2
2
mirror of https://github.com/octoleo/restic.git synced 2024-12-23 19:38:57 +00:00
restic/vendor/golang.org/x/net/http2/server.go
Alexander Neumann 946c8399e2 Update dependenciess
Exclude minio-go for now (pin to 3.x.y).
2017-12-03 21:22:33 +01:00

2889 lines
88 KiB
Go

// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// TODO: turn off the serve goroutine when idle, so
// an idle conn only has the readFrames goroutine active. (which could
// also be optimized probably to pin less memory in crypto/tls). This
// would involve tracking when the serve goroutine is active (atomic
// int32 read/CAS probably?) and starting it up when frames arrive,
// and shutting it down when all handlers exit. the occasional PING
// packets could use time.AfterFunc to call sc.wakeStartServeLoop()
// (which is a no-op if already running) and then queue the PING write
// as normal. The serve loop would then exit in most cases (if no
// Handlers running) and not be woken up again until the PING packet
// returns.
// TODO (maybe): add a mechanism for Handlers to going into
// half-closed-local mode (rw.(io.Closer) test?) but not exit their
// handler, and continue to be able to read from the
// Request.Body. This would be a somewhat semantic change from HTTP/1
// (or at least what we expose in net/http), so I'd probably want to
// add it there too. For now, this package says that returning from
// the Handler ServeHTTP function means you're both done reading and
// done writing, without a way to stop just one or the other.
package http2
import (
"bufio"
"bytes"
"crypto/tls"
"errors"
"fmt"
"io"
"log"
"math"
"net"
"net/http"
"net/textproto"
"net/url"
"os"
"reflect"
"runtime"
"strconv"
"strings"
"sync"
"time"
"golang.org/x/net/http2/hpack"
)
const (
prefaceTimeout = 10 * time.Second
firstSettingsTimeout = 2 * time.Second // should be in-flight with preface anyway
handlerChunkWriteSize = 4 << 10
defaultMaxStreams = 250 // TODO: make this 100 as the GFE seems to?
)
var (
errClientDisconnected = errors.New("client disconnected")
errClosedBody = errors.New("body closed by handler")
errHandlerComplete = errors.New("http2: request body closed due to handler exiting")
errStreamClosed = errors.New("http2: stream closed")
)
var responseWriterStatePool = sync.Pool{
New: func() interface{} {
rws := &responseWriterState{}
rws.bw = bufio.NewWriterSize(chunkWriter{rws}, handlerChunkWriteSize)
return rws
},
}
// Test hooks.
var (
testHookOnConn func()
testHookGetServerConn func(*serverConn)
testHookOnPanicMu *sync.Mutex // nil except in tests
testHookOnPanic func(sc *serverConn, panicVal interface{}) (rePanic bool)
)
// Server is an HTTP/2 server.
type Server struct {
// MaxHandlers limits the number of http.Handler ServeHTTP goroutines
// which may run at a time over all connections.
// Negative or zero no limit.
// TODO: implement
MaxHandlers int
// MaxConcurrentStreams optionally specifies the number of
// concurrent streams that each client may have open at a
// time. This is unrelated to the number of http.Handler goroutines
// which may be active globally, which is MaxHandlers.
// If zero, MaxConcurrentStreams defaults to at least 100, per
// the HTTP/2 spec's recommendations.
MaxConcurrentStreams uint32
// MaxReadFrameSize optionally specifies the largest frame
// this server is willing to read. A valid value is between
// 16k and 16M, inclusive. If zero or otherwise invalid, a
// default value is used.
MaxReadFrameSize uint32
// PermitProhibitedCipherSuites, if true, permits the use of
// cipher suites prohibited by the HTTP/2 spec.
PermitProhibitedCipherSuites bool
// IdleTimeout specifies how long until idle clients should be
// closed with a GOAWAY frame. PING frames are not considered
// activity for the purposes of IdleTimeout.
IdleTimeout time.Duration
// MaxUploadBufferPerConnection is the size of the initial flow
// control window for each connections. The HTTP/2 spec does not
// allow this to be smaller than 65535 or larger than 2^32-1.
// If the value is outside this range, a default value will be
// used instead.
MaxUploadBufferPerConnection int32
// MaxUploadBufferPerStream is the size of the initial flow control
// window for each stream. The HTTP/2 spec does not allow this to
// be larger than 2^32-1. If the value is zero or larger than the
// maximum, a default value will be used instead.
MaxUploadBufferPerStream int32
// NewWriteScheduler constructs a write scheduler for a connection.
// If nil, a default scheduler is chosen.
NewWriteScheduler func() WriteScheduler
// Internal state. This is a pointer (rather than embedded directly)
// so that we don't embed a Mutex in this struct, which will make the
// struct non-copyable, which might break some callers.
state *serverInternalState
}
func (s *Server) initialConnRecvWindowSize() int32 {
if s.MaxUploadBufferPerConnection > initialWindowSize {
return s.MaxUploadBufferPerConnection
}
return 1 << 20
}
func (s *Server) initialStreamRecvWindowSize() int32 {
if s.MaxUploadBufferPerStream > 0 {
return s.MaxUploadBufferPerStream
}
return 1 << 20
}
func (s *Server) maxReadFrameSize() uint32 {
if v := s.MaxReadFrameSize; v >= minMaxFrameSize && v <= maxFrameSize {
return v
}
return defaultMaxReadFrameSize
}
func (s *Server) maxConcurrentStreams() uint32 {
if v := s.MaxConcurrentStreams; v > 0 {
return v
}
return defaultMaxStreams
}
type serverInternalState struct {
mu sync.Mutex
activeConns map[*serverConn]struct{}
}
func (s *serverInternalState) registerConn(sc *serverConn) {
if s == nil {
return // if the Server was used without calling ConfigureServer
}
s.mu.Lock()
s.activeConns[sc] = struct{}{}
s.mu.Unlock()
}
func (s *serverInternalState) unregisterConn(sc *serverConn) {
if s == nil {
return // if the Server was used without calling ConfigureServer
}
s.mu.Lock()
delete(s.activeConns, sc)
s.mu.Unlock()
}
func (s *serverInternalState) startGracefulShutdown() {
if s == nil {
return // if the Server was used without calling ConfigureServer
}
s.mu.Lock()
for sc := range s.activeConns {
sc.startGracefulShutdown()
}
s.mu.Unlock()
}
// ConfigureServer adds HTTP/2 support to a net/http Server.
//
// The configuration conf may be nil.
//
// ConfigureServer must be called before s begins serving.
func ConfigureServer(s *http.Server, conf *Server) error {
if s == nil {
panic("nil *http.Server")
}
if conf == nil {
conf = new(Server)
}
conf.state = &serverInternalState{activeConns: make(map[*serverConn]struct{})}
if err := configureServer18(s, conf); err != nil {
return err
}
if err := configureServer19(s, conf); err != nil {
return err
}
if s.TLSConfig == nil {
s.TLSConfig = new(tls.Config)
} else if s.TLSConfig.CipherSuites != nil {
// If they already provided a CipherSuite list, return
// an error if it has a bad order or is missing
// ECDHE_RSA_WITH_AES_128_GCM_SHA256 or ECDHE_ECDSA_WITH_AES_128_GCM_SHA256.
haveRequired := false
sawBad := false
for i, cs := range s.TLSConfig.CipherSuites {
switch cs {
case tls.TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
// Alternative MTI cipher to not discourage ECDSA-only servers.
// See http://golang.org/cl/30721 for further information.
tls.TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256:
haveRequired = true
}
if isBadCipher(cs) {
sawBad = true
} else if sawBad {
return fmt.Errorf("http2: TLSConfig.CipherSuites index %d contains an HTTP/2-approved cipher suite (%#04x), but it comes after unapproved cipher suites. With this configuration, clients that don't support previous, approved cipher suites may be given an unapproved one and reject the connection.", i, cs)
}
}
if !haveRequired {
return fmt.Errorf("http2: TLSConfig.CipherSuites is missing an HTTP/2-required AES_128_GCM_SHA256 cipher.")
}
}
// Note: not setting MinVersion to tls.VersionTLS12,
// as we don't want to interfere with HTTP/1.1 traffic
// on the user's server. We enforce TLS 1.2 later once
// we accept a connection. Ideally this should be done
// during next-proto selection, but using TLS <1.2 with
// HTTP/2 is still the client's bug.
s.TLSConfig.PreferServerCipherSuites = true
haveNPN := false
for _, p := range s.TLSConfig.NextProtos {
if p == NextProtoTLS {
haveNPN = true
break
}
}
if !haveNPN {
s.TLSConfig.NextProtos = append(s.TLSConfig.NextProtos, NextProtoTLS)
}
if s.TLSNextProto == nil {
s.TLSNextProto = map[string]func(*http.Server, *tls.Conn, http.Handler){}
}
protoHandler := func(hs *http.Server, c *tls.Conn, h http.Handler) {
if testHookOnConn != nil {
testHookOnConn()
}
conf.ServeConn(c, &ServeConnOpts{
Handler: h,
BaseConfig: hs,
})
}
s.TLSNextProto[NextProtoTLS] = protoHandler
return nil
}
// ServeConnOpts are options for the Server.ServeConn method.
type ServeConnOpts struct {
// BaseConfig optionally sets the base configuration
// for values. If nil, defaults are used.
BaseConfig *http.Server
// Handler specifies which handler to use for processing
// requests. If nil, BaseConfig.Handler is used. If BaseConfig
// or BaseConfig.Handler is nil, http.DefaultServeMux is used.
Handler http.Handler
}
func (o *ServeConnOpts) baseConfig() *http.Server {
if o != nil && o.BaseConfig != nil {
return o.BaseConfig
}
return new(http.Server)
}
func (o *ServeConnOpts) handler() http.Handler {
if o != nil {
if o.Handler != nil {
return o.Handler
}
if o.BaseConfig != nil && o.BaseConfig.Handler != nil {
return o.BaseConfig.Handler
}
}
return http.DefaultServeMux
}
// ServeConn serves HTTP/2 requests on the provided connection and
// blocks until the connection is no longer readable.
//
// ServeConn starts speaking HTTP/2 assuming that c has not had any
// reads or writes. It writes its initial settings frame and expects
// to be able to read the preface and settings frame from the
// client. If c has a ConnectionState method like a *tls.Conn, the
// ConnectionState is used to verify the TLS ciphersuite and to set
// the Request.TLS field in Handlers.
//
// ServeConn does not support h2c by itself. Any h2c support must be
// implemented in terms of providing a suitably-behaving net.Conn.
//
// The opts parameter is optional. If nil, default values are used.
func (s *Server) ServeConn(c net.Conn, opts *ServeConnOpts) {
baseCtx, cancel := serverConnBaseContext(c, opts)
defer cancel()
sc := &serverConn{
srv: s,
hs: opts.baseConfig(),
conn: c,
baseCtx: baseCtx,
remoteAddrStr: c.RemoteAddr().String(),
bw: newBufferedWriter(c),
handler: opts.handler(),
streams: make(map[uint32]*stream),
readFrameCh: make(chan readFrameResult),
wantWriteFrameCh: make(chan FrameWriteRequest, 8),
serveMsgCh: make(chan interface{}, 8),
wroteFrameCh: make(chan frameWriteResult, 1), // buffered; one send in writeFrameAsync
bodyReadCh: make(chan bodyReadMsg), // buffering doesn't matter either way
doneServing: make(chan struct{}),
clientMaxStreams: math.MaxUint32, // Section 6.5.2: "Initially, there is no limit to this value"
advMaxStreams: s.maxConcurrentStreams(),
initialStreamSendWindowSize: initialWindowSize,
maxFrameSize: initialMaxFrameSize,
headerTableSize: initialHeaderTableSize,
serveG: newGoroutineLock(),
pushEnabled: true,
}
s.state.registerConn(sc)
defer s.state.unregisterConn(sc)
// The net/http package sets the write deadline from the
// http.Server.WriteTimeout during the TLS handshake, but then
// passes the connection off to us with the deadline already set.
