s3fs-fuse/src/fdcache.cpp

2917 lines
83 KiB
C++

/*
* s3fs - FUSE-based file system backed by Amazon S3
*
* Copyright(C) 2007 Takeshi Nakatani <ggtakec.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <cstdio>
#include <cstdlib>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/time.h>
#include <sys/file.h>
#include <stdint.h>
#include <unistd.h>
#include <pthread.h>
#include <syslog.h>
#include <cerrno>
#include <cstring>
#include <dirent.h>
#include <curl/curl.h>
#include <string>
#include <iostream>
#include <sstream>
#include <map>
#include <list>
#include <vector>
#include "common.h"
#include "s3fs.h"
#include "s3fs_util.h"
#include "string_util.h"
#include "curl.h"
#include "fdcache.h"
using namespace std;
//------------------------------------------------
// Symbols
//------------------------------------------------
static const int MAX_MULTIPART_CNT = 10 * 1000; // S3 multipart max count
//
// For cache directory top path
//
#if defined(P_tmpdir)
#define TMPFILE_DIR_0PATH P_tmpdir
#else
#define TMPFILE_DIR_0PATH "/tmp"
#endif
//------------------------------------------------
// CacheFileStat class methods
//------------------------------------------------
bool CacheFileStat::MakeCacheFileStatPath(const char* path, string& sfile_path, bool is_create_dir)
{
// make stat dir top path( "/<cache_dir>/.<bucket_name>.stat" )
string top_path = FdManager::GetCacheDir();
top_path += "/.";
top_path += bucket;
top_path += ".stat";
if(is_create_dir){
int result;
if(0 != (result = mkdirp(top_path + mydirname(path), 0777))){
S3FS_PRN_ERR("failed to create dir(%s) by errno(%d).", path, result);
return false;
}
}
if(!path || '\0' == path[0]){
sfile_path = top_path;
}else{
sfile_path = top_path + SAFESTRPTR(path);
}
return true;
}
bool CacheFileStat::CheckCacheFileStatTopDir()
{
if(!FdManager::IsCacheDir()){
return true;
}
// make stat dir top path( "/<cache_dir>/.<bucket_name>.stat" )
string top_path = FdManager::GetCacheDir();
top_path += "/.";
top_path += bucket;
top_path += ".stat";
return check_exist_dir_permission(top_path.c_str());
}
bool CacheFileStat::DeleteCacheFileStat(const char* path)
{
if(!path || '\0' == path[0]){
return false;
}
// stat path
string sfile_path;
if(!CacheFileStat::MakeCacheFileStatPath(path, sfile_path, false)){
S3FS_PRN_ERR("failed to create cache stat file path(%s)", path);
return false;
}
if(0 != unlink(sfile_path.c_str())){
if(ENOENT == errno){
S3FS_PRN_DBG("failed to delete file(%s): errno=%d", path, errno);
}else{
S3FS_PRN_ERR("failed to delete file(%s): errno=%d", path, errno);
}
return false;
}
return true;
}
// [NOTE]
// If remove stat file directory, it should do before removing
// file cache directory.
//
bool CacheFileStat::DeleteCacheFileStatDirectory()
{
string top_path = FdManager::GetCacheDir();
if(top_path.empty() || bucket.empty()){
return true;
}
top_path += "/.";
top_path += bucket;
top_path += ".stat";
return delete_files_in_dir(top_path.c_str(), true);
}
bool CacheFileStat::RenameCacheFileStat(const char* oldpath, const char* newpath)
{
if(!oldpath || '\0' == oldpath[0] || !newpath || '\0' == newpath[0]){
return false;
}
// stat path
string old_filestat;
string new_filestat;
if(!CacheFileStat::MakeCacheFileStatPath(oldpath, old_filestat, false) || !CacheFileStat::MakeCacheFileStatPath(newpath, new_filestat, false)){
return false;
}
// check new stat path
struct stat st;
if(0 == stat(new_filestat.c_str(), &st)){
// new stat path is existed, then unlink it.
if(-1 == unlink(new_filestat.c_str())){
S3FS_PRN_ERR("failed to unlink new cache file stat path(%s) by errno(%d).", new_filestat.c_str(), errno);
return false;
}
}
// check old stat path
if(0 != stat(old_filestat.c_str(), &st)){
// old stat path is not existed, then nothing to do any more.
return true;
}
// link and unlink
if(-1 == link(old_filestat.c_str(), new_filestat.c_str())){
S3FS_PRN_ERR("failed to link old cache file stat path(%s) to new cache file stat path(%s) by errno(%d).", old_filestat.c_str(), new_filestat.c_str(), errno);
return false;
}
if(-1 == unlink(old_filestat.c_str())){
S3FS_PRN_ERR("failed to unlink old cache file stat path(%s) by errno(%d).", old_filestat.c_str(), errno);
return false;
}
return true;
}
//------------------------------------------------
// CacheFileStat methods
//------------------------------------------------
CacheFileStat::CacheFileStat(const char* tpath) : path(""), fd(-1)
{
if(tpath && '\0' != tpath[0]){
SetPath(tpath, true);
}
}
CacheFileStat::~CacheFileStat()
{
Release();
}
bool CacheFileStat::SetPath(const char* tpath, bool is_open)
{
if(!tpath || '\0' == tpath[0]){
return false;
}
if(!Release()){
// could not close old stat file.
return false;
}
path = tpath;
if(!is_open){
return true;
}
return Open();
}
bool CacheFileStat::Open()
{
if(path.empty()){
return false;
}
if(-1 != fd){
// already opened
return true;
}
// stat path
string sfile_path;
if(!CacheFileStat::MakeCacheFileStatPath(path.c_str(), sfile_path, true)){
S3FS_PRN_ERR("failed to create cache stat file path(%s)", path.c_str());
return false;
}
// open
if(-1 == (fd = open(sfile_path.c_str(), O_CREAT|O_RDWR, 0600))){
S3FS_PRN_ERR("failed to open cache stat file path(%s) - errno(%d)", path.c_str(), errno);
return false;
}
// lock
if(-1 == flock(fd, LOCK_EX)){
S3FS_PRN_ERR("failed to lock cache stat file(%s) - errno(%d)", path.c_str(), errno);
close(fd);
fd = -1;
return false;
}
// seek top
if(0 != lseek(fd, 0, SEEK_SET)){
S3FS_PRN_ERR("failed to lseek cache stat file(%s) - errno(%d)", path.c_str(), errno);
flock(fd, LOCK_UN);
close(fd);
fd = -1;
return false;
}
S3FS_PRN_DBG("file locked(%s - %s)", path.c_str(), sfile_path.c_str());
return true;
}
bool CacheFileStat::Release()
{
if(-1 == fd){
// already release
return true;
}
// unlock
if(-1 == flock(fd, LOCK_UN)){
S3FS_PRN_ERR("failed to unlock cache stat file(%s) - errno(%d)", path.c_str(), errno);
return false;
}
S3FS_PRN_DBG("file unlocked(%s)", path.c_str());
if(-1 == close(fd)){
S3FS_PRN_ERR("failed to close cache stat file(%s) - errno(%d)", path.c_str(), errno);
return false;
}
fd = -1;
return true;
}
//------------------------------------------------
// fdpage_list_t utility
//------------------------------------------------
// Inline function for repeated processing
inline void raw_add_compress_fdpage_list(fdpage_list_t& pagelist, fdpage& page, bool ignore_load, bool ignore_modify, bool default_load, bool default_modify)
{
if(0 < page.bytes){
// [NOTE]
// The page variable is subject to change here.
//
if(ignore_load){
page.loaded = default_load;
}
if(ignore_modify){
page.modified = default_modify;
}
pagelist.push_back(page);
}
}
// Compress the page list
//
// ignore_load: Ignore the flag of loaded member and compress
// ignore_modify: Ignore the flag of modified member and compress
// default_load: loaded flag value in the list after compression when ignore_load=true
// default_modify: modified flag value in the list after compression when default_modify=true
//
// NOTE: ignore_modify and ignore_load cannot both be true.
//
static fdpage_list_t raw_compress_fdpage_list(const fdpage_list_t& pages, bool ignore_load, bool ignore_modify, bool default_load, bool default_modify)
{
fdpage_list_t compressed_pages;
fdpage tmppage;
bool is_first = true;
for(fdpage_list_t::const_iterator iter = pages.begin(); iter != pages.end(); ++iter){
if(!is_first){
if( (!ignore_load && (tmppage.loaded != iter->loaded )) ||
(!ignore_modify && (tmppage.modified != iter->modified)) )
{
// Different from the previous area, add it to list
raw_add_compress_fdpage_list(compressed_pages, tmppage, ignore_load, ignore_modify, default_load, default_modify);
// keep current area
tmppage = fdpage(iter->offset, iter->bytes, (ignore_load ? default_load : iter->loaded), (ignore_modify ? default_modify : iter->modified));
}else{
// Same as the previous area
if(tmppage.next() != iter->offset){
// These are not contiguous areas, add it to list
raw_add_compress_fdpage_list(compressed_pages, tmppage, ignore_load, ignore_modify, default_load, default_modify);
// keep current area
tmppage = fdpage(iter->offset, iter->bytes, (ignore_load ? default_load : iter->loaded), (ignore_modify ? default_modify : iter->modified));
}else{
// These are contiguous areas
// add current area
tmppage.bytes += iter->bytes;
}
}
}else{
// first erea
is_first = false;
// keep current area
tmppage = fdpage(iter->offset, iter->bytes, (ignore_load ? default_load : iter->loaded), (ignore_modify ? default_modify : iter->modified));
}
}
// add lastest area
if(!is_first){
raw_add_compress_fdpage_list(compressed_pages, tmppage, ignore_load, ignore_modify, default_load, default_modify);
}
return compressed_pages;
}
static fdpage_list_t compress_fdpage_list_ignore_modify(const fdpage_list_t& pages, bool default_modify)
{
return raw_compress_fdpage_list(pages, /* ignore_load= */ false, /* ignore_modify= */ true, /* default_load= */false, /* default_modify= */default_modify);
}
static fdpage_list_t compress_fdpage_list_ignore_load(const fdpage_list_t& pages, bool default_load)
{
return raw_compress_fdpage_list(pages, /* ignore_load= */ true, /* ignore_modify= */ false, /* default_load= */default_load, /* default_modify= */false);
}
static fdpage_list_t compress_fdpage_list(const fdpage_list_t& pages)
{
return raw_compress_fdpage_list(pages, /* ignore_load= */ false, /* ignore_modify= */ false, /* default_load= */false, /* default_modify= */false);
}
static fdpage_list_t parse_partsize_fdpage_list(const fdpage_list_t& pages, off_t max_partsize)
{
fdpage_list_t parsed_pages;
for(fdpage_list_t::const_iterator iter = pages.begin(); iter != pages.end(); ++iter){
if(iter->modified){
// modified page
fdpage tmppage = *iter;
for(off_t start = iter->offset, rest_bytes = iter->bytes; 0 < rest_bytes; ){
if((max_partsize * 2) < rest_bytes){
// do parse
tmppage.offset = start;
tmppage.bytes = max_partsize;
parsed_pages.push_back(tmppage);
start += max_partsize;
rest_bytes -= max_partsize;
}else{
// Since the number of remaining bytes is less than twice max_partsize,
// one of the divided areas will be smaller than max_partsize.
