2
2
mirror of https://github.com/octoleo/restic.git synced 2024-11-30 08:44:02 +00:00
restic/vendor/cloud.google.com/go/internal/fields/fields.go
2017-08-06 21:47:56 +02:00

445 lines
14 KiB
Go

// Copyright 2016 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package fields provides a view of the fields of a struct that follows the Go
// rules, amended to consider tags and case insensitivity.
//
// Usage
//
// First define a function that interprets tags:
//
// func parseTag(st reflect.StructTag) (name string, keep bool, other interface{}, err error) { ... }
//
// The function's return values describe whether to ignore the field
// completely or provide an alternate name, as well as other data from the
// parse that is stored to avoid re-parsing.
//
// Then define a function to validate the type:
//
// func validate(t reflect.Type) error { ... }
//
// Then, if necessary, define a function to specify leaf types - types
// which should be considered one field and not be recursed into:
//
// func isLeafType(t reflect.Type) bool { ... }
//
// eg:
//
// func isLeafType(t reflect.Type) bool {
// return t == reflect.TypeOf(time.Time{})
// }
//
// Next, construct a Cache, passing your functions. As its name suggests, a
// Cache remembers validation and field information for a type, so subsequent
// calls with the same type are very fast.
//
// cache := fields.NewCache(parseTag, validate, isLeafType)
//
// To get the fields of a struct type as determined by the above rules, call
// the Fields method:
//
// fields, err := cache.Fields(reflect.TypeOf(MyStruct{}))
//
// The return value can be treated as a slice of Fields.
//
// Given a string, such as a key or column name obtained during unmarshalling,
// call Match on the list of fields to find a field whose name is the best
// match:
//
// field := fields.Match(name)
//
// Match looks for an exact match first, then falls back to a case-insensitive
// comparison.
package fields
import (
"bytes"
"reflect"
"sort"
"cloud.google.com/go/internal/atomiccache"
)
// A Field records information about a struct field.
type Field struct {
Name string // effective field name
NameFromTag bool // did Name come from a tag?
Type reflect.Type // field type
Index []int // index sequence, for reflect.Value.FieldByIndex
ParsedTag interface{} // third return value of the parseTag function
nameBytes []byte
equalFold func(s, t []byte) bool
}
type ParseTagFunc func(reflect.StructTag) (name string, keep bool, other interface{}, err error)
type ValidateFunc func(reflect.Type) error
type LeafTypesFunc func(reflect.Type) bool
// A Cache records information about the fields of struct types.
//
// A Cache is safe for use by multiple goroutines.
type Cache struct {
parseTag ParseTagFunc
validate ValidateFunc
leafTypes LeafTypesFunc
cache atomiccache.Cache // from reflect.Type to cacheValue
}
// NewCache constructs a Cache.
//
// Its first argument should be a function that accepts
// a struct tag and returns four values: an alternative name for the field
// extracted from the tag, a boolean saying whether to keep the field or ignore
// it, additional data that is stored with the field information to avoid
// having to parse the tag again, and an error.
//
// Its second argument should be a function that accepts a reflect.Type and
// returns an error if the struct type is invalid in any way. For example, it
// may check that all of the struct field tags are valid, or that all fields
// are of an appropriate type.
func NewCache(parseTag ParseTagFunc, validate ValidateFunc, leafTypes LeafTypesFunc) *Cache {
if parseTag == nil {
parseTag = func(reflect.StructTag) (string, bool, interface{}, error) {
return "", true, nil, nil
}
}
if validate == nil {
validate = func(reflect.Type) error {
return nil
}
}
if leafTypes == nil {
leafTypes = func(reflect.Type) bool {
return false
}
}
return &Cache{
parseTag: parseTag,
validate: validate,
leafTypes: leafTypes,
}
}
// A fieldScan represents an item on the fieldByNameFunc scan work list.
type fieldScan struct {
typ reflect.Type
index []int
}
// Fields returns all the exported fields of t, which must be a struct type. It
// follows the standard Go rules for embedded fields, modified by the presence
// of tags. The result is sorted lexicographically by index.
//
// These rules apply in the absence of tags:
// Anonymous struct fields are treated as if their inner exported fields were
// fields in the outer struct (embedding). The result includes all fields that
// aren't shadowed by fields at higher level of embedding. If more than one
// field with the same name exists at the same level of embedding, it is
// excluded. An anonymous field that is not of struct type is treated as having
// its type as its name.