// Write deadlines are set per stream in serverConn.newStream.
// Disarm the net.Conn write deadline here.
if sc.hs.WriteTimeout != 0 {
sc.conn.SetWriteDeadline(time.Time{})
}
if s.NewWriteScheduler != nil {
sc.writeSched = s.NewWriteScheduler()
} else {
sc.writeSched = NewRandomWriteScheduler()
}
// These start at the RFC-specified defaults. If there is a higher
// configured value for inflow, that will be updated when we send a
// WINDOW_UPDATE shortly after sending SETTINGS.
sc.flow.add(initialWindowSize)
sc.inflow.add(initialWindowSize)
sc.hpackEncoder = hpack.NewEncoder(&sc.headerWriteBuf)
fr := NewFramer(sc.bw, c)
fr.ReadMetaHeaders = hpack.NewDecoder(initialHeaderTableSize, nil)
fr.MaxHeaderListSize = sc.maxHeaderListSize()
fr.SetMaxReadFrameSize(s.maxReadFrameSize())
sc.framer = fr
if tc, ok := c.(connectionStater); ok {
sc.tlsState = new(tls.ConnectionState)
*sc.tlsState = tc.ConnectionState()
// 9.2 Use of TLS Features
// An implementation of HTTP/2 over TLS MUST use TLS
// 1.2 or higher with the restrictions on feature set
// and cipher suite described in this section. Due to
// implementation limitations, it might not be
// possible to fail TLS negotiation. An endpoint MUST
// immediately terminate an HTTP/2 connection that
// does not meet the TLS requirements described in
// this section with a connection error (Section
// 5.4.1) of type INADEQUATE_SECURITY.
if sc.tlsState.Version < tls.VersionTLS12 {
sc.rejectConn(ErrCodeInadequateSecurity, "TLS version too low")
return
}
if sc.tlsState.ServerName == "" {
// Client must use SNI, but we don't enforce that anymore,
// since it was causing problems when connecting to bare IP
// addresses during development.
//
// TODO: optionally enforce? Or enforce at the time we receive
// a new request, and verify the the ServerName matches the :authority?
// But that precludes proxy situations, perhaps.
//
// So for now, do nothing here again.
}
if !s.PermitProhibitedCipherSuites && isBadCipher(sc.tlsState.CipherSuite) {
// "Endpoints MAY choose to generate a connection error
// (Section 5.4.1) of type INADEQUATE_SECURITY if one of
// the prohibited cipher suites are negotiated."
//
// We choose that. In my opinion, the spec is weak
// here. It also says both parties must support at least
// TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 so there's no
// excuses here. If we really must, we could allow an
// "AllowInsecureWeakCiphers" option on the server later.
// Let's see how it plays out first.
sc.rejectConn(ErrCodeInadequateSecurity, fmt.Sprintf("Prohibited TLS 1.2 Cipher Suite: %x", sc.tlsState.CipherSuite))
return
}
}
if hook := testHookGetServerConn; hook != nil {
hook(sc)
}
sc.serve()
}
func (sc *serverConn) rejectConn(err ErrCode, debug string) {
sc.vlogf("http2: server rejecting conn: %v, %s", err, debug)
// ignoring errors. hanging up anyway.
sc.framer.WriteGoAway(0, err, []byte(debug))
sc.bw.Flush()
sc.conn.Close()
}
type serverConn struct {
// Immutable:
srv *Server
hs *http.Server
conn net.Conn
bw *bufferedWriter // writing to conn
handler http.Handler
baseCtx contextContext
framer *Framer
doneServing chan struct{} // closed when serverConn.serve ends
readFrameCh chan readFrameResult // written by serverConn.readFrames
wantWriteFrameCh chan FrameWriteRequest // from handlers -> serve
wroteFrameCh chan frameWriteResult // from writeFrameAsync -> serve, tickles more frame writes
bodyReadCh chan bodyReadMsg // from handlers -> serve
serveMsgCh chan interface{} // misc messages & code to send to / run on the serve loop
flow flow // conn-wide (not stream-specific) outbound flow control
inflow flow // conn-wide inbound flow control
tlsState *tls.ConnectionState // shared by all handlers, like net/http
remoteAddrStr string
writeSched WriteScheduler
// Everything following is owned by the serve loop; use serveG.check():
serveG goroutineLock // used to verify funcs are on serve()
pushEnabled bool
sawFirstSettings bool // got the initial SETTINGS frame after the preface
needToSendSettingsAck bool
unackedSettings int // how many SETTINGS have we sent without ACKs?
clientMaxStreams uint32 // SETTINGS_MAX_CONCURRENT_STREAMS from client (our PUSH_PROMISE limit)
advMaxStreams uint32 // our SETTINGS_MAX_CONCURRENT_STREAMS advertised the client
curClientStreams uint32 // number of open streams initiated by the client
curPushedStreams uint32 // number of open streams initiated by server push
maxClientStreamID uint32 // max ever seen from client (odd), or 0 if there have been no client requests
maxPushPromiseID uint32 // ID of the last push promise (even), or 0 if there have been no pushes
streams map[uint32]*stream
initialStreamSendWindowSize int32
maxFrameSize int32
headerTableSize uint32
peerMaxHeaderListSize uint32 // zero means unknown (default)
canonHeader map[string]string // http2-lower-case -> Go-Canonical-Case
writingFrame bool // started writing a frame (on serve goroutine or separate)
writingFrameAsync bool // started a frame on its own goroutine but haven't heard back on wroteFrameCh
needsFrameFlush bool // last frame write wasn't a flush
inGoAway bool // we've started to or sent GOAWAY
inFrameScheduleLoop bool // whether we're in the scheduleFrameWrite loop
needToSendGoAway bool // we need to schedule a GOAWAY frame write
goAwayCode ErrCode
shutdownTimer *time.Timer // nil until used
idleTimer *time.Timer // nil if unused
// Owned by the writeFrameAsync goroutine:
headerWriteBuf bytes.Buffer
hpackEncoder *hpack.Encoder
// Used by startGracefulShutdown.
shutdownOnce sync.Once
}
func (sc *serverConn) maxHeaderListSize() uint32 {
n := sc.hs.MaxHeaderBytes
if n <= 0 {
n = http.DefaultMaxHeaderBytes
}
// http2's count is in a slightly different unit and includes 32 bytes per pair.
// So, take the net/http.Server value and pad it up a bit, assuming 10 headers.
const perFieldOverhead = 32 // per http2 spec
const typicalHeaders = 10 // conservative
return uint32(n + typicalHeaders*perFieldOverhead)
}
func (sc *serverConn) curOpenStreams() uint32 {
sc.serveG.check()
return sc.curClientStreams + sc.curPushedStreams
}
// stream represents a stream. This is the minimal metadata needed by
// the serve goroutine. Most of the actual stream state is owned by
// the http.Handler's goroutine in the responseWriter. Because the
// responseWriter's responseWriterState is recycled at the end of a
// handler, this struct intentionally has no pointer to the
// *responseWriter{,State} itself, as the Handler ending nils out the
// responseWriter's state field.
type stream struct {
// immutable:
sc *serverConn
id uint32
body *pipe // non-nil if expecting DATA frames
cw closeWaiter // closed wait stream transitions to closed state
ctx contextContext
cancelCtx func()
// owned by serverConn's serve loop:
bodyBytes int64 // body bytes seen so far
declBodyBytes int64 // or -1 if undeclared
flow flow // limits writing from Handler to client
inflow flow // what the client is allowed to POST/etc to us
parent *stream // or nil
numTrailerValues int64
weight uint8
state streamState
resetQueued bool // RST_STREAM queued for write; set by sc.resetStream
gotTrailerHeader bool // HEADER frame for trailers was seen
wroteHeaders bool // whether we wrote headers (not status 100)
writeDeadline *time.Timer // nil if unused
trailer http.Header // accumulated trailers
reqTrailer http.Header // handler's Request.Trailer
}
func (sc *serverConn) Framer() *Framer { return sc.framer }
func (sc *serverConn) CloseConn() error { return sc.conn.Close() }
func (sc *serverConn) Flush() error { return sc.bw.Flush() }
func (sc *serverConn) HeaderEncoder() (*hpack.Encoder, *bytes.Buffer) {
return sc.hpackEncoder, &sc.headerWriteBuf
}
func (sc *serverConn) state(streamID uint32) (streamState, *stream) {
sc.serveG.check()
// http://tools.ietf.org/html/rfc7540#section-5.1
if st, ok := sc.streams[streamID]; ok {
return st.state, st
}
// "The first use of a new stream identifier implicitly closes all
// streams in the "idle" state that might have been initiated by
// that peer with a lower-valued stream identifier. For example, if
// a client sends a HEADERS frame on stream 7 without ever sending a
// frame on stream 5, then stream 5 transitions to the "closed"
// state when the first frame for stream 7 is sent or received."
if streamID%2 == 1 {
if streamID <= sc.maxClientStreamID {
return stateClosed, nil
}
} else {
if streamID <= sc.maxPushPromiseID {
return stateClosed, nil
}
}
return stateIdle, nil
}
// setConnState calls the net/http ConnState hook for this connection, if configured.
// Note that the net/http package does StateNew and StateClosed for us.
// There is currently no plan for StateHijacked or hijacking HTTP/2 connections.
func (sc *serverConn) setConnState(state http.ConnState) {
if sc.hs.ConnState != nil {
sc.hs.ConnState(sc.conn, state)
}
}
func (sc *serverConn) vlogf(format string, args ...interface{}) {
if VerboseLogs {
sc.logf(format, args...)
}
}
func (sc *serverConn) logf(format string, args ...interface{}) {
if lg := sc.hs.ErrorLog; lg != nil {
lg.Printf(format, args...)
} else {
log.Printf(format, args...)
}
}
// errno returns v's underlying uintptr, else 0.
//
// TODO: remove this helper function once http2 can use build
// tags. See comment in isClosedConnError.
func errno(v error) uintptr {
if rv := reflect.ValueOf(v); rv.Kind() == reflect.Uintptr {
return uintptr(rv.Uint())
}
return 0
}
// isClosedConnError reports whether err is an error from use of a closed
// network connection.
func isClosedConnError(err error) bool {
if err == nil {
return false
}
// TODO: remove this string search and be more like the Windows
// case below. That might involve modifying the standard library
// to return better error types.
str := err.Error()
if strings.Contains(str, "use of closed network connection") {
return true
}
// TODO(bradfitz): x/tools/cmd/bundle doesn't really support
// build tags, so I can't make an http2_windows.go file with
// Windows-specific stuff. Fix that and move this, once we
// have a way to bundle this into std's net/http somehow.
if runtime.GOOS == "windows" {
if oe, ok := err.(*net.OpError); ok && oe.Op == "read" {
if se, ok := oe.Err.(*os.SyscallError); ok && se.Syscall == "wsarecv" {
const WSAECONNABORTED = 10053
const WSAECONNRESET = 10054
if n := errno(se.Err); n == WSAECONNRESET || n == WSAECONNABORTED {
return true
}
}
}
}
return false
}
func (sc *serverConn) condlogf(err error, format string, args ...interface{}) {
if err == nil {
return
}
if err == io.EOF || err == io.ErrUnexpectedEOF || isClosedConnError(err) || err == errPrefaceTimeout {
// Boring, expected errors.
sc.vlogf(format, args...)
} else {
sc.logf(format, args...)