// Therefore, this area at the end should not be divided.
tmppage.offset = start;
tmppage.bytes = rest_bytes;
parsed_pages.push_back(tmppage);
start += rest_bytes;
rest_bytes = 0;
}
}
}else{
// not modified page is not parsed
parsed_pages.push_back(*iter);
}
}
return parsed_pages;
}
//------------------------------------------------
// PageList methods
//------------------------------------------------
void PageList::FreeList(fdpage_list_t& list)
{
list.clear();
}
PageList::PageList(off_t size, bool is_loaded, bool is_modified)
{
Init(size, is_loaded, is_modified);
}
PageList::PageList(const PageList& other)
{
for(fdpage_list_t::const_iterator iter = other.pages.begin(); iter != other.pages.end(); ++iter){
pages.push_back(*iter);
}
}
PageList::~PageList()
{
Clear();
}
void PageList::Clear()
{
PageList::FreeList(pages);
}
bool PageList::Init(off_t size, bool is_loaded, bool is_modified)
{
Clear();
if(0 < size){
fdpage page(0, size, is_loaded, is_modified);
pages.push_back(page);
}
return true;
}
off_t PageList::Size() const
{
if(pages.empty()){
return 0;
}
fdpage_list_t::const_reverse_iterator riter = pages.rbegin();
return riter->next();
}
bool PageList::Compress()
{
pages = compress_fdpage_list(pages);
return true;
}
bool PageList::Parse(off_t new_pos)
{
for(fdpage_list_t::iterator iter = pages.begin(); iter != pages.end(); ++iter){
if(new_pos == iter->offset){
// nothing to do
return true;
}else if(iter->offset < new_pos && new_pos < iter->next()){
fdpage page(iter->offset, new_pos - iter->offset, iter->loaded, iter->modified);
iter->bytes -= (new_pos - iter->offset);
iter->offset = new_pos;
pages.insert(iter, page);
return true;
}
}
return false;
}
bool PageList::Resize(off_t size, bool is_loaded, bool is_modified)
{
off_t total = Size();
if(0 == total){
Init(size, is_loaded, is_modified);
}else if(total < size){
// add new area
fdpage page(total, (size - total), is_loaded, is_modified);
pages.push_back(page);
}else if(size < total){
// cut area
for(fdpage_list_t::iterator iter = pages.begin(); iter != pages.end(); ){
if(iter->next() <= size){
++iter;
}else{
if(size <= iter->offset){
iter = pages.erase(iter);
}else{
iter->bytes = size - iter->offset;
}
}
}
}else{ // total == size
// nothing to do
}
// compress area
return Compress();
}
bool PageList::IsPageLoaded(off_t start, off_t size) const
{
for(fdpage_list_t::const_iterator iter = pages.begin(); iter != pages.end(); ++iter){
if(iter->end() < start){
continue;
}
if(!iter->loaded){
return false;
}
if(0 != size && start + size <= iter->next()){
break;
}
}
return true;
}
bool PageList::SetPageLoadedStatus(off_t start, off_t size, PageList::page_status pstatus, bool is_compress)
{
off_t now_size = Size();
bool is_loaded = (PAGE_LOAD_MODIFIED == pstatus || PAGE_LOADED == pstatus);
bool is_modified = (PAGE_LOAD_MODIFIED == pstatus || PAGE_MODIFIED == pstatus);
if(now_size <= start){
if(now_size < start){
// add
Resize(start, false, is_modified); // set modified flag from now end pos to specified start pos.
}
Resize(start + size, is_loaded, is_modified);
}else if(now_size <= start + size){
// cut
Resize(start, false, false); // not changed loaded/modified flags in existing area.
// add
Resize(start + size, is_loaded, is_modified);
}else{
// start-size are inner pages area
// parse "start", and "start + size" position
Parse(start);
Parse(start + size);
// set loaded flag
for(fdpage_list_t::iterator iter = pages.begin(); iter != pages.end(); ++iter){
if(iter->end() < start){
continue;
}else if(start + size <= iter->offset){
break;
}else{
iter->loaded = is_loaded;
iter->modified = is_modified;
}
}
}
// compress area
return (is_compress ? Compress() : true);
}
bool PageList::FindUnloadedPage(off_t start, off_t& resstart, off_t& ressize) const
{
for(fdpage_list_t::const_iterator iter = pages.begin(); iter != pages.end(); ++iter){
if(start <= iter->end()){
if(!iter->loaded && !iter->modified){ // Do not load unloaded and modified areas
resstart = iter->offset;
ressize = iter->bytes;
return true;
}
}
}
return false;
}
off_t PageList::GetTotalUnloadedPageSize(off_t start, off_t size) const
{
off_t restsize = 0;
off_t next = start + size;
for(fdpage_list_t::const_iterator iter = pages.begin(); iter != pages.end(); ++iter){
if(iter->next() <= start){
continue;
}
if(next <= iter->offset){
break;
}
if(iter->loaded || iter->modified){
continue;
}
off_t tmpsize;
if(iter->offset <= start){
if(iter->next() <= next){
tmpsize = (iter->next() - start);
}else{
tmpsize = next - start; // = size
}
}else{
if(iter->next() <= next){
tmpsize = iter->next() - iter->offset; // = iter->bytes
}else{
tmpsize = next - iter->offset;
}
}
restsize += tmpsize;
}
return restsize;
}
int PageList::GetUnloadedPages(fdpage_list_t& unloaded_list, off_t start, off_t size) const
{
// If size is 0, it means loading to end.
if(0 == size){
if(start < Size()){
size = Size() - start;
}
}
off_t next = start + size;
for(fdpage_list_t::const_iterator iter = pages.begin(); iter != pages.end(); ++iter){
if(iter->next() <= start){
continue;
}
if(next <= iter->offset){
break;
}
if(iter->loaded || iter->modified){
continue; // already loaded or modified
}
// page area
off_t page_start = max(iter->offset, start);
off_t page_next = min(iter->next(), next);
off_t page_size = page_next - page_start;
// add list
fdpage_list_t::reverse_iterator riter = unloaded_list.rbegin();
if(riter != unloaded_list.rend() && riter->next() == page_start){
// merge to before page
riter->bytes += page_size;
}else{
fdpage page(page_start, page_size, false, false);
unloaded_list.push_back(page);
}
}
return unloaded_list.size();
}
// [NOTE]
// This method is called in advance when mixing POST and COPY in multi-part upload.
// The minimum size of each part must be 5 MB, and the data area below this must be
// downloaded from S3.
// This method checks the current PageList status and returns the area that needs
// to be downloaded so that each part is at least 5 MB.
//
bool PageList::GetPageListsForMultipartUpload(fdpage_list_t& dlpages, fdpage_list_t& mixuppages, off_t max_partsize)
{
// compress before this processing
if(!Compress()){
return false;
}
// make a list by modified flag
fdpage_list_t modified_pages = compress_fdpage_list_ignore_load(pages, false);
fdpage_list_t download_pages; // A non-contiguous page list showing the areas that need to be downloaded
fdpage_list_t mixupload_pages; // A continuous page list showing only modified flags for mixupload
fdpage prev_page;
for(fdpage_list_t::const_iterator iter = modified_pages.begin(); iter != modified_pages.end(); ++iter){
if(iter->modified){
// current is modified area
if(!prev_page.modified){
// previous is not modified area
if(prev_page.bytes < static_cast<const off_t>(MIN_MULTIPART_SIZE)){
// previous(not modified) area is too small for one multipart size,
// then all of previous area is needed to download.
download_pages.push_back(prev_page);
// previous(not modified) area is set upload area.
prev_page.modified = true;
mixupload_pages.push_back(prev_page);
}else{
// previous(not modified) area is set copy area.
prev_page.modified = false;
mixupload_pages.push_back(prev_page);
}
// set current to previous
prev_page = *iter;
}else{
// previous is modified area, too
prev_page.bytes += iter->bytes;
}
}else{
// current is not modified area
if(!prev_page.modified){
// previous is not modified area, too
prev_page.bytes += iter->bytes;
}else{
// previous is modified area
if(prev_page.bytes < static_cast<const off_t>(MIN_MULTIPART_SIZE)){
// previous(modified) area is too small for one multipart size,
// then part or all of current area is needed to download.
off_t missing_bytes = static_cast<const off_t>(MIN_MULTIPART_SIZE) - prev_page.bytes;
if((missing_bytes + static_cast<const off_t>(MIN_MULTIPART_SIZE)) < iter-> bytes){
// The current size is larger than the missing size, and the remainder
// after deducting the missing size is larger than the minimum size.
fdpage missing_page(iter->offset, missing_bytes, false, false);
download_pages.push_back(missing_page);
// previous(not modified) area is set upload area.
prev_page.bytes = static_cast<const off_t>(MIN_MULTIPART_SIZE);
mixupload_pages.push_back(prev_page);
// set current to previous
prev_page = *iter;
prev_page.offset += missing_bytes;
prev_page.bytes -= missing_bytes;
}else{
// The current size is less than the missing size, or the remaining
// size less the missing size is less than the minimum size.
