2
2
mirror of https://github.com/octoleo/restic.git synced 2024-12-23 19:38:57 +00:00
restic/vendor/golang.org/x/crypto/ocsp/ocsp.go
2018-05-07 22:47:39 +02:00

782 lines
24 KiB
Go

// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package ocsp parses OCSP responses as specified in RFC 2560. OCSP responses
// are signed messages attesting to the validity of a certificate for a small
// period of time. This is used to manage revocation for X.509 certificates.
package ocsp // import "golang.org/x/crypto/ocsp"
import (
"crypto"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rand"
"crypto/rsa"
_ "crypto/sha1"
_ "crypto/sha256"
_ "crypto/sha512"
"crypto/x509"
"crypto/x509/pkix"
"encoding/asn1"
"errors"
"fmt"
"math/big"
"strconv"
"time"
)
var idPKIXOCSPBasic = asn1.ObjectIdentifier([]int{1, 3, 6, 1, 5, 5, 7, 48, 1, 1})
// ResponseStatus contains the result of an OCSP request. See
// https://tools.ietf.org/html/rfc6960#section-2.3
type ResponseStatus int
const (
Success ResponseStatus = 0
Malformed ResponseStatus = 1
InternalError ResponseStatus = 2
TryLater ResponseStatus = 3
// Status code four is unused in OCSP. See
// https://tools.ietf.org/html/rfc6960#section-4.2.1
SignatureRequired ResponseStatus = 5
Unauthorized ResponseStatus = 6
)
func (r ResponseStatus) String() string {
switch r {
case Success:
return "success"
case Malformed:
return "malformed"
case InternalError:
return "internal error"
case TryLater:
return "try later"
case SignatureRequired:
return "signature required"
case Unauthorized:
return "unauthorized"
default:
return "unknown OCSP status: " + strconv.Itoa(int(r))
}
}
// ResponseError is an error that may be returned by ParseResponse to indicate
// that the response itself is an error, not just that its indicating that a
// certificate is revoked, unknown, etc.
type ResponseError struct {
Status ResponseStatus
}
func (r ResponseError) Error() string {
return "ocsp: error from server: " + r.Status.String()
}
// These are internal structures that reflect the ASN.1 structure of an OCSP
// response. See RFC 2560, section 4.2.
type certID struct {
HashAlgorithm pkix.AlgorithmIdentifier
NameHash []byte
IssuerKeyHash []byte
SerialNumber *big.Int
}
// https://tools.ietf.org/html/rfc2560#section-4.1.1
type ocspRequest struct {
TBSRequest tbsRequest
}
type tbsRequest struct {
Version int `asn1:"explicit,tag:0,default:0,optional"`
RequestorName pkix.RDNSequence `asn1:"explicit,tag:1,optional"`
RequestList []request
}
type request struct {
Cert certID
}
type responseASN1 struct {
Status asn1.Enumerated
Response responseBytes `asn1:"explicit,tag:0,optional"`
}
type responseBytes struct {
ResponseType asn1.ObjectIdentifier
Response []byte
}
type basicResponse struct {
TBSResponseData responseData
SignatureAlgorithm pkix.AlgorithmIdentifier
Signature asn1.BitString
Certificates []asn1.RawValue `asn1:"explicit,tag:0,optional"`
}
type responseData struct {
Raw asn1.RawContent
Version int `asn1:"optional,default:0,explicit,tag:0"`
RawResponderID asn1.RawValue
ProducedAt time.Time `asn1:"generalized"`
Responses []singleResponse
}