}
}
func (sc *serverConn) canonicalHeader(v string) string {
sc.serveG.check()
cv, ok := commonCanonHeader[v]
if ok {
return cv
}
cv, ok = sc.canonHeader[v]
if ok {
return cv
}
if sc.canonHeader == nil {
sc.canonHeader = make(map[string]string)
}
cv = http.CanonicalHeaderKey(v)
sc.canonHeader[v] = cv
return cv
}
type readFrameResult struct {
f Frame // valid until readMore is called
err error
// readMore should be called once the consumer no longer needs or
// retains f. After readMore, f is invalid and more frames can be
// read.
readMore func()
}
// readFrames is the loop that reads incoming frames.
// It takes care to only read one frame at a time, blocking until the
// consumer is done with the frame.
// It's run on its own goroutine.
func (sc *serverConn) readFrames() {
gate := make(gate)
gateDone := gate.Done
for {
f, err := sc.framer.ReadFrame()
select {
case sc.readFrameCh <- readFrameResult{f, err, gateDone}:
case <-sc.doneServing:
return
}
select {
case <-gate:
case <-sc.doneServing:
return
}
if terminalReadFrameError(err) {
return
}
}
}
// frameWriteResult is the message passed from writeFrameAsync to the serve goroutine.
type frameWriteResult struct {
wr FrameWriteRequest // what was written (or attempted)
err error // result of the writeFrame call
}
// writeFrameAsync runs in its own goroutine and writes a single frame
// and then reports when it's done.
// At most one goroutine can be running writeFrameAsync at a time per
// serverConn.
func (sc *serverConn) writeFrameAsync(wr FrameWriteRequest) {
err := wr.write.writeFrame(sc)
sc.wroteFrameCh <- frameWriteResult{wr, err}
}
func (sc *serverConn) closeAllStreamsOnConnClose() {
sc.serveG.check()
for _, st := range sc.streams {
sc.closeStream(st, errClientDisconnected)
}
}
func (sc *serverConn) stopShutdownTimer() {
sc.serveG.check()
if t := sc.shutdownTimer; t != nil {
t.Stop()
}
}
func (sc *serverConn) notePanic() {
// Note: this is for serverConn.serve panicking, not http.Handler code.
if testHookOnPanicMu != nil {
testHookOnPanicMu.Lock()
defer testHookOnPanicMu.Unlock()
}
if testHookOnPanic != nil {
if e := recover(); e != nil {
if testHookOnPanic(sc, e) {
panic(e)
}
}
}
}
func (sc *serverConn) serve() {
sc.serveG.check()
defer sc.notePanic()
defer sc.conn.Close()
defer sc.closeAllStreamsOnConnClose()
defer sc.stopShutdownTimer()
defer close(sc.doneServing) // unblocks handlers trying to send
if VerboseLogs {
sc.vlogf("http2: server connection from %v on %p", sc.conn.RemoteAddr(), sc.hs)
}
sc.writeFrame(FrameWriteRequest{
write: writeSettings{
{SettingMaxFrameSize, sc.srv.maxReadFrameSize()},
{SettingMaxConcurrentStreams, sc.advMaxStreams},
{SettingMaxHeaderListSize, sc.maxHeaderListSize()},
{SettingInitialWindowSize, uint32(sc.srv.initialStreamRecvWindowSize())},
},
})
sc.unackedSettings++
// Each connection starts with intialWindowSize inflow tokens.
// If a higher value is configured, we add more tokens.
if diff := sc.srv.initialConnRecvWindowSize() - initialWindowSize; diff > 0 {
sc.sendWindowUpdate(nil, int(diff))
}
if err := sc.readPreface(); err != nil {
sc.condlogf(err, "http2: server: error reading preface from client %v: %v", sc.conn.RemoteAddr(), err)
return
}
// Now that we've got the preface, get us out of the
// "StateNew" state. We can't go directly to idle, though.
// Active means we read some data and anticipate a request. We'll
// do another Active when we get a HEADERS frame.
sc.setConnState(http.StateActive)
sc.setConnState(http.StateIdle)
if sc.srv.IdleTimeout != 0 {
sc.idleTimer = time.AfterFunc(sc.srv.IdleTimeout, sc.onIdleTimer)
defer sc.idleTimer.Stop()
}
go sc.readFrames() // closed by defer sc.conn.Close above
settingsTimer := time.AfterFunc(firstSettingsTimeout, sc.onSettingsTimer)
defer settingsTimer.Stop()
loopNum := 0
for {
loopNum++
select {
case wr := <-sc.wantWriteFrameCh:
if se, ok := wr.write.(StreamError); ok {
sc.resetStream(se)
break
}
sc.writeFrame(wr)
case res := <-sc.wroteFrameCh:
sc.wroteFrame(res)
case res := <-sc.readFrameCh:
if !sc.processFrameFromReader(res) {
return
}
res.readMore()
if settingsTimer != nil {
settingsTimer.Stop()
settingsTimer = nil
}
case m := <-sc.bodyReadCh:
sc.noteBodyRead(m.st, m.n)
case msg := <-sc.serveMsgCh:
switch v := msg.(type) {
case func(int):
v(loopNum) // for testing
case *serverMessage:
switch v {
case settingsTimerMsg:
sc.logf("timeout waiting for SETTINGS frames from %v", sc.conn.RemoteAddr())
return
case idleTimerMsg:
sc.vlogf("connection is idle")
sc.goAway(ErrCodeNo)
case shutdownTimerMsg:
sc.vlogf("GOAWAY close timer fired; closing conn from %v", sc.conn.RemoteAddr())
return
case gracefulShutdownMsg:
sc.startGracefulShutdownInternal()
default:
panic("unknown timer")
}
case *startPushRequest:
sc.startPush(v)
default:
panic(fmt.Sprintf("unexpected type %T", v))
}
}
// Start the shutdown timer after sending a GOAWAY. When sending GOAWAY
// with no error code (graceful shutdown), don't start the timer until
// all open streams have been completed.
sentGoAway := sc.inGoAway && !sc.needToSendGoAway && !sc.writingFrame
gracefulShutdownComplete := sc.goAwayCode == ErrCodeNo && sc.curOpenStreams() == 0
if sentGoAway && sc.shutdownTimer == nil && (sc.goAwayCode != ErrCodeNo || gracefulShutdownComplete) {
sc.shutDownIn(goAwayTimeout)
}
}
}
func (sc *serverConn) awaitGracefulShutdown(sharedCh <-chan struct{}, privateCh chan struct{}) {
select {
case <-sc.doneServing:
case <-sharedCh:
close(privateCh)
}
}
type serverMessage int
// Message values sent to serveMsgCh.
var (
settingsTimerMsg = new(serverMessage)
idleTimerMsg = new(serverMessage)
shutdownTimerMsg = new(serverMessage)
gracefulShutdownMsg = new(serverMessage)
)
func (sc *serverConn) onSettingsTimer() { sc.sendServeMsg(settingsTimerMsg) }
func (sc *serverConn) onIdleTimer() { sc.sendServeMsg(idleTimerMsg) }
func (sc *serverConn) onShutdownTimer() { sc.sendServeMsg(shutdownTimerMsg) }
func (sc *serverConn) sendServeMsg(msg interface{}) {
sc.serveG.checkNotOn() // NOT
select {
case sc.serveMsgCh <- msg:
case <-sc.doneServing:
}
}
var errPrefaceTimeout = errors.New("timeout waiting for client preface")
// readPreface reads the ClientPreface greeting from the peer or
// returns errPrefaceTimeout on timeout, or an error if the greeting
// is invalid.
func (sc *serverConn) readPreface() error {
errc := make(chan error, 1)
go func() {
// Read the client preface
buf := make([]byte, len(ClientPreface))
if _, err := io.ReadFull(sc.conn, buf); err != nil {
errc <- err
} else if !bytes.Equal(buf, clientPreface) {
errc <- fmt.Errorf("bogus greeting %q", buf)
} else {
errc <- nil
}
}()
timer := time.NewTimer(prefaceTimeout) // TODO: configurable on *Server?
defer timer.Stop()
select {
case <-timer.C:
return errPrefaceTimeout
case err := <-errc:
if err == nil {
if VerboseLogs {
sc.vlogf("http2: server: client %v said hello", sc.conn.RemoteAddr())
}
}
return err
}
}
var errChanPool = sync.Pool{
New: func() interface{} { return make(chan error, 1) },
}
var writeDataPool = sync.Pool{
New: func() interface{} { return new(writeData) },
}
// writeDataFromHandler writes DATA response frames from a handler on
// the given stream.
func (sc *serverConn) writeDataFromHandler(stream *stream, data []byte, endStream bool) error {
ch := errChanPool.Get().(chan error)
writeArg := writeDataPool.Get().(*writeData)
*writeArg = writeData{stream.id, data, endStream}
err := sc.writeFrameFromHandler(FrameWriteRequest{
write: writeArg,
stream: stream,
done: ch,
})
if err != nil {
return err
}
var frameWriteDone bool // the frame write is done (successfully or not)
select {
case err = <-ch:
frameWriteDone = true
case <-sc.doneServing:
return errClientDisconnected
case <-stream.cw:
// If both ch and stream.cw were ready (as might
// happen on the final Write after an http.Handler
// ends), prefer the write result. Otherwise this
// might just be us successfully closing the stream.
// The writeFrameAsync and serve goroutines guarantee
// that the ch send will happen before the stream.cw
// close.
select {
case err = <-ch:
frameWriteDone = true
default:
return errStreamClosed
}
}
errChanPool.Put(ch)
if frameWriteDone {
writeDataPool.Put(writeArg)
}
return err
}
// writeFrameFromHandler sends wr to sc.wantWriteFrameCh, but aborts
// if the connection has gone away.
//
// This must not be run from the serve goroutine itself, else it might
// deadlock writing to sc.wantWriteFrameCh (which is only mildly
// buffered and is read by serve itself). If you're on the serve
// goroutine, call writeFrame instead.
func (sc *serverConn) writeFrameFromHandler(wr FrameWriteRequest) error {
sc.serveG.checkNotOn() // NOT
select {
case sc.wantWriteFrameCh <- wr:
return nil
case <-sc.doneServing:
// Serve loop is gone.
// Client has closed their connection to the server.
return errClientDisconnected
}
}
// writeFrame schedules a frame to write and sends it if there's nothing
// already being written.
//
// There is no pushback here (the serve goroutine never blocks). It's
// the http.Handlers that block, waiting for their previous frames to
// make it onto the wire
//
// If you're not on the serve goroutine, use writeFrameFromHandler instead.
func (sc *serverConn) writeFrame(wr FrameWriteRequest) {
sc.serveG.check()
// If true, wr will not be written and wr.done will not be signaled.
var ignoreWrite bool
// We are not allowed to write frames on closed streams. RFC 7540 Section
// 5.1.1 says: "An endpoint MUST NOT send frames other than PRIORITY on
// a closed stream." Our server never sends PRIORITY, so that exception
// does not apply.
//
// The serverConn might close an open stream while the stream's handler
// is still running. For example, the server might close a stream when it
// receives bad data from the client. If this happens, the handler might
// attempt to write a frame after the stream has been closed (since the
// handler hasn't yet been notified of the close). In this case, we simply
// ignore the frame. The handler will notice that the stream is closed when
// it waits for the frame to be written.
//
// As an exception to this rule, we allow sending RST_STREAM after close.
// This allows us to immediately reject new streams without tracking any
// state for those streams (except for the queued RST_STREAM frame). This
// may result in duplicate RST_STREAMs in some cases, but the client should
// ignore those.
if wr.StreamID() != 0 {
_, isReset := wr.write.(StreamError)
if state, _ := sc.state(wr.StreamID()); state == stateClosed && !isReset {
ignoreWrite = true
}
}
// Don't send a 100-continue response if we've already sent headers.