download_pages.push_back(*iter);
// add current to previous
prev_page.bytes += iter->bytes;
}
}else{
// previous(modified) area is enough size for one multipart size.
mixupload_pages.push_back(prev_page);
// set current to previous
prev_page = *iter;
}
}
}
}
// lastest area
if(0 < prev_page.bytes){
mixupload_pages.push_back(prev_page);
}
// compress
dlpages = compress_fdpage_list_ignore_modify(download_pages, false);
mixuppages = compress_fdpage_list_ignore_load(mixupload_pages, false);
// parse by max pagesize
dlpages = parse_partsize_fdpage_list(dlpages, max_partsize);
mixuppages = parse_partsize_fdpage_list(mixuppages, max_partsize);
return true;
}
bool PageList::IsModified() const
{
for(fdpage_list_t::const_iterator iter = pages.begin(); iter != pages.end(); ++iter){
if(iter->modified){
return true;
}
}
return false;
}
bool PageList::ClearAllModified()
{
for(fdpage_list_t::iterator iter = pages.begin(); iter != pages.end(); ++iter){
if(iter->modified){
iter->modified = false;
}
}
return Compress();
}
bool PageList::Serialize(CacheFileStat& file, bool is_output, ino_t inode)
{
if(!file.Open()){
return false;
}
if(is_output){
//
// put to file
//
ostringstream ssall;
ssall << inode << ":" << Size();
for(fdpage_list_t::iterator iter = pages.begin(); iter != pages.end(); ++iter){
ssall << "\n" << iter->offset << ":" << iter->bytes << ":" << (iter->loaded ? "1" : "0") << ":" << (iter->modified ? "1" : "0");
}
if(-1 == ftruncate(file.GetFd(), 0)){
S3FS_PRN_ERR("failed to truncate file(to 0) for stats(%d)", errno);
return false;
}
string strall = ssall.str();
if(0 >= pwrite(file.GetFd(), strall.c_str(), strall.length(), 0)){
S3FS_PRN_ERR("failed to write stats(%d)", errno);
return false;
}
}else{
//
// loading from file
//
struct stat st;
memset(&st, 0, sizeof(struct stat));
if(-1 == fstat(file.GetFd(), &st)){
S3FS_PRN_ERR("fstat is failed. errno(%d)", errno);
return false;
}
if(0 >= st.st_size){
// nothing
Init(0, false, false);
return true;
}
char* ptmp = new char[st.st_size + 1];
ptmp[st.st_size] = '\0';
// read from file
if(0 >= pread(file.GetFd(), ptmp, st.st_size, 0)){
S3FS_PRN_ERR("failed to read stats(%d)", errno);
delete[] ptmp;
return false;
}
string oneline;
istringstream ssall(ptmp);
// loaded
Clear();
// load head line(for size and inode)
off_t total;
ino_t cache_inode; // if this value is 0, it means old format.
if(!getline(ssall, oneline, '\n')){
S3FS_PRN_ERR("failed to parse stats.");
delete[] ptmp;
return false;
}else{
istringstream sshead(oneline);
string strhead1;
string strhead2;
// get first part in head line.
if(!getline(sshead, strhead1, ':')){
S3FS_PRN_ERR("failed to parse stats.");
delete[] ptmp;
return false;
}
// get second part in head line.
if(!getline(sshead, strhead2, ':')){
// old head format is "<size>\n"
total = cvt_strtoofft(strhead1.c_str(), /* base= */10);
cache_inode = 0;
}else{
// current head format is "<inode>:<size>\n"
total = cvt_strtoofft(strhead2.c_str(), /* base= */10);
cache_inode = static_cast<ino_t>(cvt_strtoofft(strhead1.c_str(), /* base= */10));
if(0 == cache_inode){
S3FS_PRN_ERR("wrong inode number in parsed cache stats.");
delete[] ptmp;
return false;
}
}
}
// check inode number
if(0 != cache_inode && cache_inode != inode){
S3FS_PRN_ERR("differ inode and inode number in parsed cache stats.");
delete[] ptmp;
return false;
}
// load each part
bool is_err = false;
while(getline(ssall, oneline, '\n')){
string part;
istringstream ssparts(oneline);
// offset
if(!getline(ssparts, part, ':')){
is_err = true;
break;
}
off_t offset = cvt_strtoofft(part.c_str(), /* base= */10);
// size
if(!getline(ssparts, part, ':')){
is_err = true;
break;
}
off_t size = cvt_strtoofft(part.c_str(), /* base= */10);
// loaded
if(!getline(ssparts, part, ':')){
is_err = true;
break;
}
bool is_loaded = (1 == cvt_strtoofft(part.c_str(), /* base= */10) ? true : false);
bool is_modified;
if(!getline(ssparts, part, ':')){
is_modified = false; // old version does not have this part.
}else{
is_modified = (1 == cvt_strtoofft(part.c_str(), /* base= */10) ? true : false);
}
// add new area
PageList::page_status pstatus =
( is_loaded && is_modified ? PageList::PAGE_LOAD_MODIFIED :
!is_loaded && is_modified ? PageList::PAGE_MODIFIED :
is_loaded && !is_modified ? PageList::PAGE_LOADED : PageList::PAGE_NOT_LOAD_MODIFIED );
SetPageLoadedStatus(offset, size, pstatus);
}
delete[] ptmp;
if(is_err){
S3FS_PRN_ERR("failed to parse stats.");
Clear();
return false;
}
// check size
if(total != Size()){
S3FS_PRN_ERR("different size(%lld - %lld).", static_cast<long long int>(total), static_cast<long long int>(Size()));
Clear();
return false;
}
}
return true;
}
void PageList::Dump() const
{
int cnt = 0;
S3FS_PRN_DBG("pages = {");
for(fdpage_list_t::const_iterator iter = pages.begin(); iter != pages.end(); ++iter, ++cnt){
S3FS_PRN_DBG(" [%08d] -> {%014lld - %014lld : %s / %s}", cnt, static_cast<long long int>(iter->offset), static_cast<long long int>(iter->bytes), iter->loaded ? "loaded" : "unloaded", iter->modified ? "modified" : "not modified");
}
S3FS_PRN_DBG("}");
}
//------------------------------------------------
// FdEntity class methods
//------------------------------------------------
bool FdEntity::mixmultipart = true;
bool FdEntity::SetNoMixMultipart()
{
bool old = mixmultipart;
mixmultipart = false;
return old;
}
int FdEntity::FillFile(int fd, unsigned char byte, off_t size, off_t start)
{
unsigned char bytes[1024 * 32]; // 32kb
memset(bytes, byte, min(static_cast<off_t>(sizeof(bytes)), size));
for(off_t total = 0, onewrote = 0; total < size; total += onewrote){
if(-1 == (onewrote = pwrite(fd, bytes, min(static_cast<off_t>(sizeof(bytes)), size - total), start + total))){
S3FS_PRN_ERR("pwrite failed. errno(%d)", errno);
return -errno;
}
}
return 0;
}
// [NOTE]
// If fd is wrong or something error is occurred, return 0.
// The ino_t is allowed zero, but inode 0 is not realistic.
// So this method returns 0 on error assuming the correct
// inode is never 0.
// The caller must have exclusive control.
//
ino_t FdEntity::GetInode(int fd)
{
if(-1 == fd){
S3FS_PRN_ERR("file descriptor is wrong.");
return 0;
}
struct stat st;
if(0 != fstat(fd, &st)){
S3FS_PRN_ERR("could not get stat for file descriptor(%d) by errno(%d).", fd, errno);
return 0;
}
return st.st_ino;
}
//------------------------------------------------
// FdEntity methods
//------------------------------------------------
FdEntity::FdEntity(const char* tpath, const char* cpath)
: is_lock_init(false), refcnt(0), path(SAFESTRPTR(tpath)),
fd(-1), pfile(NULL), inode(0), size_orgmeta(0), upload_id(""), mp_start(0), mp_size(0),
cachepath(SAFESTRPTR(cpath)), mirrorpath("")
{
pthread_mutexattr_t attr;
pthread_mutexattr_init(&attr);
#if S3FS_PTHREAD_ERRORCHECK
pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK);
#endif
int res;
if(0 != (res = pthread_mutex_init(&fdent_lock, &attr))){
S3FS_PRN_CRIT("failed to init fdent_lock: %d", res);
abort();
}
if(0 != (res = pthread_mutex_init(&fdent_data_lock, &attr))){
S3FS_PRN_CRIT("failed to init fdent_data_lock: %d", res);
abort();
}
is_lock_init = true;
}
FdEntity::~FdEntity()
{
Clear();
if(is_lock_init){
int res;
if(0 != (res = pthread_mutex_destroy(&fdent_data_lock))){
S3FS_PRN_CRIT("failed to destroy fdent_data_lock: %d", res);
abort();
}
if(0 != (res = pthread_mutex_destroy(&fdent_lock))){
S3FS_PRN_CRIT("failed to destroy fdent_lock: %d", res);
abort();
}
is_lock_init = false;
}
}
void FdEntity::Clear()
{
AutoLock auto_lock(&fdent_lock);
AutoLock auto_data_lock(&fdent_data_lock);
if(-1 != fd){
if(!cachepath.empty()){
// [NOTE]
// Compare the inode of the existing cache file with the inode of
// the cache file output by this object, and if they are the same,
// serialize the pagelist.
//
ino_t cur_inode = GetInode();
if(0 != cur_inode && cur_inode == inode){
CacheFileStat cfstat(path.c_str());
if(!pagelist.Serialize(cfstat, true, inode)){
S3FS_PRN_WARN("failed to save cache stat file(%s).", path.c_str());
}
}
}
if(pfile){
fclose(pfile);
pfile = NULL;
}
fd = -1;
inode = 0;
if(!mirrorpath.empty()){
if(-1 == unlink(mirrorpath.c_str())){
S3FS_PRN_WARN("failed to remove mirror cache file(%s) by errno(%d).", mirrorpath.c_str(), errno);
}
mirrorpath.erase();
}
}
pagelist.Init(0, false, false);
refcnt = 0;
path = "";
cachepath = "";
}
// [NOTE]
// This method returns the inode of the file in cachepath.