type singleResponse struct {
CertID certID
Good asn1.Flag `asn1:"tag:0,optional"`
Revoked revokedInfo `asn1:"tag:1,optional"`
Unknown asn1.Flag `asn1:"tag:2,optional"`
ThisUpdate time.Time `asn1:"generalized"`
NextUpdate time.Time `asn1:"generalized,explicit,tag:0,optional"`
SingleExtensions []pkix.Extension `asn1:"explicit,tag:1,optional"`
}
type revokedInfo struct {
RevocationTime time.Time `asn1:"generalized"`
Reason asn1.Enumerated `asn1:"explicit,tag:0,optional"`
}
var (
oidSignatureMD2WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 2}
oidSignatureMD5WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 4}
oidSignatureSHA1WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 5}
oidSignatureSHA256WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 11}
oidSignatureSHA384WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 12}
oidSignatureSHA512WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 13}
oidSignatureDSAWithSHA1 = asn1.ObjectIdentifier{1, 2, 840, 10040, 4, 3}
oidSignatureDSAWithSHA256 = asn1.ObjectIdentifier{2, 16, 840, 1, 101, 3, 4, 3, 2}
oidSignatureECDSAWithSHA1 = asn1.ObjectIdentifier{1, 2, 840, 10045, 4, 1}
oidSignatureECDSAWithSHA256 = asn1.ObjectIdentifier{1, 2, 840, 10045, 4, 3, 2}
oidSignatureECDSAWithSHA384 = asn1.ObjectIdentifier{1, 2, 840, 10045, 4, 3, 3}
oidSignatureECDSAWithSHA512 = asn1.ObjectIdentifier{1, 2, 840, 10045, 4, 3, 4}
)
var hashOIDs = map[crypto.Hash]asn1.ObjectIdentifier{
crypto.SHA1: asn1.ObjectIdentifier([]int{1, 3, 14, 3, 2, 26}),
crypto.SHA256: asn1.ObjectIdentifier([]int{2, 16, 840, 1, 101, 3, 4, 2, 1}),
crypto.SHA384: asn1.ObjectIdentifier([]int{2, 16, 840, 1, 101, 3, 4, 2, 2}),
crypto.SHA512: asn1.ObjectIdentifier([]int{2, 16, 840, 1, 101, 3, 4, 2, 3}),
}
// TODO(rlb): This is also from crypto/x509, so same comment as AGL's below
var signatureAlgorithmDetails = []struct {
algo x509.SignatureAlgorithm
oid asn1.ObjectIdentifier
pubKeyAlgo x509.PublicKeyAlgorithm
hash crypto.Hash
}{
{x509.MD2WithRSA, oidSignatureMD2WithRSA, x509.RSA, crypto.Hash(0) /* no value for MD2 */},
{x509.MD5WithRSA, oidSignatureMD5WithRSA, x509.RSA, crypto.MD5},
{x509.SHA1WithRSA, oidSignatureSHA1WithRSA, x509.RSA, crypto.SHA1},
{x509.SHA256WithRSA, oidSignatureSHA256WithRSA, x509.RSA, crypto.SHA256},
{x509.SHA384WithRSA, oidSignatureSHA384WithRSA, x509.RSA, crypto.SHA384},
{x509.SHA512WithRSA, oidSignatureSHA512WithRSA, x509.RSA, crypto.SHA512},
{x509.DSAWithSHA1, oidSignatureDSAWithSHA1, x509.DSA, crypto.SHA1},
{x509.DSAWithSHA256, oidSignatureDSAWithSHA256, x509.DSA, crypto.SHA256},
{x509.ECDSAWithSHA1, oidSignatureECDSAWithSHA1, x509.ECDSA, crypto.SHA1},
{x509.ECDSAWithSHA256, oidSignatureECDSAWithSHA256, x509.ECDSA, crypto.SHA256},
{x509.ECDSAWithSHA384, oidSignatureECDSAWithSHA384, x509.ECDSA, crypto.SHA384},
{x509.ECDSAWithSHA512, oidSignatureECDSAWithSHA512, x509.ECDSA, crypto.SHA512},
}
// TODO(rlb): This is also from crypto/x509, so same comment as AGL's below
func signingParamsForPublicKey(pub interface{}, requestedSigAlgo x509.SignatureAlgorithm) (hashFunc crypto.Hash, sigAlgo pkix.AlgorithmIdentifier, err error) {