// See golang.org/issue/14030.
switch wr.write.(type) {
case *writeResHeaders:
wr.stream.wroteHeaders = true
case write100ContinueHeadersFrame:
if wr.stream.wroteHeaders {
// We do not need to notify wr.done because this frame is
// never written with wr.done != nil.
if wr.done != nil {
panic("wr.done != nil for write100ContinueHeadersFrame")
}
ignoreWrite = true
}
}
if !ignoreWrite {
sc.writeSched.Push(wr)
}
sc.scheduleFrameWrite()
}
// startFrameWrite starts a goroutine to write wr (in a separate
// goroutine since that might block on the network), and updates the
// serve goroutine's state about the world, updated from info in wr.
func (sc *serverConn) startFrameWrite(wr FrameWriteRequest) {
sc.serveG.check()
if sc.writingFrame {
panic("internal error: can only be writing one frame at a time")
}
st := wr.stream
if st != nil {
switch st.state {
case stateHalfClosedLocal:
switch wr.write.(type) {
case StreamError, handlerPanicRST, writeWindowUpdate:
// RFC 7540 Section 5.1 allows sending RST_STREAM, PRIORITY, and WINDOW_UPDATE
// in this state. (We never send PRIORITY from the server, so that is not checked.)
default:
panic(fmt.Sprintf("internal error: attempt to send frame on a half-closed-local stream: %v", wr))
}
case stateClosed:
panic(fmt.Sprintf("internal error: attempt to send frame on a closed stream: %v", wr))
}
}
if wpp, ok := wr.write.(*writePushPromise); ok {
var err error
wpp.promisedID, err = wpp.allocatePromisedID()
if err != nil {
sc.writingFrameAsync = false
wr.replyToWriter(err)
return
}
}
sc.writingFrame = true
sc.needsFrameFlush = true
if wr.write.staysWithinBuffer(sc.bw.Available()) {
sc.writingFrameAsync = false
err := wr.write.writeFrame(sc)
sc.wroteFrame(frameWriteResult{wr, err})
} else {
sc.writingFrameAsync = true
go sc.writeFrameAsync(wr)
}
}
// errHandlerPanicked is the error given to any callers blocked in a read from
// Request.Body when the main goroutine panics. Since most handlers read in the
// the main ServeHTTP goroutine, this will show up rarely.
var errHandlerPanicked = errors.New("http2: handler panicked")
// wroteFrame is called on the serve goroutine with the result of
// whatever happened on writeFrameAsync.
func (sc *serverConn) wroteFrame(res frameWriteResult) {
sc.serveG.check()
if !sc.writingFrame {
panic("internal error: expected to be already writing a frame")
}
sc.writingFrame = false
sc.writingFrameAsync = false
wr := res.wr
if writeEndsStream(wr.write) {
st := wr.stream
if st == nil {
panic("internal error: expecting non-nil stream")
}
switch st.state {
case stateOpen:
// Here we would go to stateHalfClosedLocal in
// theory, but since our handler is done and
// the net/http package provides no mechanism
// for closing a ResponseWriter while still
// reading data (see possible TODO at top of
// this file), we go into closed state here
// anyway, after telling the peer we're
// hanging up on them. We'll transition to
// stateClosed after the RST_STREAM frame is
// written.
st.state = stateHalfClosedLocal
// Section 8.1: a server MAY request that the client abort
// transmission of a request without error by sending a
// RST_STREAM with an error code of NO_ERROR after sending
// a complete response.
sc.resetStream(streamError(st.id, ErrCodeNo))
case stateHalfClosedRemote:
sc.closeStream(st, errHandlerComplete)
}
} else {
switch v := wr.write.(type) {
case StreamError:
// st may be unknown if the RST_STREAM was generated to reject bad input.
if st, ok := sc.streams[v.StreamID]; ok {
sc.closeStream(st, v)
}
case handlerPanicRST:
sc.closeStream(wr.stream, errHandlerPanicked)
}
}
// Reply (if requested) to unblock the ServeHTTP goroutine.
wr.replyToWriter(res.err)
sc.scheduleFrameWrite()
}
// scheduleFrameWrite tickles the frame writing scheduler.
//
// If a frame is already being written, nothing happens. This will be called again
// when the frame is done being written.
//
// If a frame isn't being written we need to send one, the best frame
// to send is selected, preferring first things that aren't
// stream-specific (e.g. ACKing settings), and then finding the
// highest priority stream.
//
// If a frame isn't being written and there's nothing else to send, we
// flush the write buffer.
func (sc *serverConn) scheduleFrameWrite() {
sc.serveG.check()
if sc.writingFrame || sc.inFrameScheduleLoop {
return
}
sc.inFrameScheduleLoop = true
for !sc.writingFrameAsync {
if sc.needToSendGoAway {
sc.needToSendGoAway = false
sc.startFrameWrite(FrameWriteRequest{
write: &writeGoAway{
maxStreamID: sc.maxClientStreamID,
code: sc.goAwayCode,
},
})
continue
}
if sc.needToSendSettingsAck {
sc.needToSendSettingsAck = false
sc.startFrameWrite(FrameWriteRequest{write: writeSettingsAck{}})
continue
}
if !sc.inGoAway || sc.goAwayCode == ErrCodeNo {
if wr, ok := sc.writeSched.Pop(); ok {
sc.startFrameWrite(wr)
continue
}
}
if sc.needsFrameFlush {
sc.startFrameWrite(FrameWriteRequest{write: flushFrameWriter{}})
sc.needsFrameFlush = false // after startFrameWrite, since it sets this true
continue
}
break
}
sc.inFrameScheduleLoop = false
}
// startGracefulShutdown gracefully shuts down a connection. This
// sends GOAWAY with ErrCodeNo to tell the client we're gracefully
// shutting down. The connection isn't closed until all current
// streams are done.
//
// startGracefulShutdown returns immediately; it does not wait until
// the connection has shut down.
func (sc *serverConn) startGracefulShutdown() {
sc.serveG.checkNotOn() // NOT
sc.shutdownOnce.Do(func() { sc.sendServeMsg(gracefulShutdownMsg) })
}
// After sending GOAWAY, the connection will close after goAwayTimeout.
// If we close the connection immediately after sending GOAWAY, there may
// be unsent data in our kernel receive buffer, which will cause the kernel
// to send a TCP RST on close() instead of a FIN. This RST will abort the
// connection immediately, whether or not the client had received the GOAWAY.
//
// Ideally we should delay for at least 1 RTT + epsilon so the client has
// a chance to read the GOAWAY and stop sending messages. Measuring RTT
// is hard, so we approximate with 1 second. See golang.org/issue/18701.
//
// This is a var so it can be shorter in tests, where all requests uses the
// loopback interface making the expected RTT very small.
//
// TODO: configurable?
var goAwayTimeout = 1 * time.Second
func (sc *serverConn) startGracefulShutdownInternal() {
sc.goAway(ErrCodeNo)
}
func (sc *serverConn) goAway(code ErrCode) {
sc.serveG.check()
if sc.inGoAway {
return
}
sc.inGoAway = true
sc.needToSendGoAway = true
sc.goAwayCode = code
sc.scheduleFrameWrite()
}
func (sc *serverConn) shutDownIn(d time.Duration) {
sc.serveG.check()
sc.shutdownTimer = time.AfterFunc(d, sc.onShutdownTimer)
}
func (sc *serverConn) resetStream(se StreamError) {
sc.serveG.check()
sc.writeFrame(FrameWriteRequest{write: se})
if st, ok := sc.streams[se.StreamID]; ok {
st.resetQueued = true
}
}
// processFrameFromReader processes the serve loop's read from readFrameCh from the
// frame-reading goroutine.
// processFrameFromReader returns whether the connection should be kept open.
func (sc *serverConn) processFrameFromReader(res readFrameResult) bool {
sc.serveG.check()
err := res.err
if err != nil {
if err == ErrFrameTooLarge {
sc.goAway(ErrCodeFrameSize)
return true // goAway will close the loop
}
clientGone := err == io.EOF || err == io.ErrUnexpectedEOF || isClosedConnError(err)
if clientGone {
// TODO: could we also get into this state if
// the peer does a half close
// (e.g. CloseWrite) because they're done
// sending frames but they're still wanting
// our open replies? Investigate.
// TODO: add CloseWrite to crypto/tls.Conn first
// so we have a way to test this? I suppose
// just for testing we could have a non-TLS mode.
return false
}
} else {
f := res.f
if VerboseLogs {
sc.vlogf("http2: server read frame %v", summarizeFrame(f))
}
err = sc.processFrame(f)
if err == nil {
return true
}
}
switch ev := err.(type) {
case StreamError:
sc.resetStream(ev)
return true
case goAwayFlowError:
sc.goAway(ErrCodeFlowControl)
return true
case ConnectionError:
sc.logf("http2: server connection error from %v: %v", sc.conn.RemoteAddr(), ev)
sc.goAway(ErrCode(ev))
return true // goAway will handle shutdown
default:
if res.err != nil {
sc.vlogf("http2: server closing client connection; error reading frame from client %s: %v", sc.conn.RemoteAddr(), err)
} else {
sc.logf("http2: server closing client connection: %v", err)
}
return false
}
}
func (sc *serverConn) processFrame(f Frame) error {
sc.serveG.check()
// First frame received must be SETTINGS.
if !sc.sawFirstSettings {
if _, ok := f.(*SettingsFrame); !ok {
return ConnectionError(ErrCodeProtocol)
}
sc.sawFirstSettings = true
}
switch f := f.(type) {
case *SettingsFrame:
return sc.processSettings(f)
case *MetaHeadersFrame:
return sc.processHeaders(f)
case *WindowUpdateFrame:
return sc.processWindowUpdate(f)
case *PingFrame:
return sc.processPing(f)
case *DataFrame:
return sc.processData(f)
case *RSTStreamFrame:
return sc.processResetStream(f)
case *PriorityFrame:
return sc.processPriority(f)
case *GoAwayFrame:
return sc.processGoAway(f)
case *PushPromiseFrame:
// A client cannot push. Thus, servers MUST treat the receipt of a PUSH_PROMISE
// frame as a connection error (Section 5.4.1) of type PROTOCOL_ERROR.
return ConnectionError(ErrCodeProtocol)
default:
sc.vlogf("http2: server ignoring frame: %v", f.Header())
return nil
}
}
func (sc *serverConn) processPing(f *PingFrame) error {
sc.serveG.check()
if f.IsAck() {
// 6.7 PING: " An endpoint MUST NOT respond to PING frames
// containing this flag."
return nil
}
if f.StreamID != 0 {
// "PING frames are not associated with any individual
// stream. If a PING frame is received with a stream
// identifier field value other than 0x0, the recipient MUST
// respond with a connection error (Section 5.4.1) of type
// PROTOCOL_ERROR."
return ConnectionError(ErrCodeProtocol)
}
if sc.inGoAway && sc.goAwayCode != ErrCodeNo {
return nil
}
sc.writeFrame(FrameWriteRequest{write: writePingAck{f}})
return nil
}
func (sc *serverConn) processWindowUpdate(f *WindowUpdateFrame) error {
sc.serveG.check()
switch {
case f.StreamID != 0: // stream-level flow control
state, st := sc.state(f.StreamID)
if state == stateIdle {
// Section 5.1: "Receiving any frame other than HEADERS
// or PRIORITY on a stream in this state MUST be
// treated as a connection error (Section 5.4.1) of
// type PROTOCOL_ERROR."
return ConnectionError(ErrCodeProtocol)
}
if st == nil {
// "WINDOW_UPDATE can be sent by a peer that has sent a
// frame bearing the END_STREAM flag. This means that a
// receiver could receive a WINDOW_UPDATE frame on a "half
// closed (remote)" or "closed" stream. A receiver MUST
// NOT treat this as an error, see Section 5.1."