//
// Tags modify these rules as follows:
// A field's tag is used as its name.
// An anonymous struct field with a name given in its tag is treated as
// a field having that name, rather than an embedded struct (the struct's
// fields will not be returned).
// If more than one field with the same name exists at the same level of embedding,
// but exactly one of them is tagged, then the tagged field is reported and the others
// are ignored.
func (c *Cache) Fields(t reflect.Type) (List, error) {
if t.Kind() != reflect.Struct {
panic("fields: Fields of non-struct type")
}
return c.cachedTypeFields(t)
}
// A List is a list of Fields.
type List []Field
// Match returns the field in the list whose name best matches the supplied
// name, nor nil if no field does. If there is a field with the exact name, it
// is returned. Otherwise the first field (sorted by index) whose name matches
// case-insensitively is returned.
func (l List) Match(name string) *Field {
return l.MatchBytes([]byte(name))
}
// MatchBytes is identical to Match, except that the argument is a byte slice.
func (l List) MatchBytes(name []byte) *Field {
var f *Field
for i := range l {
ff := &l[i]
if bytes.Equal(ff.nameBytes, name) {
return ff
}
if f == nil && ff.equalFold(ff.nameBytes, name) {
f = ff
}
}
return f
}
type cacheValue struct {
fields List
err error
}
// cachedTypeFields is like typeFields but uses a cache to avoid repeated work.
// This code has been copied and modified from
// https://go.googlesource.com/go/+/go1.7.3/src/encoding/json/encode.go.
func (c *Cache) cachedTypeFields(t reflect.Type) (List, error) {
cv := c.cache.Get(t, func() interface{} {
if err := c.validate(t); err != nil {
return cacheValue{nil, err}
}
f, err := c.typeFields(t)
return cacheValue{List(f), err}
}).(cacheValue)
return cv.fields, cv.err
}
func (c *Cache) typeFields(t reflect.Type) ([]Field, error) {
fields, err := c.listFields(t)
if err != nil {
return nil, err
}
sort.Sort(byName(fields))
// Delete all fields that are hidden by the Go rules for embedded fields.
// The fields are sorted in primary order of name, secondary order of field
// index length. So the first field with a given name is the dominant one.
var out []Field
for advance, i := 0, 0; i < len(fields); i += advance {
// One iteration per name.
// Find the sequence of fields with the name of this first field.
fi := fields[i]
name := fi.Name
for advance = 1; i+advance < len(fields); advance++ {
fj := fields[i+advance]
if fj.Name != name {
break
}
}
// Find the dominant field, if any, out of all fields that have the same name.
dominant, ok := dominantField(fields[i : i+advance])
if ok {
out = append(out, dominant)
}
}
sort.Sort(byIndex(out))
return out, nil
}
func (c *Cache) listFields(t reflect.Type) ([]Field, error) {
// This uses the same condition that the Go language does: there must be a unique instance
// of the match at a given depth level. If there are multiple instances of a match at the
// same depth, they annihilate each other and inhibit any possible match at a lower level.
// The algorithm is breadth first search, one depth level at a time.
// The current and next slices are work queues:
// current lists the fields to visit on this depth level,
// and next lists the fields on the next lower level.
current := []fieldScan{}
next := []fieldScan{{typ: t}}
// nextCount records the number of times an embedded type has been
// encountered and considered for queueing in the 'next' slice.
// We only queue the first one, but we increment the count on each.
// If a struct type T can be reached more than once at a given depth level,
// then it annihilates itself and need not be considered at all when we
// process that next depth level.
var nextCount map[reflect.Type]int
// visited records the structs that have been considered already.
// Embedded pointer fields can create cycles in the graph of
// reachable embedded types; visited avoids following those cycles.
// It also avoids duplicated effort: if we didn't find the field in an
// embedded type T at level 2, we won't find it in one at level 4 either.
visited := map[reflect.Type]bool{}
var fields []Field // Fields found.
for len(next) > 0 {
current, next = next, current[:0]
count := nextCount
nextCount = nil
// Process all the fields at this depth, now listed in 'current'.
// The loop queues embedded fields found in 'next', for processing during the next
// iteration. The multiplicity of the 'current' field counts is recorded
// in 'count'; the multiplicity of the 'next' field counts is recorded in 'nextCount'.
for _, scan := range current {
t := scan.typ
if visited[t] {
// We've looked through this type before, at a higher level.