var pubType x509.PublicKeyAlgorithm
switch pub := pub.(type) {
case *rsa.PublicKey:
pubType = x509.RSA
hashFunc = crypto.SHA256
sigAlgo.Algorithm = oidSignatureSHA256WithRSA
sigAlgo.Parameters = asn1.RawValue{
Tag: 5,
}
case *ecdsa.PublicKey:
pubType = x509.ECDSA
switch pub.Curve {
case elliptic.P224(), elliptic.P256():
hashFunc = crypto.SHA256
sigAlgo.Algorithm = oidSignatureECDSAWithSHA256
case elliptic.P384():
hashFunc = crypto.SHA384
sigAlgo.Algorithm = oidSignatureECDSAWithSHA384
case elliptic.P521():
hashFunc = crypto.SHA512
sigAlgo.Algorithm = oidSignatureECDSAWithSHA512
default:
err = errors.New("x509: unknown elliptic curve")
}
default:
err = errors.New("x509: only RSA and ECDSA keys supported")
}
if err != nil {
return
}
if requestedSigAlgo == 0 {
return
}
found := false
for _, details := range signatureAlgorithmDetails {
if details.algo == requestedSigAlgo {
if details.pubKeyAlgo != pubType {
err = errors.New("x509: requested SignatureAlgorithm does not match private key type")
return
}
sigAlgo.Algorithm, hashFunc = details.oid, details.hash
if hashFunc == 0 {
err = errors.New("x509: cannot sign with hash function requested")
return
}
found = true
break
}
}
if !found {
err = errors.New("x509: unknown SignatureAlgorithm")
}
return
}
// TODO(agl): this is taken from crypto/x509 and so should probably be exported
// from crypto/x509 or crypto/x509/pkix.
func getSignatureAlgorithmFromOID(oid asn1.ObjectIdentifier) x509.SignatureAlgorithm {
for _, details := range signatureAlgorithmDetails {
if oid.Equal(details.oid) {
return details.algo
}
}
return x509.UnknownSignatureAlgorithm
}
// TODO(rlb): This is not taken from crypto/x509, but it's of the same general form.
func getHashAlgorithmFromOID(target asn1.ObjectIdentifier) crypto.Hash {
for hash, oid := range hashOIDs {
if oid.Equal(target) {
return hash
}
}
return crypto.Hash(0)
}
func getOIDFromHashAlgorithm(target crypto.Hash) asn1.ObjectIdentifier {
for hash, oid := range hashOIDs {
if hash == target {
return oid
}
}
return nil
}
// This is the exposed reflection of the internal OCSP structures.
// The status values that can be expressed in OCSP. See RFC 6960.
const (
// Good means that the certificate is valid.
Good = iota
// Revoked means that the certificate has been deliberately revoked.
Revoked
// Unknown means that the OCSP responder doesn't know about the certificate.
Unknown
// ServerFailed is unused and was never used (see
// https://go-review.googlesource.com/#/c/18944). ParseResponse will
// return a ResponseError when an error response is parsed.
ServerFailed
)
// The enumerated reasons for revoking a certificate. See RFC 5280.
const (
Unspecified = 0
KeyCompromise = 1
CACompromise = 2
AffiliationChanged = 3
Superseded = 4
CessationOfOperation = 5
CertificateHold = 6
RemoveFromCRL = 8
PrivilegeWithdrawn = 9
AACompromise = 10
)
// Request represents an OCSP request. See RFC 6960.
type Request struct {
HashAlgorithm crypto.Hash
IssuerNameHash []byte
IssuerKeyHash []byte
SerialNumber *big.Int
}
// Marshal marshals the OCSP request to ASN.1 DER encoded form.