return nil
}
if !st.flow.add(int32(f.Increment)) {
return streamError(f.StreamID, ErrCodeFlowControl)
}
default: // connection-level flow control
if !sc.flow.add(int32(f.Increment)) {
return goAwayFlowError{}
}
}
sc.scheduleFrameWrite()
return nil
}
func (sc *serverConn) processResetStream(f *RSTStreamFrame) error {
sc.serveG.check()
state, st := sc.state(f.StreamID)
if state == stateIdle {
// 6.4 "RST_STREAM frames MUST NOT be sent for a
// stream in the "idle" state. If a RST_STREAM frame
// identifying an idle stream is received, the
// recipient MUST treat this as a connection error
// (Section 5.4.1) of type PROTOCOL_ERROR.
return ConnectionError(ErrCodeProtocol)
}
if st != nil {
st.cancelCtx()
sc.closeStream(st, streamError(f.StreamID, f.ErrCode))
}
return nil
}
func (sc *serverConn) closeStream(st *stream, err error) {
sc.serveG.check()
if st.state == stateIdle || st.state == stateClosed {
panic(fmt.Sprintf("invariant; can't close stream in state %v", st.state))
}
st.state = stateClosed
if st.writeDeadline != nil {
st.writeDeadline.Stop()
}
if st.isPushed() {
sc.curPushedStreams--
} else {
sc.curClientStreams--
}
delete(sc.streams, st.id)
if len(sc.streams) == 0 {
sc.setConnState(http.StateIdle)
if sc.srv.IdleTimeout != 0 {
sc.idleTimer.Reset(sc.srv.IdleTimeout)
}
if h1ServerKeepAlivesDisabled(sc.hs) {
sc.startGracefulShutdownInternal()
}
}
if p := st.body; p != nil {
// Return any buffered unread bytes worth of conn-level flow control.
// See golang.org/issue/16481
sc.sendWindowUpdate(nil, p.Len())
p.CloseWithError(err)
}
st.cw.Close() // signals Handler's CloseNotifier, unblocks writes, etc
sc.writeSched.CloseStream(st.id)
}
func (sc *serverConn) processSettings(f *SettingsFrame) error {
sc.serveG.check()
if f.IsAck() {
sc.unackedSettings--
if sc.unackedSettings < 0 {
// Why is the peer ACKing settings we never sent?
// The spec doesn't mention this case, but
// hang up on them anyway.
return ConnectionError(ErrCodeProtocol)
}
return nil
}
if err := f.ForeachSetting(sc.processSetting); err != nil {
return err
}
sc.needToSendSettingsAck = true
sc.scheduleFrameWrite()
return nil
}
func (sc *serverConn) processSetting(s Setting) error {
sc.serveG.check()
if err := s.Valid(); err != nil {
return err
}
if VerboseLogs {
sc.vlogf("http2: server processing setting %v", s)
}
switch s.ID {
case SettingHeaderTableSize:
sc.headerTableSize = s.Val
sc.hpackEncoder.SetMaxDynamicTableSize(s.Val)
case SettingEnablePush:
sc.pushEnabled = s.Val != 0
case SettingMaxConcurrentStreams:
sc.clientMaxStreams = s.Val
case SettingInitialWindowSize:
return sc.processSettingInitialWindowSize(s.Val)
case SettingMaxFrameSize:
sc.maxFrameSize = int32(s.Val) // the maximum valid s.Val is < 2^31
case SettingMaxHeaderListSize:
sc.peerMaxHeaderListSize = s.Val
default:
// Unknown setting: "An endpoint that receives a SETTINGS
// frame with any unknown or unsupported identifier MUST
// ignore that setting."
if VerboseLogs {
sc.vlogf("http2: server ignoring unknown setting %v", s)
}
}
return nil
}
func (sc *serverConn) processSettingInitialWindowSize(val uint32) error {
sc.serveG.check()
// Note: val already validated to be within range by
// processSetting's Valid call.
// "A SETTINGS frame can alter the initial flow control window
// size for all current streams. When the value of
// SETTINGS_INITIAL_WINDOW_SIZE changes, a receiver MUST
// adjust the size of all stream flow control windows that it
// maintains by the difference between the new value and the
// old value."
old := sc.initialStreamSendWindowSize
sc.initialStreamSendWindowSize = int32(val)
growth := int32(val) - old // may be negative
for _, st := range sc.streams {
if !st.flow.add(growth) {
// 6.9.2 Initial Flow Control Window Size
// "An endpoint MUST treat a change to
// SETTINGS_INITIAL_WINDOW_SIZE that causes any flow
// control window to exceed the maximum size as a
// connection error (Section 5.4.1) of type
// FLOW_CONTROL_ERROR."
return ConnectionError(ErrCodeFlowControl)
}
}
return nil
}
func (sc *serverConn) processData(f *DataFrame) error {
sc.serveG.check()
if sc.inGoAway && sc.goAwayCode != ErrCodeNo {
return nil
}
data := f.Data()
// "If a DATA frame is received whose stream is not in "open"
// or "half closed (local)" state, the recipient MUST respond
// with a stream error (Section 5.4.2) of type STREAM_CLOSED."
id := f.Header().StreamID
state, st := sc.state(id)
if id == 0 || state == stateIdle {
// Section 5.1: "Receiving any frame other than HEADERS
// or PRIORITY on a stream in this state MUST be
// treated as a connection error (Section 5.4.1) of
// type PROTOCOL_ERROR."
return ConnectionError(ErrCodeProtocol)
}
if st == nil || state != stateOpen || st.gotTrailerHeader || st.resetQueued {
// This includes sending a RST_STREAM if the stream is
// in stateHalfClosedLocal (which currently means that
// the http.Handler returned, so it's done reading &
// done writing). Try to stop the client from sending
// more DATA.
// But still enforce their connection-level flow control,
// and return any flow control bytes since we're not going
// to consume them.
if sc.inflow.available() < int32(f.Length) {
return streamError(id, ErrCodeFlowControl)
}
// Deduct the flow control from inflow, since we're
// going to immediately add it back in
// sendWindowUpdate, which also schedules sending the
// frames.
sc.inflow.take(int32(f.Length))
sc.sendWindowUpdate(nil, int(f.Length)) // conn-level
if st != nil && st.resetQueued {
// Already have a stream error in flight. Don't send another.
return nil
}
return streamError(id, ErrCodeStreamClosed)
}
if st.body == nil {
panic("internal error: should have a body in this state")
}
// Sender sending more than they'd declared?
if st.declBodyBytes != -1 && st.bodyBytes+int64(len(data)) > st.declBodyBytes {
st.body.CloseWithError(fmt.Errorf("sender tried to send more than declared Content-Length of %d bytes", st.declBodyBytes))
return streamError(id, ErrCodeStreamClosed)
}
if f.Length > 0 {
// Check whether the client has flow control quota.
if st.inflow.available() < int32(f.Length) {
return streamError(id, ErrCodeFlowControl)
}
st.inflow.take(int32(f.Length))
if len(data) > 0 {
wrote, err := st.body.Write(data)
if err != nil {
return streamError(id, ErrCodeStreamClosed)
}
if wrote != len(data) {
panic("internal error: bad Writer")
}
st.bodyBytes += int64(len(data))
}
// Return any padded flow control now, since we won't
// refund it later on body reads.
if pad := int32(f.Length) - int32(len(data)); pad > 0 {
sc.sendWindowUpdate32(nil, pad)
sc.sendWindowUpdate32(st, pad)
}
}
if f.StreamEnded() {
st.endStream()
}
return nil
}
func (sc *serverConn) processGoAway(f *GoAwayFrame) error {
sc.serveG.check()
if f.ErrCode != ErrCodeNo {
sc.logf("http2: received GOAWAY %+v, starting graceful shutdown", f)
} else {
sc.vlogf("http2: received GOAWAY %+v, starting graceful shutdown", f)
}
sc.startGracefulShutdownInternal()
// http://tools.ietf.org/html/rfc7540#section-6.8
// We should not create any new streams, which means we should disable push.
sc.pushEnabled = false
return nil
}
// isPushed reports whether the stream is server-initiated.
func (st *stream) isPushed() bool {
return st.id%2 == 0
}
// endStream closes a Request.Body's pipe. It is called when a DATA
// frame says a request body is over (or after trailers).
func (st *stream) endStream() {
sc := st.sc
sc.serveG.check()
if st.declBodyBytes != -1 && st.declBodyBytes != st.bodyBytes {
st.body.CloseWithError(fmt.Errorf("request declared a Content-Length of %d but only wrote %d bytes",
st.declBodyBytes, st.bodyBytes))
} else {
st.body.closeWithErrorAndCode(io.EOF, st.copyTrailersToHandlerRequest)
st.body.CloseWithError(io.EOF)
}
st.state = stateHalfClosedRemote
}
// copyTrailersToHandlerRequest is run in the Handler's goroutine in
// its Request.Body.Read just before it gets io.EOF.
func (st *stream) copyTrailersToHandlerRequest() {
for k, vv := range st.trailer {
if _, ok := st.reqTrailer[k]; ok {
// Only copy it over it was pre-declared.
st.reqTrailer[k] = vv
}
}
}
// onWriteTimeout is run on its own goroutine (from time.AfterFunc)
// when the stream's WriteTimeout has fired.
func (st *stream) onWriteTimeout() {
st.sc.writeFrameFromHandler(FrameWriteRequest{write: streamError(st.id, ErrCodeInternal)})
}
func (sc *serverConn) processHeaders(f *MetaHeadersFrame) error {
sc.serveG.check()
id := f.StreamID
if sc.inGoAway {
// Ignore.
return nil
}
// http://tools.ietf.org/html/rfc7540#section-5.1.1
// Streams initiated by a client MUST use odd-numbered stream
// identifiers. [...] An endpoint that receives an unexpected
// stream identifier MUST respond with a connection error
// (Section 5.4.1) of type PROTOCOL_ERROR.
if id%2 != 1 {
return ConnectionError(ErrCodeProtocol)
}
// A HEADERS frame can be used to create a new stream or
// send a trailer for an open one. If we already have a stream
// open, let it process its own HEADERS frame (trailers at this
// point, if it's valid).
if st := sc.streams[f.StreamID]; st != nil {
if st.resetQueued {
// We're sending RST_STREAM to close the stream, so don't bother
// processing this frame.
return nil
}
return st.processTrailerHeaders(f)
}
// [...] The identifier of a newly established stream MUST be
// numerically greater than all streams that the initiating
// endpoint has opened or reserved. [...] An endpoint that
// receives an unexpected stream identifier MUST respond with
// a connection error (Section 5.4.1) of type PROTOCOL_ERROR.
if id <= sc.maxClientStreamID {
return ConnectionError(ErrCodeProtocol)
}
sc.maxClientStreamID = id
if sc.idleTimer != nil {
sc.idleTimer.Stop()
}
// http://tools.ietf.org/html/rfc7540#section-5.1.2
// [...] Endpoints MUST NOT exceed the limit set by their peer. An
// endpoint that receives a HEADERS frame that causes their
// advertised concurrent stream limit to be exceeded MUST treat
// this as a stream error (Section 5.4.2) of type PROTOCOL_ERROR
// or REFUSED_STREAM.
if sc.curClientStreams+1 > sc.advMaxStreams {
if sc.unackedSettings == 0 {
// They should know better.
return streamError(id, ErrCodeProtocol)
}
// Assume it's a network race, where they just haven't
// received our last SETTINGS update. But actually
// this can't happen yet, because we don't yet provide
// a way for users to adjust server parameters at
// runtime.
