2
2
mirror of https://github.com/octoleo/restic.git synced 2025-01-24 23:58:28 +00:00
2024-05-26 12:42:46 +02:00

145 lines
3.5 KiB
Go

package bloblru
import (
"sync"
"github.com/restic/restic/internal/debug"
"github.com/restic/restic/internal/restic"
"github.com/hashicorp/golang-lru/v2/simplelru"
)
// Crude estimate of the overhead per blob: a SHA-256, a linked list node
// and some pointers. See comment in Cache.add.
const overhead = len(restic.ID{}) + 64
// A Cache is a fixed-size LRU cache of blob contents.
// It is safe for concurrent access.
type Cache struct {
mu sync.Mutex
c *simplelru.LRU[restic.ID, []byte]
free, size int // Current and max capacity, in bytes.
inProgress map[restic.ID]chan struct{}
}
// New constructs a blob cache that stores at most size bytes worth of blobs.
func New(size int) *Cache {
c := &Cache{
free: size,
size: size,
inProgress: make(map[restic.ID]chan struct{}),
}
// NewLRU wants us to specify some max. number of entries, else it errors.
// The actual maximum will be smaller than size/overhead, because we
// evict entries (RemoveOldest in add) to maintain our size bound.
maxEntries := size / overhead
lru, err := simplelru.NewLRU[restic.ID, []byte](maxEntries, c.evict)
if err != nil {
panic(err) // Can only be maxEntries <= 0.
}
c.c = lru
return c
}
// Add adds key id with value blob to c.
// It may return an evicted buffer for reuse.
func (c *Cache) Add(id restic.ID, blob []byte) (old []byte) {
debug.Log("bloblru.Cache: add %v", id)
size := cap(blob) + overhead
if size > c.size {
return
}
c.mu.Lock()
defer c.mu.Unlock()
if c.c.Contains(id) { // Doesn't update the recency list.
return
}
// This loop takes at most min(maxEntries, maxchunksize/overhead)
// iterations.
for size > c.free {
_, b, _ := c.c.RemoveOldest()
if cap(b) > cap(old) {
// We can only return one buffer, so pick the largest.
old = b
}
}
c.c.Add(id, blob)
c.free -= size
return old
}
func (c *Cache) Get(id restic.ID) ([]byte, bool) {
c.mu.Lock()
blob, ok := c.c.Get(id)
c.mu.Unlock()
debug.Log("bloblru.Cache: get %v, hit %v", id, ok)
return blob, ok
}
func (c *Cache) GetOrCompute(id restic.ID, compute func() ([]byte, error)) ([]byte, error) {
// check if already cached
blob, ok := c.Get(id)
if ok {
return blob, nil
}
// check for parallel download or start our own
finish := make(chan struct{})
c.mu.Lock()
waitForResult, isComputing := c.inProgress[id]
if !isComputing {
c.inProgress[id] = finish
}
c.mu.Unlock()
if isComputing {
// wait for result of parallel download
<-waitForResult
} else {
// remove progress channel once finished here
defer func() {
c.mu.Lock()
delete(c.inProgress, id)
c.mu.Unlock()
close(finish)
}()
}
// try again. This is necessary independent of whether isComputing is true or not.
// The calls to `c.Get()` and checking/adding the entry in `c.inProgress` are not atomic,
// thus the item might have been computed in the meantime.
// The following scenario would compute() the value multiple times otherwise:
// Goroutine A does not find a value in the initial call to `c.Get`, then goroutine B
// takes over, caches the computed value and cleans up its channel in c.inProgress.
// Then goroutine A continues, does not detect a parallel computation and would try
// to call compute() again.
blob, ok = c.Get(id)
if ok {
return blob, nil
}
// download it
blob, err := compute()
if err == nil {
c.Add(id, blob)
}
return blob, err
}
func (c *Cache) evict(key restic.ID, blob []byte) {
debug.Log("bloblru.Cache: evict %v, %d bytes", key, cap(blob))
c.free += cap(blob) + overhead
}