func (req *Request) Marshal() ([]byte, error) {
hashAlg := getOIDFromHashAlgorithm(req.HashAlgorithm)
if hashAlg == nil {
return nil, errors.New("Unknown hash algorithm")
}
return asn1.Marshal(ocspRequest{
tbsRequest{
Version: 0,
RequestList: []request{
{
Cert: certID{
pkix.AlgorithmIdentifier{
Algorithm: hashAlg,
Parameters: asn1.RawValue{Tag: 5 /* ASN.1 NULL */},
},
req.IssuerNameHash,
req.IssuerKeyHash,
req.SerialNumber,
},
},
},
},
})
}
// Response represents an OCSP response containing a single SingleResponse. See
// RFC 6960.
type Response struct {
// Status is one of {Good, Revoked, Unknown}
Status int
SerialNumber *big.Int
ProducedAt, ThisUpdate, NextUpdate, RevokedAt time.Time
RevocationReason int
Certificate *x509.Certificate
// TBSResponseData contains the raw bytes of the signed response. If
// Certificate is nil then this can be used to verify Signature.
TBSResponseData []byte
Signature []byte
SignatureAlgorithm x509.SignatureAlgorithm
// IssuerHash is the hash used to compute the IssuerNameHash and IssuerKeyHash.
// Valid values are crypto.SHA1, crypto.SHA256, crypto.SHA384, and crypto.SHA512.
// If zero, the default is crypto.SHA1.
IssuerHash crypto.Hash
// RawResponderName optionally contains the DER-encoded subject of the
// responder certificate. Exactly one of RawResponderName and
// ResponderKeyHash is set.
RawResponderName []byte
// ResponderKeyHash optionally contains the SHA-1 hash of the
// responder's public key. Exactly one of RawResponderName and
// ResponderKeyHash is set.
ResponderKeyHash []byte
// Extensions contains raw X.509 extensions from the singleExtensions field
// of the OCSP response. When parsing certificates, this can be used to
// extract non-critical extensions that are not parsed by this package. When
// marshaling OCSP responses, the Extensions field is ignored, see
// ExtraExtensions.
Extensions []pkix.Extension
// ExtraExtensions contains extensions to be copied, raw, into any marshaled
// OCSP response (in the singleExtensions field). Values override any
// extensions that would otherwise be produced based on the other fields. The
// ExtraExtensions field is not populated when parsing certificates, see
// Extensions.
ExtraExtensions []pkix.Extension
}
// These are pre-serialized error responses for the various non-success codes
// defined by OCSP. The Unauthorized code in particular can be used by an OCSP
// responder that supports only pre-signed responses as a response to requests
// for certificates with unknown status. See RFC 5019.
var (
MalformedRequestErrorResponse = []byte{0x30, 0x03, 0x0A, 0x01, 0x01}
InternalErrorErrorResponse = []byte{0x30, 0x03, 0x0A, 0x01, 0x02}
TryLaterErrorResponse = []byte{0x30, 0x03, 0x0A, 0x01, 0x03}
SigRequredErrorResponse = []byte{0x30, 0x03, 0x0A, 0x01, 0x05}
UnauthorizedErrorResponse = []byte{0x30, 0x03, 0x0A, 0x01, 0x06}
)
// CheckSignatureFrom checks that the signature in resp is a valid signature
// from issuer. This should only be used if resp.Certificate is nil. Otherwise,
// the OCSP response contained an intermediate certificate that created the
// signature. That signature is checked by ParseResponse and only
// resp.Certificate remains to be validated.
func (resp *Response) CheckSignatureFrom(issuer *x509.Certificate) error {
return issuer.CheckSignature(resp.SignatureAlgorithm, resp.TBSResponseData, resp.Signature)
}
// ParseError results from an invalid OCSP response.
type ParseError string
func (p ParseError) Error() string {
return string(p)
}
// ParseRequest parses an OCSP request in DER form. It only supports
// requests for a single certificate. Signed requests are not supported.