// The return value is the same as the class method GetInode().
// The caller must have exclusive control.
//
ino_t FdEntity::GetInode()
{
if(cachepath.empty()){
S3FS_PRN_INFO("cache file path is empty, then return inode as 0.");
return 0;
}
struct stat st;
if(0 != stat(cachepath.c_str(), &st)){
S3FS_PRN_INFO("could not get stat for file(%s) by errno(%d).", cachepath.c_str(), errno);
return 0;
}
return st.st_ino;
}
void FdEntity::Close()
{
AutoLock auto_lock(&fdent_lock);
S3FS_PRN_DBG("[path=%s][fd=%d][refcnt=%d]", path.c_str(), fd, (-1 != fd ? refcnt - 1 : refcnt));
if(-1 != fd){
if(0 < refcnt){
refcnt--;
}else{
S3FS_PRN_EXIT("reference count underflow");
abort();
}
if(0 == refcnt){
AutoLock auto_data_lock(&fdent_data_lock);
if(!cachepath.empty()){
// [NOTE]
// Compare the inode of the existing cache file with the inode of
// the cache file output by this object, and if they are the same,
// serialize the pagelist.
//
ino_t cur_inode = GetInode();
if(0 != cur_inode && cur_inode == inode){
CacheFileStat cfstat(path.c_str());
if(!pagelist.Serialize(cfstat, true, inode)){
S3FS_PRN_WARN("failed to save cache stat file(%s).", path.c_str());
}
}
}
if(pfile){
fclose(pfile);
pfile = NULL;
}
fd = -1;
inode = 0;
if(!mirrorpath.empty()){
if(-1 == unlink(mirrorpath.c_str())){
S3FS_PRN_WARN("failed to remove mirror cache file(%s) by errno(%d).", mirrorpath.c_str(), errno);
}
mirrorpath.erase();
}
}
}
}
int FdEntity::Dup(bool lock_already_held)
{
AutoLock auto_lock(&fdent_lock, lock_already_held ? AutoLock::ALREADY_LOCKED : AutoLock::NONE);
S3FS_PRN_DBG("[path=%s][fd=%d][refcnt=%d]", path.c_str(), fd, (-1 != fd ? refcnt + 1 : refcnt));
if(-1 != fd){
refcnt++;
}
return fd;
}
//
// Open mirror file which is linked cache file.
//
int FdEntity::OpenMirrorFile()
{
if(cachepath.empty()){
S3FS_PRN_ERR("cache path is empty, why come here");
return -EIO;
}
// make temporary directory
string bupdir;
if(!FdManager::MakeCachePath(NULL, bupdir, true, true)){
S3FS_PRN_ERR("could not make bup cache directory path or create it.");
return -EIO;
}
// create seed generating mirror file name
unsigned int seed = static_cast<unsigned int>(time(NULL));
int urandom_fd;
if(-1 != (urandom_fd = open("/dev/urandom", O_RDONLY))){
unsigned int rand_data;
if(sizeof(rand_data) == read(urandom_fd, &rand_data, sizeof(rand_data))){
seed ^= rand_data;
}
close(urandom_fd);
}
// try to link mirror file
while(true){
// make random(temp) file path
// (do not care for threading, because allowed any value returned.)
//
char szfile[NAME_MAX + 1];
sprintf(szfile, "%x.tmp", rand_r(&seed));
mirrorpath = bupdir + "/" + szfile;
// link mirror file to cache file
if(0 == link(cachepath.c_str(), mirrorpath.c_str())){
break;
}
if(EEXIST != errno){
S3FS_PRN_ERR("could not link mirror file(%s) to cache file(%s) by errno(%d).", mirrorpath.c_str(), cachepath.c_str(), errno);
return -errno;
}
++seed;
}
// open mirror file
int mirrorfd;
if(-1 == (mirrorfd = open(mirrorpath.c_str(), O_RDWR))){
S3FS_PRN_ERR("could not open mirror file(%s) by errno(%d).", mirrorpath.c_str(), errno);
return -errno;
}
return mirrorfd;
}
int FdEntity::Open(headers_t* pmeta, off_t size, time_t time, bool no_fd_lock_wait)
{
AutoLock auto_lock(&fdent_lock, no_fd_lock_wait ? AutoLock::NO_WAIT : AutoLock::NONE);
S3FS_PRN_DBG("[path=%s][fd=%d][size=%lld][time=%lld]", path.c_str(), fd, static_cast<long long>(size), static_cast<long long>(time));
if (!auto_lock.isLockAcquired()) {
// had to wait for fd lock, return
S3FS_PRN_ERR("Could not get lock.");
return -EIO;
}
AutoLock auto_data_lock(&fdent_data_lock);
if(-1 != fd){
// already opened, needs to increment refcnt.
Dup(/*lock_already_held=*/ true);
// check only file size(do not need to save cfs and time.
if(0 <= size && pagelist.Size() != size){
// truncate temporary file size
if(-1 == ftruncate(fd, size)){
S3FS_PRN_ERR("failed to truncate temporary file(%d) by errno(%d).", fd, errno);
if(0 < refcnt){
refcnt--;
}
return -EIO;
}
// resize page list
if(!pagelist.Resize(size, false, true)){ // Areas with increased size are modified
S3FS_PRN_ERR("failed to truncate temporary file information(%d).", fd);
if(0 < refcnt){
refcnt--;
}
return -EIO;
}
}
// set original headers and set size.
off_t new_size = (0 <= size ? size : size_orgmeta);
if(pmeta){
orgmeta = *pmeta;
new_size = get_size(orgmeta);
}
if(new_size < size_orgmeta){
size_orgmeta = new_size;
}
return 0;
}
bool need_save_csf = false; // need to save(reset) cache stat file
bool is_truncate = false; // need to truncate
if(!cachepath.empty()){
// using cache
struct stat st;
if(stat(cachepath.c_str(), &st) == 0){
if(st.st_mtime < time){
S3FS_PRN_DBG("cache file stale, removing: %s", cachepath.c_str());
if(unlink(cachepath.c_str()) != 0){
return (0 == errno ? -EIO : -errno);
}
}
}
// open cache and cache stat file, load page info.
CacheFileStat cfstat(path.c_str());
// try to open cache file
if( -1 != (fd = open(cachepath.c_str(), O_RDWR)) &&
0 != (inode = FdEntity::GetInode(fd)) &&
pagelist.Serialize(cfstat, false, inode) )
{
// succeed to open cache file and to load stats data
memset(&st, 0, sizeof(struct stat));
if(-1 == fstat(fd, &st)){
S3FS_PRN_ERR("fstat is failed. errno(%d)", errno);
fd = -1;
inode = 0;
return (0 == errno ? -EIO : -errno);
}
// check size, st_size, loading stat file
if(-1 == size){
if(st.st_size != pagelist.Size()){
pagelist.Resize(st.st_size, false, true); // Areas with increased size are modified
need_save_csf = true; // need to update page info
}
size = st.st_size;
}else{
if(size != pagelist.Size()){
pagelist.Resize(size, false, true); // Areas with increased size are modified
need_save_csf = true; // need to update page info
}
if(size != st.st_size){
is_truncate = true;
}
}
}else{
if(-1 != fd){
close(fd);
}
inode = 0;
// could not open cache file or could not load stats data, so initialize it.
if(-1 == (fd = open(cachepath.c_str(), O_CREAT|O_RDWR|O_TRUNC, 0600))){
S3FS_PRN_ERR("failed to open file(%s). errno(%d)", cachepath.c_str(), errno);
// remove cache stat file if it is existed
if(!CacheFileStat::DeleteCacheFileStat(path.c_str())){
if(ENOENT != errno){
S3FS_PRN_WARN("failed to delete current cache stat file(%s) by errno(%d), but continue...", path.c_str(), errno);
}
}
return (0 == errno ? -EIO : -errno);
}
need_save_csf = true; // need to update page info
inode = FdEntity::GetInode(fd);
if(-1 == size){
size = 0;
pagelist.Init(0, false, false);
}else{
// [NOTE]
// The modify flag must not be set when opening a file,
// if the time parameter(mtime) is specified(not -1) and
// the cache file does not exist.
// If mtime is specified for the file and the cache file
// mtime is older than it, the cache file is removed and
// the processing comes here.
//
pagelist.Resize(size, false, (0 <= time ? false : true));
is_truncate = true;
}
}
// open mirror file
int mirrorfd;
if(0 >= (mirrorfd = OpenMirrorFile())){
S3FS_PRN_ERR("failed to open mirror file linked cache file(%s).", cachepath.c_str());
return (0 == mirrorfd ? -EIO : mirrorfd);
}
// switch fd
close(fd);
fd = mirrorfd;
// make file pointer(for being same tmpfile)
if(NULL == (pfile = fdopen(fd, "wb"))){
S3FS_PRN_ERR("failed to get fileno(%s). errno(%d)", cachepath.c_str(), errno);
close(fd);
fd = -1;
inode = 0;
return (0 == errno ? -EIO : -errno);
}
}else{
// not using cache
inode = 0;
// open temporary file
if(NULL == (pfile = tmpfile()) || -1 ==(fd = fileno(pfile))){
S3FS_PRN_ERR("failed to open tmp file. err(%d)", errno);
if(pfile){
fclose(pfile);
pfile = NULL;
}
return (0 == errno ? -EIO : -errno);
}
if(-1 == size){
size = 0;
pagelist.Init(0, false, false);
}else{
// [NOTE]
// The modify flag must not be set when opening a file,
// if the time parameter(mtime) is specified(not -1) and
// the cache file does not exist.
// If mtime is specified for the file and the cache file
// mtime is older than it, the cache file is removed and
// the processing comes here.
