, params Params) (Params, error) {
p := params
if p.N == 0 || p.R == 0 || p.P == 0 || p.SaltLen == 0 || p.DKLen == 0 {
p = DefaultParams
} else if err := p.Check(); err != nil {
return p, err
}
if timeout == 0 {
timeout = 200 * time.Millisecond
}
if memMiBytes == 0 {
memMiBytes = 16
}
salt, err := GenerateRandomBytes(p.SaltLen)
if err != nil {
return p, err
}
password := []byte("weakpassword")
// r is fixed to 8 and should not be used to tune the memory usage
// if the cache lines of future processors are bigger, then r should be increased
// see: https://blog.filippo.io/the-scrypt-parameters/
p.R = 8
// Scrypt runs p independent mixing functions with a memory requirement of roughly
// 128 * r * N. Depending on the implementation these can be run sequentially or parallel.
// The go implementation runs them sequentially, therefore p can be used to adjust the execution time of scrypt.
// we start with p=1 and only increase it if we have to
p.P = 1
// Memory usage is at least 128 * r * N, see
// http://blog.ircmaxell.com/2014/03/why-i-dont-recommend-scrypt.html
// or https://drupal.org/comment/4675994#comment-4675994
// calculate N based on the desired memory usage
memBytes := memMiBytes << 20
p.N = 1
for 128*int64(p.R)*int64(p.N) < int64(memBytes) {
p.N <<= 1
}
p.N >>= 1
// calculate the current execution time
start := time.Now()
if _, err := scrypt.Key(password, salt, p.N, p.R, p.P, p.DKLen); err != nil {
return p, err
}
dur := time.Since(start)
// reduce N if scrypt takes to long
for dur > timeout {
p.N >>= 1
start = time.Now()
if _, err := scrypt.Key(password, salt, p.N, p.R, p.P, p.DKLen); err != nil {
return p, err
}
dur = time.Since(start)
}
// try to reach desired timeout by increasing p
// the further away we are from timeout the bigger the steps should be
for dur < timeout {
// the theoretical optimal p; can not be used because of inaccurate measuring
optimalP := int(int64(timeout) / (int64(dur) / int64(p.P)))
if optimalP > p.P+1 {
// use average between optimal p and current p
p.P = (p.P + optimalP) / 2
} else {
p.P++
}
start = time.Now()
if _, err := scrypt.Key(password, salt, p.N, p.R, p.P, p.DKLen); err != nil {
return p, err
}
dur = time.Since(start)
}
// lower by one to get shorter duration than timeout
p.P--
return p, p.Check()
}