// If a request includes a signature, it will result in a ParseError.
func ParseRequest(bytes []byte) (*Request, error) {
var req ocspRequest
rest, err := asn1.Unmarshal(bytes, &req)
if err != nil {
return nil, err
}
if len(rest) > 0 {
return nil, ParseError("trailing data in OCSP request")
}
if len(req.TBSRequest.RequestList) == 0 {
return nil, ParseError("OCSP request contains no request body")
}
innerRequest := req.TBSRequest.RequestList[0]
hashFunc := getHashAlgorithmFromOID(innerRequest.Cert.HashAlgorithm.Algorithm)
if hashFunc == crypto.Hash(0) {
return nil, ParseError("OCSP request uses unknown hash function")
}
return &Request{
HashAlgorithm: hashFunc,
IssuerNameHash: innerRequest.Cert.NameHash,
IssuerKeyHash: innerRequest.Cert.IssuerKeyHash,
SerialNumber: innerRequest.Cert.SerialNumber,
}, nil
}
// ParseResponse parses an OCSP response in DER form. It only supports
// responses for a single certificate. If the response contains a certificate
// then the signature over the response is checked. If issuer is not nil then
// it will be used to validate the signature or embedded certificate.
//
// Invalid responses and parse failures will result in a ParseError.
// Error responses will result in a ResponseError.
func ParseResponse(bytes []byte, issuer *x509.Certificate) (*Response, error) {
return ParseResponseForCert(bytes, nil, issuer)
}
// ParseResponseForCert parses an OCSP response in DER form and searches for a
// Response relating to cert. If such a Response is found and the OCSP response
// contains a certificate then the signature over the response is checked. If
// issuer is not nil then it will be used to validate the signature or embedded
// certificate.
//
// Invalid responses and parse failures will result in a ParseError.
// Error responses will result in a ResponseError.
func ParseResponseForCert(bytes []byte, cert, issuer *x509.Certificate) (*Response, error) {
var resp responseASN1
rest, err := asn1.Unmarshal(bytes, &resp)
if err != nil {
return nil, err
}
if len(rest) > 0 {
return nil, ParseError("trailing data in OCSP response")
}
if status := ResponseStatus(resp.Status); status != Success {
return nil, ResponseError{status}
}
if !resp.Response.ResponseType.Equal(idPKIXOCSPBasic) {
return nil, ParseError("bad OCSP response type")
}
var basicResp basicResponse
rest, err = asn1.Unmarshal(resp.Response.Response, &basicResp)
if err != nil {
return nil, err
}
if n := len(basicResp.TBSResponseData.Responses); n == 0 || cert == nil && n > 1 {
return nil, ParseError("OCSP response contains bad number of responses")
}
var singleResp singleResponse
if cert == nil {
singleResp = basicResp.TBSResponseData.Responses[0]
} else {
match := false
for _, resp := range basicResp.TBSResponseData.Responses {
if cert.SerialNumber.Cmp(resp.CertID.SerialNumber) == 0 {
singleResp = resp
match = true
break
}
}
if !match {
return nil, ParseError("no response matching the supplied certificate")
}
}
ret := &Response{
TBSResponseData: basicResp.TBSResponseData.Raw,
Signature: basicResp.Signature.RightAlign(),
SignatureAlgorithm: getSignatureAlgorithmFromOID(basicResp.SignatureAlgorithm.Algorithm),
Extensions: singleResp.SingleExtensions,
SerialNumber: singleResp.CertID.SerialNumber,
ProducedAt: basicResp.TBSResponseData.ProducedAt,
ThisUpdate: singleResp.ThisUpdate,
NextUpdate: singleResp.NextUpdate,
}
// Handle the ResponderID CHOICE tag. ResponderID can be flattened into
// TBSResponseData once https://go-review.googlesource.com/34503 has been
// released.
rawResponderID := basicResp.TBSResponseData.RawResponderID
switch rawResponderID.Tag {
case 1: // Name
var rdn pkix.RDNSequence
if rest, err := asn1.Unmarshal(rawResponderID.Bytes, &rdn); err != nil || len(rest) != 0 {
return nil, ParseError("invalid responder name")
}
ret.RawResponderName = rawResponderID.Bytes
case 2: // KeyHash
if rest, err := asn1.Unmarshal(rawResponderID.Bytes, &ret.ResponderKeyHash); err != nil || len(rest) != 0 {
return nil, ParseError("invalid responder key hash")
}
default:
return nil, ParseError("invalid responder id tag")
}
if len(basicResp.Certificates) > 0 {
// Responders should only send a single certificate (if they
// send any) that connects the responder's certificate to the
// original issuer. We accept responses with multiple
// certificates due to a number responders sending them[1], but
// ignore all but the first.