//
pagelist.Resize(size, false, (0 <= time ? false : true));
is_truncate = true;
}
}
// truncate cache(tmp) file
if(is_truncate){
if(0 != ftruncate(fd, size) || 0 != fsync(fd)){
S3FS_PRN_ERR("ftruncate(%s) or fsync returned err(%d)", cachepath.c_str(), errno);
fclose(pfile);
pfile = NULL;
fd = -1;
inode = 0;
return (0 == errno ? -EIO : -errno);
}
}
// reset cache stat file
if(need_save_csf){
CacheFileStat cfstat(path.c_str());
if(!pagelist.Serialize(cfstat, true, inode)){
S3FS_PRN_WARN("failed to save cache stat file(%s), but continue...", path.c_str());
}
}
// init internal data
refcnt = 1;
// set original headers and size in it.
if(pmeta){
orgmeta = *pmeta;
size_orgmeta = get_size(orgmeta);
}else{
orgmeta.clear();
size_orgmeta = 0;
}
// set mtime(set "x-amz-meta-mtime" in orgmeta)
if(-1 != time){
if(0 != SetMtime(time, /*lock_already_held=*/ true)){
S3FS_PRN_ERR("failed to set mtime. errno(%d)", errno);
fclose(pfile);
pfile = NULL;
fd = -1;
inode = 0;
return (0 == errno ? -EIO : -errno);
}
}
return 0;
}
// [NOTE]
// This method is called from only nocopyapi functions.
// So we do not check disk space for this option mode, if there is no enough
// disk space this method will be failed.
//
bool FdEntity::OpenAndLoadAll(headers_t* pmeta, off_t* size, bool force_load)
{
AutoLock auto_lock(&fdent_lock);
int result;
S3FS_PRN_INFO3("[path=%s][fd=%d]", path.c_str(), fd);
if(-1 == fd){
if(0 != Open(pmeta)){
return false;
}
}
AutoLock auto_data_lock(&fdent_data_lock);
if(force_load){
SetAllStatusUnloaded();
}
//
// TODO: possibly do background for delay loading
//
if(0 != (result = Load(/*start=*/ 0, /*size=*/ 0, /*lock_already_held=*/ true))){
S3FS_PRN_ERR("could not download, result(%d)", result);
return false;
}
if(size){
*size = pagelist.Size();
}
return true;
}
//
// Rename file path.
//
// This method sets the FdManager::fent map registration key to fentmapkey.
//
// [NOTE]
// This method changes the file path of FdEntity.
// Old file is deleted after linking to the new file path, and this works
// without problem because the file descriptor is not affected even if the
// cache file is open.
// The mirror file descriptor is also the same. The mirror file path does
// not need to be changed and will remain as it is.
//
bool FdEntity::RenamePath(const string& newpath, string& fentmapkey)
{
if(!cachepath.empty()){
// has cache path
// make new cache path
string newcachepath;
if(!FdManager::MakeCachePath(newpath.c_str(), newcachepath, true)){
S3FS_PRN_ERR("failed to make cache path for object(%s).", newpath.c_str());
return false;
}
// rename cache file
if(-1 == rename(cachepath.c_str(), newcachepath.c_str())){
S3FS_PRN_ERR("failed to rename old cache path(%s) to new cache path(%s) by errno(%d).", cachepath.c_str(), newcachepath.c_str(), errno);
return false;
}
// link and unlink cache file stat
if(!CacheFileStat::RenameCacheFileStat(path.c_str(), newpath.c_str())){
S3FS_PRN_ERR("failed to rename cache file stat(%s to %s).", path.c_str(), newpath.c_str());
return false;
}
fentmapkey = newpath;
cachepath = newcachepath;
}else{
// does not have cache path
fentmapkey.erase();
FdManager::MakeRandomTempPath(newpath.c_str(), fentmapkey);
}
// set new path
path = newpath;
return true;
}
bool FdEntity::GetStats(struct stat& st, bool lock_already_held)
{
AutoLock auto_lock(&fdent_lock, lock_already_held ? AutoLock::ALREADY_LOCKED : AutoLock::NONE);
if(-1 == fd){
return false;
}
memset(&st, 0, sizeof(struct stat));
if(-1 == fstat(fd, &st)){
S3FS_PRN_ERR("fstat failed. errno(%d)", errno);
return false;
}
return true;
}
int FdEntity::SetCtime(time_t time)
{
if(-1 == time){
return 0;
}
AutoLock auto_lock(&fdent_lock);
orgmeta["x-amz-meta-ctime"] = str(time);
return 0;
}
int FdEntity::SetMtime(time_t time, bool lock_already_held)
{
AutoLock auto_lock(&fdent_lock, lock_already_held ? AutoLock::ALREADY_LOCKED : AutoLock::NONE);
S3FS_PRN_INFO3("[path=%s][fd=%d][time=%lld]", path.c_str(), fd, static_cast<long long>(time));
if(-1 == time){
return 0;
}
if(-1 != fd){
struct timeval tv[2];
tv[0].tv_sec = time;
tv[0].tv_usec= 0L;
tv[1].tv_sec = tv[0].tv_sec;
tv[1].tv_usec= 0L;
if(-1 == futimes(fd, tv)){
S3FS_PRN_ERR("futimes failed. errno(%d)", errno);
return -errno;
}
}else if(!cachepath.empty()){
// not opened file yet.
struct utimbuf n_mtime;
n_mtime.modtime = time;
n_mtime.actime = time;
if(-1 == utime(cachepath.c_str(), &n_mtime)){
S3FS_PRN_ERR("utime failed. errno(%d)", errno);
return -errno;
}
}
orgmeta["x-amz-meta-ctime"] = str(time);
orgmeta["x-amz-meta-mtime"] = str(time);
return 0;
}
bool FdEntity::UpdateCtime()
{
AutoLock auto_lock(&fdent_lock);
struct stat st;
if(!GetStats(st, /*lock_already_held=*/ true)){
return false;
}
orgmeta["x-amz-meta-ctime"] = str(st.st_ctime);
return true;
}
bool FdEntity::UpdateMtime()
{
AutoLock auto_lock(&fdent_lock);
struct stat st;
if(!GetStats(st, /*lock_already_held=*/ true)){
return false;
}
orgmeta["x-amz-meta-ctime"] = str(st.st_ctime);
orgmeta["x-amz-meta-mtime"] = str(st.st_mtime);
return true;
}
bool FdEntity::GetSize(off_t& size)
{
AutoLock auto_lock(&fdent_lock);
if(-1 == fd){
return false;
}
size = pagelist.Size();
return true;
}
bool FdEntity::SetMode(mode_t mode)
{
AutoLock auto_lock(&fdent_lock);
orgmeta["x-amz-meta-mode"] = str(mode);
return true;
}
bool FdEntity::SetUId(uid_t uid)
{
AutoLock auto_lock(&fdent_lock);
orgmeta["x-amz-meta-uid"] = str(uid);
return true;
}
bool FdEntity::SetGId(gid_t gid)
{
AutoLock auto_lock(&fdent_lock);
orgmeta["x-amz-meta-gid"] = str(gid);
return true;
}
bool FdEntity::SetContentType(const char* path)
{
if(!path){
return false;
}
AutoLock auto_lock(&fdent_lock);
orgmeta["Content-Type"] = S3fsCurl::LookupMimeType(string(path));
return true;
}
bool FdEntity::SetAllStatus(bool is_loaded)
{
S3FS_PRN_INFO3("[path=%s][fd=%d][%s]", path.c_str(), fd, is_loaded ? "loaded" : "unloaded");
if(-1 == fd){
return false;
}
// [NOTE]
// this method is only internal use, and calling after locking.
// so do not lock now.
//
//AutoLock auto_lock(&fdent_lock);
// get file size
struct stat st;
memset(&st, 0, sizeof(struct stat));
if(-1 == fstat(fd, &st)){
S3FS_PRN_ERR("fstat is failed. errno(%d)", errno);
return false;
}
// Reinit
pagelist.Init(st.st_size, is_loaded, false);
return true;
}
int FdEntity::Load(off_t start, off_t size, bool lock_already_held, bool is_modified_flag)
{
AutoLock auto_lock(&fdent_lock, lock_already_held ? AutoLock::ALREADY_LOCKED : AutoLock::NONE);
S3FS_PRN_DBG("[path=%s][fd=%d][offset=%lld][size=%lld]", path.c_str(), fd, static_cast<long long int>(start), static_cast<long long int>(size));
if(-1 == fd){
return -EBADF;
}
AutoLock auto_data_lock(&fdent_data_lock, lock_already_held ? AutoLock::ALREADY_LOCKED : AutoLock::NONE);
int result = 0;
// check loaded area & load
fdpage_list_t unloaded_list;
if(0 < pagelist.GetUnloadedPages(unloaded_list, start, size)){
for(fdpage_list_t::iterator iter = unloaded_list.begin(); iter != unloaded_list.end(); ++iter){
if(0 != size && start + size <= iter->offset){
// reached end
break;
}
// check loading size
off_t need_load_size = 0;
if(iter->offset < size_orgmeta){
// original file size(on S3) is smaller than request.
need_load_size = (iter->next() <= size_orgmeta ? iter->bytes : (size_orgmeta - iter->offset));
}
// download
if(S3fsCurl::GetMultipartSize() <= need_load_size && !nomultipart){
// parallel request
result = S3fsCurl::ParallelGetObjectRequest(path.c_str(), fd, iter->offset, need_load_size);
}else{
// single request
if(0 < need_load_size){
S3fsCurl s3fscurl;
result = s3fscurl.GetObjectRequest(path.c_str(), fd, iter->offset, need_load_size);
}else{
result = 0;
}
}
if(0 != result){
break;
}
// Set loaded flag
pagelist.SetPageLoadedStatus(iter->offset, iter->bytes, (is_modified_flag ? PageList::PAGE_LOAD_MODIFIED : PageList::PAGE_LOADED));
}
PageList::FreeList(unloaded_list);
}
return result;
}
// [NOTE]
// At no disk space for caching object.
// This method is downloading by dividing an object of the specified range
// and uploading by multipart after finishing downloading it.
//
// [NOTICE]
// Need to lock before calling this method.
//
int FdEntity::NoCacheLoadAndPost(off_t start, off_t size)
{
int result = 0;
S3FS_PRN_INFO3("[path=%s][fd=%d][offset=%lld][size=%lld]", path.c_str(), fd, static_cast<long long int>(start), static_cast<long long int>(size));
if(-1 == fd){
return -EBADF;
}
// [NOTE]
// This method calling means that the cache file is never used no more.