return streamError(id, ErrCodeRefusedStream)
}
initialState := stateOpen
if f.StreamEnded() {
initialState = stateHalfClosedRemote
}
st := sc.newStream(id, 0, initialState)
if f.HasPriority() {
if err := checkPriority(f.StreamID, f.Priority); err != nil {
return err
}
sc.writeSched.AdjustStream(st.id, f.Priority)
}
rw, req, err := sc.newWriterAndRequest(st, f)
if err != nil {
return err
}
st.reqTrailer = req.Trailer
if st.reqTrailer != nil {
st.trailer = make(http.Header)
}
st.body = req.Body.(*requestBody).pipe // may be nil
st.declBodyBytes = req.ContentLength
handler := sc.handler.ServeHTTP
if f.Truncated {
// Their header list was too long. Send a 431 error.
handler = handleHeaderListTooLong
} else if err := checkValidHTTP2RequestHeaders(req.Header); err != nil {
handler = new400Handler(err)
}
// The net/http package sets the read deadline from the
// http.Server.ReadTimeout during the TLS handshake, but then
// passes the connection off to us with the deadline already
// set. Disarm it here after the request headers are read,
// similar to how the http1 server works. Here it's
// technically more like the http1 Server's ReadHeaderTimeout
// (in Go 1.8), though. That's a more sane option anyway.
if sc.hs.ReadTimeout != 0 {
sc.conn.SetReadDeadline(time.Time{})
}
go sc.runHandler(rw, req, handler)
return nil
}
func (st *stream) processTrailerHeaders(f *MetaHeadersFrame) error {
sc := st.sc
sc.serveG.check()
if st.gotTrailerHeader {
return ConnectionError(ErrCodeProtocol)
}
st.gotTrailerHeader = true
if !f.StreamEnded() {
return streamError(st.id, ErrCodeProtocol)
}
if len(f.PseudoFields()) > 0 {
return streamError(st.id, ErrCodeProtocol)
}
if st.trailer != nil {
for _, hf := range f.RegularFields() {
key := sc.canonicalHeader(hf.Name)
if !ValidTrailerHeader(key) {
// TODO: send more details to the peer somehow. But http2 has
// no way to send debug data at a stream level. Discuss with
// HTTP folk.
return streamError(st.id, ErrCodeProtocol)
}
st.trailer[key] = append(st.trailer[key], hf.Value)
}
}
st.endStream()
return nil
}
func checkPriority(streamID uint32, p PriorityParam) error {
if streamID == p.StreamDep {
// Section 5.3.1: "A stream cannot depend on itself. An endpoint MUST treat
// this as a stream error (Section 5.4.2) of type PROTOCOL_ERROR."
// Section 5.3.3 says that a stream can depend on one of its dependencies,
// so it's only self-dependencies that are forbidden.
return streamError(streamID, ErrCodeProtocol)
}
return nil
}
func (sc *serverConn) processPriority(f *PriorityFrame) error {
if sc.inGoAway {
return nil
}
if err := checkPriority(f.StreamID, f.PriorityParam); err != nil {
return err
}
sc.writeSched.AdjustStream(f.StreamID, f.PriorityParam)
return nil
}
func (sc *serverConn) newStream(id, pusherID uint32, state streamState) *stream {
sc.serveG.check()
if id == 0 {
panic("internal error: cannot create stream with id 0")
}
ctx, cancelCtx := contextWithCancel(sc.baseCtx)
st := &stream{
sc: sc,
id: id,
state: state,
ctx: ctx,
cancelCtx: cancelCtx,
}
st.cw.Init()
st.flow.conn = &sc.flow // link to conn-level counter
st.flow.add(sc.initialStreamSendWindowSize)
st.inflow.conn = &sc.inflow // link to conn-level counter
st.inflow.add(sc.srv.initialStreamRecvWindowSize())
if sc.hs.WriteTimeout != 0 {
st.writeDeadline = time.AfterFunc(sc.hs.WriteTimeout, st.onWriteTimeout)
}
sc.streams[id] = st
sc.writeSched.OpenStream(st.id, OpenStreamOptions{PusherID: pusherID})
if st.isPushed() {
sc.curPushedStreams++
} else {
sc.curClientStreams++
}
if sc.curOpenStreams() == 1 {
sc.setConnState(http.StateActive)
}
return st
}
func (sc *serverConn) newWriterAndRequest(st *stream, f *MetaHeadersFrame) (*responseWriter, *http.Request, error) {
sc.serveG.check()
rp := requestParam{
method: f.PseudoValue("method"),
scheme: f.PseudoValue("scheme"),
authority: f.PseudoValue("authority"),
path: f.PseudoValue("path"),
}
isConnect := rp.method == "CONNECT"
if isConnect {
if rp.path != "" || rp.scheme != "" || rp.authority == "" {
return nil, nil, streamError(f.StreamID, ErrCodeProtocol)
}
} else if rp.method == "" || rp.path == "" || (rp.scheme != "https" && rp.scheme != "http") {
// See 8.1.2.6 Malformed Requests and Responses:
//
// Malformed requests or responses that are detected
// MUST be treated as a stream error (Section 5.4.2)
// of type PROTOCOL_ERROR."
//
// 8.1.2.3 Request Pseudo-Header Fields
// "All HTTP/2 requests MUST include exactly one valid
// value for the :method, :scheme, and :path
// pseudo-header fields"
return nil, nil, streamError(f.StreamID, ErrCodeProtocol)
}
bodyOpen := !f.StreamEnded()
if rp.method == "HEAD" && bodyOpen {
// HEAD requests can't have bodies
return nil, nil, streamError(f.StreamID, ErrCodeProtocol)
}
rp.header = make(http.Header)
for _, hf := range f.RegularFields() {
rp.header.Add(sc.canonicalHeader(hf.Name), hf.Value)
}
if rp.authority == "" {
rp.authority = rp.header.Get("Host")
}
rw, req, err := sc.newWriterAndRequestNoBody(st, rp)
if err != nil {
return nil, nil, err
}
if bodyOpen {
if vv, ok := rp.header["Content-Length"]; ok {
req.ContentLength, _ = strconv.ParseInt(vv[0], 10, 64)
} else {
req.ContentLength = -1
}
req.Body.(*requestBody).pipe = &pipe{
b: &dataBuffer{expected: req.ContentLength},
}
}
return rw, req, nil
}
type requestParam struct {
method string
scheme, authority, path string
header http.Header
}
func (sc *serverConn) newWriterAndRequestNoBody(st *stream, rp requestParam) (*responseWriter, *http.Request, error) {
sc.serveG.check()
var tlsState *tls.ConnectionState // nil if not scheme https
if rp.scheme == "https" {
tlsState = sc.tlsState
}
needsContinue := rp.header.Get("Expect") == "100-continue"
if needsContinue {
rp.header.Del("Expect")
}
// Merge Cookie headers into one "; "-delimited value.
if cookies := rp.header["Cookie"]; len(cookies) > 1 {
rp.header.Set("Cookie", strings.Join(cookies, "; "))
}
// Setup Trailers
var trailer http.Header
for _, v := range rp.header["Trailer"] {
for _, key := range strings.Split(v, ",") {
key = http.CanonicalHeaderKey(strings.TrimSpace(key))
switch key {
case "Transfer-Encoding", "Trailer", "Content-Length":
// Bogus. (copy of http1 rules)
// Ignore.
default:
if trailer == nil {
trailer = make(http.Header)
}
trailer[key] = nil
}
}
}
delete(rp.header, "Trailer")
var url_ *url.URL
var requestURI string
if rp.method == "CONNECT" {
url_ = &url.URL{Host: rp.authority}
requestURI = rp.authority // mimic HTTP/1 server behavior
} else {
var err error
url_, err = url.ParseRequestURI(rp.path)
if err != nil {
return nil, nil, streamError(st.id, ErrCodeProtocol)
}
requestURI = rp.path
}
body := &requestBody{
conn: sc,
stream: st,
needsContinue: needsContinue,
}
req := &http.Request{
Method: rp.method,
URL: url_,
RemoteAddr: sc.remoteAddrStr,
Header: rp.header,
RequestURI: requestURI,
Proto: "HTTP/2.0",
ProtoMajor: 2,
ProtoMinor: 0,
TLS: tlsState,
Host: rp.authority,
Body: body,
Trailer: trailer,
}
req = requestWithContext(req, st.ctx)
rws := responseWriterStatePool.Get().(*responseWriterState)
bwSave := rws.bw
*rws = responseWriterState{} // zero all the fields
rws.conn = sc
rws.bw = bwSave
rws.bw.Reset(chunkWriter{rws})
rws.stream = st
rws.req = req
rws.body = body
rw := &responseWriter{rws: rws}
return rw, req, nil
}
// Run on its own goroutine.
func (sc *serverConn) runHandler(rw *responseWriter, req *http.Request, handler func(http.ResponseWriter, *http.Request)) {
didPanic := true
defer func() {
rw.rws.stream.cancelCtx()
if didPanic {
e := recover()
sc.writeFrameFromHandler(FrameWriteRequest{
write: handlerPanicRST{rw.rws.stream.id},
stream: rw.rws.stream,
})
// Same as net/http:
if shouldLogPanic(e) {
const size = 64 << 10
buf := make([]byte, size)
buf = buf[:runtime.Stack(buf, false)]
sc.logf("http2: panic serving %v: %v\n%s", sc.conn.RemoteAddr(), e, buf)
}
return
}
rw.handlerDone()
}()
handler(rw, req)
didPanic = false
}
func handleHeaderListTooLong(w http.ResponseWriter, r *http.Request) {
// 10.5.1 Limits on Header Block Size:
// .. "A server that receives a larger header block than it is
// willing to handle can send an HTTP 431 (Request Header Fields Too
// Large) status code"
const statusRequestHeaderFieldsTooLarge = 431 // only in Go 1.6+
w.WriteHeader(statusRequestHeaderFieldsTooLarge)
io.WriteString(w, "<h1>HTTP Error 431</h1><p>Request Header Field(s) Too Large</p>")
}
// called from handler goroutines.
// h may be nil.
func (sc *serverConn) writeHeaders(st *stream, headerData *writeResHeaders) error {
sc.serveG.checkNotOn() // NOT on
var errc chan error
if headerData.h != nil {
// If there's a header map (which we don't own), so we have to block on
// waiting for this frame to be written, so an http.Flush mid-handler
// writes out the correct value of keys, before a handler later potentially
// mutates it.
errc = errChanPool.Get().(chan error)
}
if err := sc.writeFrameFromHandler(FrameWriteRequest{
write: headerData,
stream: st,
done: errc,
}); err != nil {
return err
}
if errc != nil {
select {
case err := <-errc:
errChanPool.Put(errc)
return err
case <-sc.doneServing:
return errClientDisconnected
case <-st.cw:
return errStreamClosed
}
}
return nil
}
// called from handler goroutines.
func (sc *serverConn) write100ContinueHeaders(st *stream) {
sc.writeFrameFromHandler(FrameWriteRequest{
write: write100ContinueHeadersFrame{st.id},
stream: st,
})
}
// A bodyReadMsg tells the server loop that the http.Handler read n
// bytes of the DATA from the client on the given stream.
type bodyReadMsg struct {
st *stream
n int
}
// called from handler goroutines.