//
// [1] https://github.com/golang/go/issues/21527
ret.Certificate, err = x509.ParseCertificate(basicResp.Certificates[0].FullBytes)
if err != nil {
return nil, err
}
if err := ret.CheckSignatureFrom(ret.Certificate); err != nil {
return nil, ParseError("bad signature on embedded certificate: " + err.Error())
}
if issuer != nil {
if err := issuer.CheckSignature(ret.Certificate.SignatureAlgorithm, ret.Certificate.RawTBSCertificate, ret.Certificate.Signature); err != nil {
return nil, ParseError("bad OCSP signature: " + err.Error())
}
}
} else if issuer != nil {
if err := ret.CheckSignatureFrom(issuer); err != nil {
return nil, ParseError("bad OCSP signature: " + err.Error())
}
}
for _, ext := range singleResp.SingleExtensions {
if ext.Critical {
return nil, ParseError("unsupported critical extension")
}
}
for h, oid := range hashOIDs {
if singleResp.CertID.HashAlgorithm.Algorithm.Equal(oid) {
ret.IssuerHash = h
break
}
}
if ret.IssuerHash == 0 {
return nil, ParseError("unsupported issuer hash algorithm")
}
switch {
case bool(singleResp.Good):
ret.Status = Good
case bool(singleResp.Unknown):
ret.Status = Unknown
default:
ret.Status = Revoked
ret.RevokedAt = singleResp.Revoked.RevocationTime
ret.RevocationReason = int(singleResp.Revoked.Reason)
}
return ret, nil
}
// RequestOptions contains options for constructing OCSP requests.
type RequestOptions struct {
// Hash contains the hash function that should be used when
// constructing the OCSP request. If zero, SHA-1 will be used.
Hash crypto.Hash
}
func (opts *RequestOptions) hash() crypto.Hash {
if opts == nil || opts.Hash == 0 {
// SHA-1 is nearly universally used in OCSP.
return crypto.SHA1
}
return opts.Hash
}
// CreateRequest returns a DER-encoded, OCSP request for the status of cert. If
// opts is nil then sensible defaults are used.
func CreateRequest(cert, issuer *x509.Certificate, opts *RequestOptions) ([]byte, error) {
hashFunc := opts.hash()
// OCSP seems to be the only place where these raw hash identifiers are
// used. I took the following from
// http://msdn.microsoft.com/en-us/library/ff635603.aspx
_, ok := hashOIDs[hashFunc]
if !ok {
return nil, x509.ErrUnsupportedAlgorithm
}
if !hashFunc.Available() {
return nil, x509.ErrUnsupportedAlgorithm
}
h := opts.hash().New()
var publicKeyInfo struct {
Algorithm pkix.AlgorithmIdentifier
PublicKey asn1.BitString
}
if _, err := asn1.Unmarshal(issuer.RawSubjectPublicKeyInfo, &publicKeyInfo); err != nil {
return nil, err
}
h.Write(publicKeyInfo.PublicKey.RightAlign())
issuerKeyHash := h.Sum(nil)
h.Reset()
h.Write(issuer.RawSubject)
issuerNameHash := h.Sum(nil)
req := &Request{
HashAlgorithm: hashFunc,
IssuerNameHash: issuerNameHash,
IssuerKeyHash: issuerKeyHash,
SerialNumber: cert.SerialNumber,
}
return req.Marshal()
}
// CreateResponse returns a DER-encoded OCSP response with the specified contents.