//
if(!cachepath.empty()){
// remove cache files(and cache stat file)
FdManager::DeleteCacheFile(path.c_str());
// cache file path does not use no more.
cachepath.erase();
mirrorpath.erase();
}
// Change entity key in manager mapping
FdManager::get()->ChangeEntityToTempPath(this, path.c_str());
// open temporary file
FILE* ptmpfp;
int tmpfd;
if(NULL == (ptmpfp = tmpfile()) || -1 ==(tmpfd = fileno(ptmpfp))){
S3FS_PRN_ERR("failed to open tmp file. err(%d)", errno);
if(ptmpfp){
fclose(ptmpfp);
}
return (0 == errno ? -EIO : -errno);
}
// loop uploading by multipart
for(fdpage_list_t::iterator iter = pagelist.pages.begin(); iter != pagelist.pages.end(); ++iter){
if(iter->end() < start){
continue;
}
if(0 != size && start + size <= iter->offset){
break;
}
// download each multipart size(default 10MB) in unit
for(off_t oneread = 0, totalread = (iter->offset < start ? start : 0); totalread < static_cast<off_t>(iter->bytes); totalread += oneread){
int upload_fd = fd;
off_t offset = iter->offset + totalread;
oneread = min(static_cast<off_t>(iter->bytes) - totalread, S3fsCurl::GetMultipartSize());
// check rest size is over minimum part size
//
// [NOTE]
// If the final part size is smaller than 5MB, it is not allowed by S3 API.
// For this case, if the previous part of the final part is not over 5GB,
// we incorporate the final part to the previous part. If the previous part
// is over 5GB, we want to even out the last part and the previous part.
//
if((iter->bytes - totalread - oneread) < MIN_MULTIPART_SIZE){
if(FIVE_GB < iter->bytes - totalread){
oneread = (iter->bytes - totalread) / 2;
}else{
oneread = iter->bytes - totalread;
}
}
if(!iter->loaded){
//
// loading or initializing
//
upload_fd = tmpfd;
// load offset & size
size_t need_load_size = 0;
if(size_orgmeta <= offset){
// all area is over of original size
need_load_size = 0;
}else{
if(size_orgmeta < (offset + oneread)){
// original file size(on S3) is smaller than request.
need_load_size = size_orgmeta - offset;
}else{
need_load_size = oneread;
}
}
size_t over_size = oneread - need_load_size;
// [NOTE]
// truncate file to zero and set length to part offset + size
// after this, file length is (offset + size), but file does not use any disk space.
//
if(-1 == ftruncate(tmpfd, 0) || -1 == ftruncate(tmpfd, (offset + oneread))){
S3FS_PRN_ERR("failed to truncate temporary file(%d).", tmpfd);
result = -EIO;
break;
}
// single area get request
if(0 < need_load_size){
S3fsCurl s3fscurl;
if(0 != (result = s3fscurl.GetObjectRequest(path.c_str(), tmpfd, offset, oneread))){
S3FS_PRN_ERR("failed to get object(start=%lld, size=%lld) for file(%d).", static_cast<long long int>(offset), static_cast<long long int>(oneread), tmpfd);
break;
}
}
// initialize fd without loading
if(0 < over_size){
if(0 != (result = FdEntity::FillFile(tmpfd, 0, over_size, offset + need_load_size))){
S3FS_PRN_ERR("failed to fill rest bytes for fd(%d). errno(%d)", tmpfd, result);
break;
}
}
}else{
// already loaded area
}
// single area upload by multipart post
if(0 != (result = NoCacheMultipartPost(upload_fd, offset, oneread))){
S3FS_PRN_ERR("failed to multipart post(start=%lld, size=%lld) for file(%d).", static_cast<long long int>(offset), static_cast<long long int>(oneread), upload_fd);
break;
}
}
if(0 != result){
break;
}
// set loaded flag
if(!iter->loaded){
if(iter->offset < start){
fdpage page(iter->offset, start - iter->offset, iter->loaded, false);
iter->bytes -= (start - iter->offset);
iter->offset = start;
pagelist.pages.insert(iter, page);
}
if(0 != size && start + size < iter->next()){
fdpage page(iter->offset, start + size - iter->offset, true, false);
iter->bytes -= (start + size - iter->offset);
iter->offset = start + size;
pagelist.pages.insert(iter, page);
}else{
iter->loaded = true;
iter->modified = false;
}
}
}
if(0 == result){
// compress pagelist
pagelist.Compress();
// fd data do empty
if(-1 == ftruncate(fd, 0)){
S3FS_PRN_ERR("failed to truncate file(%d), but continue...", fd);
}
}
// close temporary
fclose(ptmpfp);
return result;
}
// [NOTE]
// At no disk space for caching object.
// This method is starting multipart uploading.
//
int FdEntity::NoCachePreMultipartPost()
{
// initialize multipart upload values
upload_id.erase();
etaglist.clear();
S3fsCurl s3fscurl(true);
int result;
if(0 != (result = s3fscurl.PreMultipartPostRequest(path.c_str(), orgmeta, upload_id, false))){
return result;
}
s3fscurl.DestroyCurlHandle();
return 0;
}
// [NOTE]
// At no disk space for caching object.
// This method is uploading one part of multipart.
//
int FdEntity::NoCacheMultipartPost(int tgfd, off_t start, off_t size)
{
if(-1 == tgfd || upload_id.empty()){
S3FS_PRN_ERR("Need to initialize for multipart post.");
return -EIO;
}
S3fsCurl s3fscurl(true);
return s3fscurl.MultipartUploadRequest(upload_id, path.c_str(), tgfd, start, size, etaglist);
}
// [NOTE]
// At no disk space for caching object.
// This method is finishing multipart uploading.
//
int FdEntity::NoCacheCompleteMultipartPost()
{
if(upload_id.empty() || etaglist.empty()){
S3FS_PRN_ERR("There is no upload id or etag list.");
return -EIO;
}
S3fsCurl s3fscurl(true);
int result;
if(0 != (result = s3fscurl.CompleteMultipartPostRequest(path.c_str(), upload_id, etaglist))){
return result;
}
s3fscurl.DestroyCurlHandle();
// reset values
upload_id.erase();
etaglist.clear();
mp_start = 0;
mp_size = 0;
return 0;
}
int FdEntity::RowFlush(const char* tpath, bool force_sync)
{
int result = 0;
std::string tmppath;
headers_t tmporgmeta;
{
AutoLock auto_lock(&fdent_lock);
tmppath = path;
tmporgmeta = orgmeta;
}
S3FS_PRN_INFO3("[tpath=%s][path=%s][fd=%d]", SAFESTRPTR(tpath), tmppath.c_str(), fd);
if(-1 == fd){
return -EBADF;
}
AutoLock auto_lock(&fdent_data_lock);
if(!force_sync && !pagelist.IsModified()){
// nothing to update.
return 0;
}
// If there is no loading all of the area, loading all area.
off_t restsize = pagelist.GetTotalUnloadedPageSize();
if(0 < restsize){
if(0 == upload_id.length()){
// check disk space
if(ReserveDiskSpace(restsize)){
// enough disk space
// Load all uninitialized area(no mix multipart uploading)
if(!FdEntity::mixmultipart){
result = Load(/*start=*/ 0, /*size=*/ 0, /*lock_already_held=*/ true);
}
FdManager::FreeReservedDiskSpace(restsize);
if(0 != result){
S3FS_PRN_ERR("failed to upload all area(errno=%d)", result);
return static_cast<ssize_t>(result);
}
}else{
// no enough disk space
// upload all by multipart uploading
if(0 != (result = NoCacheLoadAndPost())){
S3FS_PRN_ERR("failed to upload all area by multipart uploading(errno=%d)", result);
return static_cast<ssize_t>(result);
}
}
}else{
// already start multipart uploading
}
}
if(0 == upload_id.length()){
// normal uploading
/*
* Make decision to do multi upload (or not) based upon file size
*
* According to the AWS spec:
* - 1 to 10,000 parts are allowed
* - minimum size of parts is 5MB (expect for the last part)
*
* For our application, we will define minimum part size to be 10MB (10 * 2^20 Bytes)
* minimum file size will be 64 GB - 2 ** 36
*
* Initially uploads will be done serially
*
* If file is > 20MB, then multipart will kick in
*/
if(pagelist.Size() > MAX_MULTIPART_CNT * S3fsCurl::GetMultipartSize()){
// close f ?
S3FS_PRN_ERR("Part count exceeds %d. Increase multipart size and try again.", MAX_MULTIPART_CNT);
return -ENOTSUP;
}
// seek to head of file.
if(0 != lseek(fd, 0, SEEK_SET)){
S3FS_PRN_ERR("lseek error(%d)", errno);
return -errno;
}
// backup upload file size
struct stat st;
memset(&st, 0, sizeof(struct stat));
if(-1 == fstat(fd, &st)){
S3FS_PRN_ERR("fstat is failed by errno(%d), but continue...", errno);
}
if(pagelist.Size() >= S3fsCurl::GetMultipartSize() && !nomultipart){
if(FdEntity::mixmultipart){
// multipart uploading can use copy api
// This is to ensure that each part is 5MB or more.