// That higher level would shadow the lower level we're now at,
// so this one can't be useful to us. Ignore it.
continue
}
visited[t] = true
for i := 0; i < t.NumField(); i++ {
f := t.Field(i)
exported := (f.PkgPath == "")
// If a named field is unexported, ignore it. An anonymous
// unexported field is processed, because it may contain
// exported fields, which are visible.
if !exported && !f.Anonymous {
continue
}
// Examine the tag.
tagName, keep, other, err := c.parseTag(f.Tag)
if err != nil {
return nil, err
}
if !keep {
continue
}
if c.leafTypes(f.Type) {
fields = append(fields, newField(f, tagName, other, scan.index, i))
continue
}
var ntyp reflect.Type
if f.Anonymous {
// Anonymous field of type T or *T.
ntyp = f.Type
if ntyp.Kind() == reflect.Ptr {
ntyp = ntyp.Elem()
}
}
// Record fields with a tag name, non-anonymous fields, or
// anonymous non-struct fields.
if tagName != "" || ntyp == nil || ntyp.Kind() != reflect.Struct {
if !exported {
continue
}
fields = append(fields, newField(f, tagName, other, scan.index, i))
if count[t] > 1 {
// If there were multiple instances, add a second,
// so that the annihilation code will see a duplicate.
fields = append(fields, fields[len(fields)-1])
}
continue
}
// Queue embedded struct fields for processing with next level,
// but only if the embedded types haven't already been queued.
if nextCount[ntyp] > 0 {
nextCount[ntyp] = 2 // exact multiple doesn't matter
continue
}
if nextCount == nil {
nextCount = map[reflect.Type]int{}
}
nextCount[ntyp] = 1
if count[t] > 1 {
nextCount[ntyp] = 2 // exact multiple doesn't matter
}
var index []int
index = append(index, scan.index...)
index = append(index, i)
next = append(next, fieldScan{ntyp, index})
}
}
}
return fields, nil
}
func newField(f reflect.StructField, tagName string, other interface{}, index []int, i int) Field {
name := tagName
if name == "" {
name = f.Name
}
sf := Field{
Name: name,
NameFromTag: tagName != "",
Type: f.Type,
ParsedTag: other,
nameBytes: []byte(name),
}
sf.equalFold = foldFunc(sf.nameBytes)
sf.Index = append(sf.Index, index...)
sf.Index = append(sf.Index, i)
return sf
}
// byName sorts fields using the following criteria, in order:
// 1. name
// 2. embedding depth
// 3. tag presence (preferring a tagged field)
// 4. index sequence.
type byName []Field
func (x byName) Len() int { return len(x) }
func (x byName) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
func (x byName) Less(i, j int) bool {
if x[i].Name != x[j].Name {
return x[i].Name < x[j].Name
}
if len(x[i].Index) != len(x[j].Index) {
return len(x[i].Index) < len(x[j].Index)
}
if x[i].NameFromTag != x[j].NameFromTag {
return x[i].NameFromTag
}
return byIndex(x).Less(i, j)
}
// byIndex sorts field by index sequence.
type byIndex []Field
func (x byIndex) Len() int { return len(x) }
func (x byIndex) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
func (x byIndex) Less(i, j int) bool {
xi := x[i].Index
xj := x[j].Index
ln := len(xi)
if l := len(xj); l < ln {
ln = l
}
for k := 0; k < ln; k++ {
if xi[k] != xj[k] {
return xi[k] < xj[k]
}
}
return len(xi) < len(xj)
}
// dominantField looks through the fields, all of which are known to have the
// same name, to find the single field that dominates the others using Go's
// embedding rules, modified by the presence of tags. If there are multiple
// top-level fields, the boolean will be false: This condition is an error in
// Go and we skip all the fields.
func dominantField(fs []Field) (Field, bool) {
// The fields are sorted in increasing index-length order, then by presence of tag.
// That means that the first field is the dominant one. We need only check
// for error cases: two fields at top level, either both tagged or neither tagged.
if len(fs) > 1 && len(fs[0].Index) == len(fs[1].Index) && fs[0].NameFromTag == fs[1].NameFromTag {
return Field{}, false
}
return fs[0], true
}