// The fields in the response are populated as follows:
//
// The responder cert is used to populate the responder's name field, and the
// certificate itself is provided alongside the OCSP response signature.
//
// The issuer cert is used to puplate the IssuerNameHash and IssuerKeyHash fields.
//
// The template is used to populate the SerialNumber, Status, RevokedAt,
// RevocationReason, ThisUpdate, and NextUpdate fields.
//
// If template.IssuerHash is not set, SHA1 will be used.
//
// The ProducedAt date is automatically set to the current date, to the nearest minute.
func CreateResponse(issuer, responderCert *x509.Certificate, template Response, priv crypto.Signer) ([]byte, error) {
var publicKeyInfo struct {
Algorithm pkix.AlgorithmIdentifier
PublicKey asn1.BitString
}
if _, err := asn1.Unmarshal(issuer.RawSubjectPublicKeyInfo, &publicKeyInfo); err != nil {
return nil, err
}
if template.IssuerHash == 0 {
template.IssuerHash = crypto.SHA1
}
hashOID := getOIDFromHashAlgorithm(template.IssuerHash)
if hashOID == nil {
return nil, errors.New("unsupported issuer hash algorithm")
}
if !template.IssuerHash.Available() {
return nil, fmt.Errorf("issuer hash algorithm %v not linked into binary", template.IssuerHash)
}
h := template.IssuerHash.New()
h.Write(publicKeyInfo.PublicKey.RightAlign())
issuerKeyHash := h.Sum(nil)
h.Reset()
h.Write(issuer.RawSubject)
issuerNameHash := h.Sum(nil)
innerResponse := singleResponse{
CertID: certID{
HashAlgorithm: pkix.AlgorithmIdentifier{
Algorithm: hashOID,
Parameters: asn1.RawValue{Tag: 5 /* ASN.1 NULL */},
},
NameHash: issuerNameHash,
IssuerKeyHash: issuerKeyHash,
SerialNumber: template.SerialNumber,
},
ThisUpdate: template.ThisUpdate.UTC(),
NextUpdate: template.NextUpdate.UTC(),
SingleExtensions: template.ExtraExtensions,
}
switch template.Status {
case Good:
innerResponse.Good = true
case Unknown:
innerResponse.Unknown = true
case Revoked:
innerResponse.Revoked = revokedInfo{
RevocationTime: template.RevokedAt.UTC(),
Reason: asn1.Enumerated(template.RevocationReason),
}
}
rawResponderID := asn1.RawValue{
Class: 2, // context-specific
Tag: 1, // Name (explicit tag)
IsCompound: true,
Bytes: responderCert.RawSubject,
}
tbsResponseData := responseData{
Version: 0,
RawResponderID: rawResponderID,
ProducedAt: time.Now().Truncate(time.Minute).UTC(),
Responses: []singleResponse{innerResponse},
}
tbsResponseDataDER, err := asn1.Marshal(tbsResponseData)
if err != nil {
return nil, err
}
hashFunc, signatureAlgorithm, err := signingParamsForPublicKey(priv.Public(), template.SignatureAlgorithm)
if err != nil {
return nil, err
}
responseHash := hashFunc.New()
responseHash.Write(tbsResponseDataDER)
signature, err := priv.Sign(rand.Reader, responseHash.Sum(nil), hashFunc)
if err != nil {
return nil, err
}
response := basicResponse{
TBSResponseData: tbsResponseData,
SignatureAlgorithm: signatureAlgorithm,
Signature: asn1.BitString{
Bytes: signature,
BitLength: 8 * len(signature),
},
}
if template.Certificate != nil {
response.Certificates = []asn1.RawValue{
{FullBytes: template.Certificate.Raw},
}
}
responseDER, err := asn1.Marshal(response)
if err != nil {
return nil, err
}
return asn1.Marshal(responseASN1{
Status: asn1.Enumerated(Success),
Response: responseBytes{
ResponseType: idPKIXOCSPBasic,
Response: responseDER,
},
})
}