// If the part is less than 5MB, download it.
fdpage_list_t dlpages;
fdpage_list_t mixuppages;
if(!pagelist.GetPageListsForMultipartUpload(dlpages, mixuppages, S3fsCurl::GetMultipartSize())){
S3FS_PRN_ERR("something error occurred during getting download pagelist.");
return -1;
}
// [TODO] should use parallel downloading
//
for(fdpage_list_t::const_iterator iter = dlpages.begin(); iter != dlpages.end(); ++iter){
if(0 != (result = Load(iter->offset, iter->bytes, /*lock_already_held=*/ true, /*is_modified_flag=*/ true))){ // set loaded and modified flag
S3FS_PRN_ERR("failed to get parts(start=%lld, size=%lld) before uploading.", static_cast<long long int>(iter->offset), static_cast<long long int>(iter->bytes));
return result;
}
}
// multipart uploading with copy api
result = S3fsCurl::ParallelMixMultipartUploadRequest(tpath ? tpath : tmppath.c_str(), tmporgmeta, fd, mixuppages);
}else{
// multipart uploading not using copy api
result = S3fsCurl::ParallelMultipartUploadRequest(tpath ? tpath : tmppath.c_str(), tmporgmeta, fd);
}
}else{
// If there are unloaded pages, they are loaded at here.
if(0 != (result = Load(/*start=*/ 0, /*size=*/ 0, /*lock_already_held=*/ true))){
S3FS_PRN_ERR("failed to load parts before uploading object(%d)", result);
return result;
}
S3fsCurl s3fscurl(true);
result = s3fscurl.PutRequest(tpath ? tpath : tmppath.c_str(), tmporgmeta, fd);
}
// seek to head of file.
if(0 == result && 0 != lseek(fd, 0, SEEK_SET)){
S3FS_PRN_ERR("lseek error(%d)", errno);
return -errno;
}
// reset uploaded file size
size_orgmeta = st.st_size;
}else{
// upload rest data
if(0 < mp_size){
if(0 != (result = NoCacheMultipartPost(fd, mp_start, mp_size))){
S3FS_PRN_ERR("failed to multipart post(start=%lld, size=%lld) for file(%d).", static_cast<long long int>(mp_start), static_cast<long long int>(mp_size), fd);
return result;
}
mp_start = 0;
mp_size = 0;
}
// complete multipart uploading.
if(0 != (result = NoCacheCompleteMultipartPost())){
S3FS_PRN_ERR("failed to complete(finish) multipart post for file(%d).", fd);
return result;
}
// truncate file to zero
if(-1 == ftruncate(fd, 0)){
// So the file has already been removed, skip error.
S3FS_PRN_ERR("failed to truncate file(%d) to zero, but continue...", fd);
}
}
if(0 == result){
pagelist.ClearAllModified();
}
return result;
}
// [NOTICE]
// Need to lock before calling this method.
bool FdEntity::ReserveDiskSpace(off_t size)
{
if(FdManager::ReserveDiskSpace(size)){
return true;
}
if(!pagelist.IsModified()){
// try to clear all cache for this fd.
pagelist.Init(pagelist.Size(), false, false);
if(-1 == ftruncate(fd, 0) || -1 == ftruncate(fd, pagelist.Size())){
S3FS_PRN_ERR("failed to truncate temporary file(%d).", fd);
return false;
}
if(FdManager::ReserveDiskSpace(size)){
return true;
}
}
FdManager::get()->CleanupCacheDir();
return FdManager::ReserveDiskSpace(size);
}
ssize_t FdEntity::Read(char* bytes, off_t start, size_t size, bool force_load)
{
S3FS_PRN_DBG("[path=%s][fd=%d][offset=%lld][size=%zu]", path.c_str(), fd, static_cast<long long int>(start), size);
if(-1 == fd){
return -EBADF;
}
AutoLock auto_lock(&fdent_data_lock);
if(force_load){
pagelist.SetPageLoadedStatus(start, size, PageList::PAGE_NOT_LOAD_MODIFIED);
}
ssize_t rsize;
// check disk space
if(0 < pagelist.GetTotalUnloadedPageSize(start, size)){
// load size(for prefetch)
size_t load_size = size;
if(start + static_cast<ssize_t>(size) < pagelist.Size()){
ssize_t prefetch_max_size = max(static_cast<off_t>(size), S3fsCurl::GetMultipartSize() * S3fsCurl::GetMaxParallelCount());
if(start + prefetch_max_size < pagelist.Size()){
load_size = prefetch_max_size;
}else{
load_size = pagelist.Size() - start;
}
}
if(!ReserveDiskSpace(load_size)){
S3FS_PRN_WARN("could not reserve disk space for pre-fetch download");
load_size = size;
if(!ReserveDiskSpace(load_size)){
S3FS_PRN_ERR("could not reserve disk space for pre-fetch download");
return -ENOSPC;
}
}
// Loading
int result = 0;
if(0 < size){
result = Load(start, load_size, /*lock_already_held=*/ true);
}
FdManager::FreeReservedDiskSpace(load_size);
if(0 != result){
S3FS_PRN_ERR("could not download. start(%lld), size(%zu), errno(%d)", static_cast<long long int>(start), size, result);
return -EIO;
}
}
// Reading
if(-1 == (rsize = pread(fd, bytes, size, start))){
S3FS_PRN_ERR("pread failed. errno(%d)", errno);
return -errno;
}
return rsize;
}
ssize_t FdEntity::Write(const char* bytes, off_t start, size_t size)
{
S3FS_PRN_DBG("[path=%s][fd=%d][offset=%lld][size=%zu]", path.c_str(), fd, static_cast<long long int>(start), size);
if(-1 == fd){
return -EBADF;
}
// check if not enough disk space left BEFORE locking fd
if(FdManager::IsCacheDir() && !FdManager::IsSafeDiskSpace(NULL, size)){
FdManager::get()->CleanupCacheDir();
}
AutoLock auto_lock(&fdent_data_lock);
// check file size
if(pagelist.Size() < start){
// grow file size
if(-1 == ftruncate(fd, start)){
S3FS_PRN_ERR("failed to truncate temporary file(%d).", fd);
return -EIO;
}
// add new area
pagelist.SetPageLoadedStatus(pagelist.Size(), start - pagelist.Size(), PageList::PAGE_MODIFIED);
}
int result = 0;
ssize_t wsize;
if(0 == upload_id.length()){
// check disk space
off_t restsize = pagelist.GetTotalUnloadedPageSize(0, start) + size;
if(ReserveDiskSpace(restsize)){
// enough disk space
// Load uninitialized area which starts from 0 to (start + size) before writing.
if(!FdEntity::mixmultipart){
if(0 < start){
result = Load(0, start, /*lock_already_held=*/ true);
}
}
FdManager::FreeReservedDiskSpace(restsize);
if(0 != result){
S3FS_PRN_ERR("failed to load uninitialized area before writing(errno=%d)", result);
return static_cast<ssize_t>(result);
}
}else{
// no enough disk space
if(0 != (result = NoCachePreMultipartPost())){
S3FS_PRN_ERR("failed to switch multipart uploading with no cache(errno=%d)", result);
return static_cast<ssize_t>(result);
}
// start multipart uploading
if(0 != (result = NoCacheLoadAndPost(0, start))){
S3FS_PRN_ERR("failed to load uninitialized area and multipart uploading it(errno=%d)", result);
return static_cast<ssize_t>(result);
}
mp_start = start;
mp_size = 0;
}
}else{
// already start multipart uploading
}
// Writing
if(-1 == (wsize = pwrite(fd, bytes, size, start))){
S3FS_PRN_ERR("pwrite failed. errno(%d)", errno);
return -errno;
}
if(0 < wsize){
pagelist.SetPageLoadedStatus(start, wsize, PageList::PAGE_LOAD_MODIFIED);
}
// Load uninitialized area which starts from (start + size) to EOF after writing.
if(!FdEntity::mixmultipart){
if(pagelist.Size() > start + static_cast<off_t>(size)){
result = Load(start + size, pagelist.Size(), /*lock_already_held=*/ true);
if(0 != result){
S3FS_PRN_ERR("failed to load uninitialized area after writing(errno=%d)", result);
return static_cast<ssize_t>(result);
}
}
}
// check multipart uploading
if(0 < upload_id.length()){
mp_size += wsize;
if(S3fsCurl::GetMultipartSize() <= mp_size){
// over one multipart size
if(0 != (result = NoCacheMultipartPost(fd, mp_start, mp_size))){
S3FS_PRN_ERR("failed to multipart post(start=%lld, size=%lld) for file(%d).", static_cast<long long int>(mp_start), static_cast<long long int>(mp_size), fd);
return result;
}
// [NOTE]
// truncate file to zero and set length to part offset + size
// after this, file length is (offset + size), but file does not use any disk space.
//
if(-1 == ftruncate(fd, 0) || -1 == ftruncate(fd, (mp_start + mp_size))){
S3FS_PRN_ERR("failed to truncate file(%d).", fd);
return -EIO;
}
mp_start += mp_size;
mp_size = 0;
}
}
return wsize;
}
//------------------------------------------------
// FdManager symbol
//------------------------------------------------
// [NOTE]
// NOCACHE_PATH_PREFIX symbol needs for not using cache mode.
// Now s3fs I/F functions in s3fs.cpp has left the processing
// to FdManager and FdEntity class. FdManager class manages
// the list of local file stat and file descriptor in conjunction
// with the FdEntity class.
// When s3fs is not using local cache, it means FdManager must
// return new temporary file descriptor at each opening it.
// Then FdManager caches fd by key which is dummy file path
// instead of real file path.
// This process may not be complete, but it is easy way can
// be realized.