// Notes that the handler for the given stream ID read n bytes of its body
// and schedules flow control tokens to be sent.
func (sc *serverConn) noteBodyReadFromHandler(st *stream, n int, err error) {
sc.serveG.checkNotOn() // NOT on
if n > 0 {
select {
case sc.bodyReadCh <- bodyReadMsg{st, n}:
case <-sc.doneServing:
}
}
}
func (sc *serverConn) noteBodyRead(st *stream, n int) {
sc.serveG.check()
sc.sendWindowUpdate(nil, n) // conn-level
if st.state != stateHalfClosedRemote && st.state != stateClosed {
// Don't send this WINDOW_UPDATE if the stream is closed
// remotely.
sc.sendWindowUpdate(st, n)
}
}
// st may be nil for conn-level
func (sc *serverConn) sendWindowUpdate(st *stream, n int) {
sc.serveG.check()
// "The legal range for the increment to the flow control
// window is 1 to 2^31-1 (2,147,483,647) octets."
// A Go Read call on 64-bit machines could in theory read
// a larger Read than this. Very unlikely, but we handle it here
// rather than elsewhere for now.
const maxUint31 = 1<<31 - 1
for n >= maxUint31 {
sc.sendWindowUpdate32(st, maxUint31)
n -= maxUint31
}
sc.sendWindowUpdate32(st, int32(n))
}
// st may be nil for conn-level
func (sc *serverConn) sendWindowUpdate32(st *stream, n int32) {
sc.serveG.check()
if n == 0 {
return
}
if n < 0 {
panic("negative update")
}
var streamID uint32
if st != nil {
streamID = st.id
}
sc.writeFrame(FrameWriteRequest{
write: writeWindowUpdate{streamID: streamID, n: uint32(n)},
stream: st,
})
var ok bool
if st == nil {
ok = sc.inflow.add(n)
} else {
ok = st.inflow.add(n)
}
if !ok {
panic("internal error; sent too many window updates without decrements?")
}
}
// requestBody is the Handler's Request.Body type.
// Read and Close may be called concurrently.
type requestBody struct {
stream *stream
conn *serverConn
closed bool // for use by Close only
sawEOF bool // for use by Read only
pipe *pipe // non-nil if we have a HTTP entity message body
needsContinue bool // need to send a 100-continue
}
func (b *requestBody) Close() error {
if b.pipe != nil && !b.closed {
b.pipe.BreakWithError(errClosedBody)
}
b.closed = true
return nil
}
func (b *requestBody) Read(p []byte) (n int, err error) {
if b.needsContinue {
b.needsContinue = false
b.conn.write100ContinueHeaders(b.stream)
}
if b.pipe == nil || b.sawEOF {
return 0, io.EOF
}
n, err = b.pipe.Read(p)
if err == io.EOF {
b.sawEOF = true
}
if b.conn == nil && inTests {
return
}
b.conn.noteBodyReadFromHandler(b.stream, n, err)
return
}
// responseWriter is the http.ResponseWriter implementation. It's
// intentionally small (1 pointer wide) to minimize garbage. The
// responseWriterState pointer inside is zeroed at the end of a
// request (in handlerDone) and calls on the responseWriter thereafter
// simply crash (caller's mistake), but the much larger responseWriterState
// and buffers are reused between multiple requests.
type responseWriter struct {
rws *responseWriterState
}
// Optional http.ResponseWriter interfaces implemented.
var (
_ http.CloseNotifier = (*responseWriter)(nil)
_ http.Flusher = (*responseWriter)(nil)
_ stringWriter = (*responseWriter)(nil)
)
type responseWriterState struct {
// immutable within a request:
stream *stream
req *http.Request
body *requestBody // to close at end of request, if DATA frames didn't
conn *serverConn
// TODO: adjust buffer writing sizes based on server config, frame size updates from peer, etc
bw *bufio.Writer // writing to a chunkWriter{this *responseWriterState}
// mutated by http.Handler goroutine:
handlerHeader http.Header // nil until called
snapHeader http.Header // snapshot of handlerHeader at WriteHeader time
trailers []string // set in writeChunk
status int // status code passed to WriteHeader
wroteHeader bool // WriteHeader called (explicitly or implicitly). Not necessarily sent to user yet.
sentHeader bool // have we sent the header frame?
handlerDone bool // handler has finished
dirty bool // a Write failed; don't reuse this responseWriterState
sentContentLen int64 // non-zero if handler set a Content-Length header
wroteBytes int64
closeNotifierMu sync.Mutex // guards closeNotifierCh
closeNotifierCh chan bool // nil until first used
}
type chunkWriter struct{ rws *responseWriterState }
func (cw chunkWriter) Write(p []byte) (n int, err error) { return cw.rws.writeChunk(p) }
func (rws *responseWriterState) hasTrailers() bool { return len(rws.trailers) != 0 }
// declareTrailer is called for each Trailer header when the
// response header is written. It notes that a header will need to be
// written in the trailers at the end of the response.
func (rws *responseWriterState) declareTrailer(k string) {
k = http.CanonicalHeaderKey(k)
if !ValidTrailerHeader(k) {
// Forbidden by RFC 2616 14.40.
rws.conn.logf("ignoring invalid trailer %q", k)
return
}
if !strSliceContains(rws.trailers, k) {
rws.trailers = append(rws.trailers, k)
}
}
// writeChunk writes chunks from the bufio.Writer. But because
// bufio.Writer may bypass its chunking, sometimes p may be
// arbitrarily large.
//
// writeChunk is also responsible (on the first chunk) for sending the
// HEADER response.
func (rws *responseWriterState) writeChunk(p []byte) (n int, err error) {
if !rws.wroteHeader {
rws.writeHeader(200)
}
isHeadResp := rws.req.Method == "HEAD"
if !rws.sentHeader {
rws.sentHeader = true
var ctype, clen string
if clen = rws.snapHeader.Get("Content-Length"); clen != "" {
rws.snapHeader.Del("Content-Length")
clen64, err := strconv.ParseInt(clen, 10, 64)
if err == nil && clen64 >= 0 {
rws.sentContentLen = clen64
} else {
clen = ""
}
}
if clen == "" && rws.handlerDone && bodyAllowedForStatus(rws.status) && (len(p) > 0 || !isHeadResp) {
clen = strconv.Itoa(len(p))
}
_, hasContentType := rws.snapHeader["Content-Type"]
if !hasContentType && bodyAllowedForStatus(rws.status) && len(p) > 0 {
ctype = http.DetectContentType(p)
}
var date string
if _, ok := rws.snapHeader["Date"]; !ok {
// TODO(bradfitz): be faster here, like net/http? measure.
date = time.Now().UTC().Format(http.TimeFormat)
}
for _, v := range rws.snapHeader["Trailer"] {
foreachHeaderElement(v, rws.declareTrailer)
}
endStream := (rws.handlerDone && !rws.hasTrailers() && len(p) == 0) || isHeadResp
err = rws.conn.writeHeaders(rws.stream, &writeResHeaders{
streamID: rws.stream.id,
httpResCode: rws.status,
h: rws.snapHeader,
endStream: endStream,
contentType: ctype,
contentLength: clen,
date: date,
})
if err != nil {
rws.dirty = true
return 0, err
}
if endStream {
return 0, nil
}
}
if isHeadResp {
return len(p), nil
}
if len(p) == 0 && !rws.handlerDone {
return 0, nil
}
if rws.handlerDone {
rws.promoteUndeclaredTrailers()
}
endStream := rws.handlerDone && !rws.hasTrailers()
if len(p) > 0 || endStream {
// only send a 0 byte DATA frame if we're ending the stream.
if err := rws.conn.writeDataFromHandler(rws.stream, p, endStream); err != nil {
rws.dirty = true
return 0, err
}
}
if rws.handlerDone && rws.hasTrailers() {
err = rws.conn.writeHeaders(rws.stream, &writeResHeaders{
streamID: rws.stream.id,
h: rws.handlerHeader,
trailers: rws.trailers,
endStream: true,
})
if err != nil {
rws.dirty = true
}
return len(p), err
}
return len(p), nil
}
// TrailerPrefix is a magic prefix for ResponseWriter.Header map keys
// that, if present, signals that the map entry is actually for
// the response trailers, and not the response headers. The prefix
// is stripped after the ServeHTTP call finishes and the values are
// sent in the trailers.
//
// This mechanism is intended only for trailers that are not known
// prior to the headers being written. If the set of trailers is fixed
// or known before the header is written, the normal Go trailers mechanism
// is preferred:
// https://golang.org/pkg/net/http/#ResponseWriter
// https://golang.org/pkg/net/http/#example_ResponseWriter_trailers
const TrailerPrefix = "Trailer:"
// promoteUndeclaredTrailers permits http.Handlers to set trailers
// after the header has already been flushed. Because the Go
// ResponseWriter interface has no way to set Trailers (only the
// Header), and because we didn't want to expand the ResponseWriter
// interface, and because nobody used trailers, and because RFC 2616
// says you SHOULD (but not must) predeclare any trailers in the
// header, the official ResponseWriter rules said trailers in Go must
// be predeclared, and then we reuse the same ResponseWriter.Header()
// map to mean both Headers and Trailers. When it's time to write the
// Trailers, we pick out the fields of Headers that were declared as
// trailers. That worked for a while, until we found the first major
// user of Trailers in the wild: gRPC (using them only over http2),
// and gRPC libraries permit setting trailers mid-stream without
// predeclarnig them. So: change of plans. We still permit the old
// way, but we also permit this hack: if a Header() key begins with
// "Trailer:", the suffix of that key is a Trailer. Because ':' is an
// invalid token byte anyway, there is no ambiguity. (And it's already
// filtered out) It's mildly hacky, but not terrible.
//
// This method runs after the Handler is done and promotes any Header
// fields to be trailers.
func (rws *responseWriterState) promoteUndeclaredTrailers() {
for k, vv := range rws.handlerHeader {
if !strings.HasPrefix(k, TrailerPrefix) {
continue
}
trailerKey := strings.TrimPrefix(k, TrailerPrefix)
rws.declareTrailer(trailerKey)
rws.handlerHeader[http.CanonicalHeaderKey(trailerKey)] = vv
}
if len(rws.trailers) > 1 {
sorter := sorterPool.Get().(*sorter)
sorter.SortStrings(rws.trailers)
sorterPool.Put(sorter)
}
}
func (w *responseWriter) Flush() {
rws := w.rws
if rws == nil {
panic("Header called after Handler finished")
}
if rws.bw.Buffered() > 0 {
if err := rws.bw.Flush(); err != nil {
// Ignore the error. The frame writer already knows.
return
}
} else {
// The bufio.Writer won't call chunkWriter.Write
// (writeChunk with zero bytes, so we have to do it
// ourselves to force the HTTP response header and/or
// final DATA frame (with END_STREAM) to be sent.
rws.writeChunk(nil)
}
}
func (w *responseWriter) CloseNotify() <-chan bool {
rws := w.rws
if rws == nil {
panic("CloseNotify called after Handler finished")
}
rws.closeNotifierMu.Lock()
ch := rws.closeNotifierCh
if ch == nil {
ch = make(chan bool, 1)
rws.closeNotifierCh = ch
cw := rws.stream.cw
go func() {
cw.Wait() // wait for close
ch <- true
}()
}
rws.closeNotifierMu.Unlock()
return ch
}
func (w *responseWriter) Header() http.Header {
rws := w.rws
if rws == nil {
panic("Header called after Handler finished")
}
if rws.handlerHeader == nil {
rws.handlerHeader = make(http.Header)
}
return rws.handlerHeader
}
// checkWriteHeaderCode is a copy of net/http's checkWriteHeaderCode.
func checkWriteHeaderCode(code int) {
// Issue 22880: require valid WriteHeader status codes.
// For now we only enforce that it's three digits.
// In the future we might block things over 599 (600 and above aren't defined
// at http://httpwg.org/specs/rfc7231.html#status.codes)
// and we might block under 200 (once we have more mature 1xx support).
// But for now any three digits.
//
// We used to send "HTTP/1.1 000 0" on the wire in responses but there's
// no equivalent bogus thing we can realistically send in HTTP/2,
// so we'll consistently panic instead and help people find their bugs
// early. (We can't return an error from WriteHeader even if we wanted to.)
if code < 100 || code > 999 {
panic(fmt.Sprintf("invalid WriteHeader code %v", code))
}
}
func (w *responseWriter) WriteHeader(code int) {
checkWriteHeaderCode(code)
rws := w.rws
if rws == nil {
panic("WriteHeader called after Handler finished")
}
rws.writeHeader(code)
}
func (rws *responseWriterState) writeHeader(code int) {
if !rws.wroteHeader {
rws.wroteHeader = true
rws.status = code
if len(rws.handlerHeader) > 0 {
rws.snapHeader = cloneHeader(rws.handlerHeader)
}
}
}
func cloneHeader(h http.Header) http.Header {
h2 := make(http.Header, len(h))
for k, vv := range h {
vv2 := make([]string, len(vv))
copy(vv2, vv)
h2[k] = vv2
}
return h2
}
// The Life Of A Write is like this:
//
// * Handler calls w.Write or w.WriteString ->
// * -> rws.bw (*bufio.Writer) ->
// * (Handler might call Flush)
// * -> chunkWriter{rws}
// * -> responseWriterState.writeChunk(p []byte)
// * -> responseWriterState.writeChunk (most of the magic; see comment there)
func (w *responseWriter) Write(p []byte) (n int, err error) {
return w.write(len(p), p, "")
}
func (w *responseWriter) WriteString(s string) (n int, err error) {
return w.write(len(s), nil, s)
}
// either dataB or dataS is non-zero.
func (w *responseWriter) write(lenData int, dataB []byte, dataS string) (n int, err error) {
rws := w.rws
if rws == nil {
panic("Write called after Handler finished")
}
if !rws.wroteHeader {
w.WriteHeader(200)
}
if !bodyAllowedForStatus(rws.status) {
return 0, http.ErrBodyNotAllowed
}
rws.wroteBytes += int64(len(dataB)) + int64(len(dataS)) // only one can be set
if rws.sentContentLen != 0 && rws.wroteBytes > rws.sentContentLen {
// TODO: send a RST_STREAM
return 0, errors.New("http2: handler wrote more than declared Content-Length")
}
if dataB != nil {
return rws.bw.Write(dataB)
} else {
return rws.bw.WriteString(dataS)
}
}
func (w *responseWriter) handlerDone() {
rws := w.rws
dirty := rws.dirty
rws.handlerDone = true
w.Flush()
w.rws = nil
if !dirty {
// Only recycle the pool if all prior Write calls to
// the serverConn goroutine completed successfully. If
// they returned earlier due to resets from the peer
// there might still be write goroutines outstanding
// from the serverConn referencing the rws memory. See
// issue 20704.
responseWriterStatePool.Put(rws)
}
}
// Push errors.
var (
ErrRecursivePush = errors.New("http2: recursive push not allowed")
ErrPushLimitReached = errors.New("http2: push would exceed peer's SETTINGS_MAX_CONCURRENT_STREAMS")
)
// pushOptions is the internal version of http.PushOptions, which we
// cannot include here because it's only defined in Go 1.8 and later.
type pushOptions struct {
Method string
Header http.Header
}
func (w *responseWriter) push(target string, opts pushOptions) error {
st := w.rws.stream
sc := st.sc
sc.serveG.checkNotOn()
// No recursive pushes: "PUSH_PROMISE frames MUST only be sent on a peer-initiated stream."
// http://tools.ietf.org/html/rfc7540#section-6.6
if st.isPushed() {
return ErrRecursivePush
}
// Default options.
if opts.Method == "" {
opts.Method = "GET"
}
if opts.Header == nil {
opts.Header = http.Header{}
}
wantScheme := "http"
if w.rws.req.TLS != nil {
wantScheme = "https"
}
// Validate the request.
u, err := url.Parse(target)
if err != nil {
return err
}
if u.Scheme == "" {
if !strings.HasPrefix(target, "/") {
return fmt.Errorf("target must be an absolute URL or an absolute path: %q", target)
}
u.Scheme = wantScheme
u.Host = w.rws.req.Host
} else {
if u.Scheme != wantScheme {
return fmt.Errorf("cannot push URL with scheme %q from request with scheme %q", u.Scheme, wantScheme)
}
if u.Host == "" {
return errors.New("URL must have a host")
}
}
for k := range opts.Header {
if strings.HasPrefix(k, ":") {
return fmt.Errorf("promised request headers cannot include pseudo header %q", k)
}
// These headers are meaningful only if the request has a body,
// but PUSH_PROMISE requests cannot have a body.
// http://tools.ietf.org/html/rfc7540#section-8.2
// Also disallow Host, since the promised URL must be absolute.
switch strings.ToLower(k) {
case "content-length", "content-encoding", "trailer", "te", "expect", "host":
return fmt.Errorf("promised request headers cannot include %q", k)
}
}
if err := checkValidHTTP2RequestHeaders(opts.Header); err != nil {
return err
}
// The RFC effectively limits promised requests to GET and HEAD:
// "Promised requests MUST be cacheable [GET, HEAD, or POST], and MUST be safe [GET or HEAD]"
// http://tools.ietf.org/html/rfc7540#section-8.2
if opts.Method != "GET" && opts.Method != "HEAD" {
return fmt.Errorf("method %q must be GET or HEAD", opts.Method)
}
msg := &startPushRequest{
parent: st,
method: opts.Method,
url: u,
header: cloneHeader(opts.Header),
done: errChanPool.Get().(chan error),
}
select {
case <-sc.doneServing:
return errClientDisconnected
case <-st.cw:
return errStreamClosed
case sc.serveMsgCh <- msg:
}
select {
case <-sc.doneServing:
return errClientDisconnected
case <-st.cw:
return errStreamClosed
case err := <-msg.done:
errChanPool.Put(msg.done)
return err
}
}
type startPushRequest struct {
parent *stream
method string
url *url.URL
header http.Header
done chan error
}
func (sc *serverConn) startPush(msg *startPushRequest) {
sc.serveG.check()
// http://tools.ietf.org/html/rfc7540#section-6.6.
// PUSH_PROMISE frames MUST only be sent on a peer-initiated stream that
// is in either the "open" or "half-closed (remote)" state.
if msg.parent.state != stateOpen && msg.parent.state != stateHalfClosedRemote {
// responseWriter.Push checks that the stream is peer-initiaed.
msg.done <- errStreamClosed
return
}
// http://tools.ietf.org/html/rfc7540#section-6.6.
if !sc.pushEnabled {
msg.done <- http.ErrNotSupported
return
}
// PUSH_PROMISE frames must be sent in increasing order by stream ID, so
// we allocate an ID for the promised stream lazily, when the PUSH_PROMISE
// is written. Once the ID is allocated, we start the request handler.
allocatePromisedID := func() (uint32, error) {
sc.serveG.check()
// Check this again, just in case. Technically, we might have received
// an updated SETTINGS by the time we got around to writing this frame.
if !sc.pushEnabled {
return 0, http.ErrNotSupported
}
// http://tools.ietf.org/html/rfc7540#section-6.5.2.
if sc.curPushedStreams+1 > sc.clientMaxStreams {
return 0, ErrPushLimitReached
}
// http://tools.ietf.org/html/rfc7540#section-5.1.1.
// Streams initiated by the server MUST use even-numbered identifiers.
// A server that is unable to establish a new stream identifier can send a GOAWAY
// frame so that the client is forced to open a new connection for new streams.
if sc.maxPushPromiseID+2 >= 1<<31 {
sc.startGracefulShutdownInternal()
return 0, ErrPushLimitReached
}
sc.maxPushPromiseID += 2
promisedID := sc.maxPushPromiseID
// http://tools.ietf.org/html/rfc7540#section-8.2.
// Strictly speaking, the new stream should start in "reserved (local)", then
// transition to "half closed (remote)" after sending the initial HEADERS, but
// we start in "half closed (remote)" for simplicity.
// See further comments at the definition of stateHalfClosedRemote.
promised := sc.newStream(promisedID, msg.parent.id, stateHalfClosedRemote)
rw, req, err := sc.newWriterAndRequestNoBody(promised, requestParam{
method: msg.method,
scheme: msg.url.Scheme,
authority: msg.url.Host,
path: msg.url.RequestURI(),
header: cloneHeader(msg.header), // clone since handler runs concurrently with writing the PUSH_PROMISE
})
if err != nil {
// Should not happen, since we've already validated msg.url.
panic(fmt.Sprintf("newWriterAndRequestNoBody(%+v): %v", msg.url, err))
}
go sc.runHandler(rw, req, sc.handler.ServeHTTP)
return promisedID, nil
}
sc.writeFrame(FrameWriteRequest{
write: &writePushPromise{
streamID: msg.parent.id,
method: msg.method,
url: msg.url,
h: msg.header,
allocatePromisedID: allocatePromisedID,
},
stream: msg.parent,
done: msg.done,
})
}
// foreachHeaderElement splits v according to the "#rule" construction
// in RFC 2616 section 2.1 and calls fn for each non-empty element.
func foreachHeaderElement(v string, fn func(string)) {
v = textproto.TrimString(v)
if v == "" {
return
}
if !strings.Contains(v, ",") {
fn(v)
return
}
for _, f := range strings.Split(v, ",") {
if f = textproto.TrimString(f); f != "" {
fn(f)
}
}
}
// From http://httpwg.org/specs/rfc7540.html#rfc.section.8.1.2.2
var connHeaders = []string{
"Connection",
"Keep-Alive",
"Proxy-Connection",
"Transfer-Encoding",
"Upgrade",
}
// checkValidHTTP2RequestHeaders checks whether h is a valid HTTP/2 request,
// per RFC 7540 Section 8.1.2.2.
// The returned error is reported to users.
func checkValidHTTP2RequestHeaders(h http.Header) error {
for _, k := range connHeaders {
if _, ok := h[k]; ok {
return fmt.Errorf("request header %q is not valid in HTTP/2", k)
}
}
te := h["Te"]
if len(te) > 0 && (len(te) > 1 || (te[0] != "trailers" && te[0] != "")) {
return errors.New(`request header "TE" may only be "trailers" in HTTP/2`)
}
return nil
}
func new400Handler(err error) http.HandlerFunc {
return func(w http.ResponseWriter, r *http.Request) {
http.Error(w, err.Error(), http.StatusBadRequest)
}
}
// ValidTrailerHeader reports whether name is a valid header field name to appear
// in trailers.
// See: http://tools.ietf.org/html/rfc7230#section-4.1.2
func ValidTrailerHeader(name string) bool {
name = http.CanonicalHeaderKey(name)
if strings.HasPrefix(name, "If-") || badTrailer[name] {
return false
}
return true
}
var badTrailer = map[string]bool{
"Authorization": true,
"Cache-Control": true,
"Connection": true,
"Content-Encoding": true,
"Content-Length": true,
"Content-Range": true,
"Content-Type": true,
"Expect": true,
"Host": true,
"Keep-Alive": true,
"Max-Forwards": true,
"Pragma": true,
"Proxy-Authenticate": true,
"Proxy-Authorization": true,
"Proxy-Connection": true,
"Range": true,
"Realm": true,
"Te": true,
"Trailer": true,
"Transfer-Encoding": true,
"Www-Authenticate": true,
}
// h1ServerKeepAlivesDisabled reports whether hs has its keep-alives
// disabled. See comments on h1ServerShutdownChan above for why
// the code is written this way.
func h1ServerKeepAlivesDisabled(hs *http.Server) bool {
var x interface{} = hs
type I interface {
doKeepAlives() bool
}
if hs, ok := x.(I); ok {
return !hs.doKeepAlives()
}
return false
}