//
#define NOCACHE_PATH_PREFIX_FORM " __S3FS_UNEXISTED_PATH_%lx__ / " // important space words for simply
//------------------------------------------------
// FdManager class variable
//------------------------------------------------
FdManager FdManager::singleton;
pthread_mutex_t FdManager::fd_manager_lock;
pthread_mutex_t FdManager::cache_cleanup_lock;
pthread_mutex_t FdManager::reserved_diskspace_lock;
bool FdManager::is_lock_init(false);
string FdManager::cache_dir;
bool FdManager::check_cache_dir_exist(false);
off_t FdManager::free_disk_space = 0;
//------------------------------------------------
// FdManager class methods
//------------------------------------------------
bool FdManager::SetCacheDir(const char* dir)
{
if(!dir || '\0' == dir[0]){
cache_dir = "";
}else{
cache_dir = dir;
}
return true;
}
bool FdManager::DeleteCacheDirectory()
{
if(FdManager::cache_dir.empty()){
return true;
}
string cache_path;
if(!FdManager::MakeCachePath(NULL, cache_path, false)){
return false;
}
if(!delete_files_in_dir(cache_path.c_str(), true)){
return false;
}
string mirror_path = FdManager::cache_dir + "/." + bucket + ".mirror";
if(!delete_files_in_dir(mirror_path.c_str(), true)){
return false;
}
return true;
}
int FdManager::DeleteCacheFile(const char* path)
{
S3FS_PRN_INFO3("[path=%s]", SAFESTRPTR(path));
if(!path){
return -EIO;
}
if(FdManager::cache_dir.empty()){
return 0;
}
string cache_path;
if(!FdManager::MakeCachePath(path, cache_path, false)){
return 0;
}
int result = 0;
if(0 != unlink(cache_path.c_str())){
if(ENOENT == errno){
S3FS_PRN_DBG("failed to delete file(%s): errno=%d", path, errno);
}else{
S3FS_PRN_ERR("failed to delete file(%s): errno=%d", path, errno);
}
result = -errno;
}
if(!CacheFileStat::DeleteCacheFileStat(path)){
if(ENOENT == errno){
S3FS_PRN_DBG("failed to delete stat file(%s): errno=%d", path, errno);
}else{
S3FS_PRN_ERR("failed to delete stat file(%s): errno=%d", path, errno);
}
if(0 != errno){
result = -errno;
}else{
result = -EIO;
}
}
return result;
}
bool FdManager::MakeCachePath(const char* path, string& cache_path, bool is_create_dir, bool is_mirror_path)
{
if(FdManager::cache_dir.empty()){
cache_path = "";
return true;
}
string resolved_path(FdManager::cache_dir);
if(!is_mirror_path){
resolved_path += "/";
resolved_path += bucket;
}else{
resolved_path += "/.";
resolved_path += bucket;
resolved_path += ".mirror";
}
if(is_create_dir){
int result;
if(0 != (result = mkdirp(resolved_path + mydirname(path), 0777))){
S3FS_PRN_ERR("failed to create dir(%s) by errno(%d).", path, result);
return false;
}
}
if(!path || '\0' == path[0]){
cache_path = resolved_path;
}else{
cache_path = resolved_path + SAFESTRPTR(path);
}
return true;
}
bool FdManager::CheckCacheTopDir()
{
if(FdManager::cache_dir.empty()){
return true;
}
string toppath(FdManager::cache_dir + "/" + bucket);
return check_exist_dir_permission(toppath.c_str());
}
bool FdManager::MakeRandomTempPath(const char* path, string& tmppath)
{
char szBuff[64];
sprintf(szBuff, NOCACHE_PATH_PREFIX_FORM, random()); // worry for performance, but maybe don't worry.
tmppath = szBuff;
tmppath += path ? path : "";
return true;
}
bool FdManager::SetCheckCacheDirExist(bool is_check)
{
bool old = FdManager::check_cache_dir_exist;
FdManager::check_cache_dir_exist = is_check;
return old;
}
bool FdManager::CheckCacheDirExist()
{
if(!FdManager::check_cache_dir_exist){
return true;
}
if(FdManager::cache_dir.empty()){
return true;
}
// check the directory
struct stat st;
if(0 != stat(cache_dir.c_str(), &st)){
S3FS_PRN_ERR("could not access to cache directory(%s) by errno(%d).", cache_dir.c_str(), errno);
return false;
}
if(!S_ISDIR(st.st_mode)){
S3FS_PRN_ERR("the cache directory(%s) is not directory.", cache_dir.c_str());
return false;
}
return true;
}
off_t FdManager::GetEnsureFreeDiskSpace()
{
AutoLock auto_lock(&FdManager::reserved_diskspace_lock);
return FdManager::free_disk_space;
}
off_t FdManager::SetEnsureFreeDiskSpace(off_t size)
{
AutoLock auto_lock(&FdManager::reserved_diskspace_lock);
off_t old = FdManager::free_disk_space;
FdManager::free_disk_space = size;
return old;
}
off_t FdManager::GetFreeDiskSpace(const char* path)
{
struct statvfs vfsbuf;
string ctoppath;
if(!FdManager::cache_dir.empty()){
ctoppath = FdManager::cache_dir + "/";
ctoppath = get_exist_directory_path(ctoppath); // existed directory
if(ctoppath != "/"){
ctoppath += "/";
}
}else{
ctoppath = TMPFILE_DIR_0PATH "/";
}
if(path && '\0' != *path){
ctoppath += path;
}else{
ctoppath += ".";
}
if(-1 == statvfs(ctoppath.c_str(), &vfsbuf)){
S3FS_PRN_ERR("could not get vfs stat by errno(%d)", errno);
return 0;
}
return (vfsbuf.f_bavail * vfsbuf.f_frsize);
}
bool FdManager::IsSafeDiskSpace(const char* path, off_t size)
{
off_t fsize = FdManager::GetFreeDiskSpace(path);
return size + FdManager::GetEnsureFreeDiskSpace() <= fsize;
}
//------------------------------------------------
// FdManager methods
//------------------------------------------------
FdManager::FdManager()
{
if(this == FdManager::get()){
pthread_mutexattr_t attr;
pthread_mutexattr_init(&attr);
#if S3FS_PTHREAD_ERRORCHECK
pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK);
#endif
int res;
if(0 != (res = pthread_mutex_init(&FdManager::fd_manager_lock, &attr))){
S3FS_PRN_CRIT("failed to init fd_manager_lock: %d", res);
abort();
}
if(0 != (res = pthread_mutex_init(&FdManager::cache_cleanup_lock, &attr))){
S3FS_PRN_CRIT("failed to init cache_cleanup_lock: %d", res);
abort();
}
if(0 != (res = pthread_mutex_init(&FdManager::reserved_diskspace_lock, &attr))){
S3FS_PRN_CRIT("failed to init reserved_diskspace_lock: %d", res);
abort();
}
FdManager::is_lock_init = true;
}else{
abort();
}
}
FdManager::~FdManager()
{
if(this == FdManager::get()){
for(fdent_map_t::iterator iter = fent.begin(); fent.end() != iter; ++iter){
FdEntity* ent = (*iter).second;
delete ent;
}
fent.clear();
if(FdManager::is_lock_init){
int res;
if(0 != (res = pthread_mutex_destroy(&FdManager::fd_manager_lock))){
S3FS_PRN_CRIT("failed to destroy fd_manager_lock: %d", res);
abort();
}
if(0 != (res = pthread_mutex_destroy(&FdManager::cache_cleanup_lock))){
S3FS_PRN_CRIT("failed to destroy cache_cleanup_lock: %d", res);
abort();
}
if(0 != (res = pthread_mutex_destroy(&FdManager::reserved_diskspace_lock))){
S3FS_PRN_CRIT("failed to destroy reserved_diskspace_lock: %d", res);
abort();
}
FdManager::is_lock_init = false;
}
}else{
abort();
}
}
FdEntity* FdManager::GetFdEntity(const char* path, int existfd)
{
S3FS_PRN_INFO3("[path=%s][fd=%d]", SAFESTRPTR(path), existfd);
if(!path || '\0' == path[0]){
return NULL;
}
AutoLock auto_lock(&FdManager::fd_manager_lock);
fdent_map_t::iterator iter = fent.find(string(path));
if(fent.end() != iter && (-1 == existfd || (*iter).second->GetFd() == existfd)){
iter->second->Dup();
return (*iter).second;
}
if(-1 != existfd){
for(iter = fent.begin(); iter != fent.end(); ++iter){
if((*iter).second && (*iter).second->GetFd() == existfd){
// found opened fd in map
if(0 == strcmp((*iter).second->GetPath(), path)){
iter->second->Dup();
return (*iter).second;
}
// found fd, but it is used another file(file descriptor is recycled)
// so returns NULL.
break;
}
}
}
return NULL;
}
FdEntity* FdManager::Open(const char* path, headers_t* pmeta, off_t size, time_t time, bool force_tmpfile, bool is_create, bool no_fd_lock_wait)
{
S3FS_PRN_DBG("[path=%s][size=%lld][time=%lld]", SAFESTRPTR(path), static_cast<long long>(size), static_cast<long long>(time));
if(!path || '\0' == path[0]){
return NULL;
}
bool close = false;
FdEntity* ent;
AutoLock auto_lock(&FdManager::fd_manager_lock);
// search in mapping by key(path)
fdent_map_t::iterator iter = fent.find(string(path));
if(fent.end() == iter && !force_tmpfile && !FdManager::IsCacheDir()){
// If the cache directory is not specified, s3fs opens a temporary file
// when the file is opened.
// Then if it could not find a entity in map for the file, s3fs should
// search a entity in all which opened the temporary file.
//
for(iter = fent.begin(); iter != fent.end(); ++iter){
if((*iter).second && (*iter).second->IsOpen() && 0 == strcmp((*iter).second->GetPath(), path)){
break; // found opened fd in mapping
}
}
}
if(fent.end() != iter){
// found
ent = (*iter).second;
ent->Dup();
if(ent->IsModified()){
// If the file is being modified, it will not be resized.
size = -1;
}
close = true;
}else if(is_create){
// not found
string cache_path;
if(!force_tmpfile && !FdManager::MakeCachePath(path, cache_path, true)){
S3FS_PRN_ERR("failed to make cache path for object(%s).", path);
return NULL;
}
// make new obj
ent = new FdEntity(path, cache_path.c_str());
if(!cache_path.empty()){
// using cache
fent[string(path)] = ent;
}else{
// not using cache, so the key of fdentity is set not really existing path.
// (but not strictly unexisting path.)
//
// [NOTE]
// The reason why this process here, please look at the definition of the
// comments of NOCACHE_PATH_PREFIX_FORM symbol.
//
string tmppath;
FdManager::MakeRandomTempPath(path, tmppath);
fent[tmppath] = ent;
}
}else{
return NULL;
}
// open
if(0 != ent->Open(pmeta, size, time, no_fd_lock_wait)){
if(close){
ent->Close();
}
return NULL;
}
if(close){
ent->Close();
}
return ent;
}
FdEntity* FdManager::ExistOpen(const char* path, int existfd, bool ignore_existfd)
{
S3FS_PRN_DBG("[path=%s][fd=%d][ignore_existfd=%s]", SAFESTRPTR(path), existfd, ignore_existfd ? "true" : "false");
// search by real path
FdEntity* ent = Open(path, NULL, -1, -1, false, false);
if(!ent && (ignore_existfd || (-1 != existfd))){
// search from all fdentity because of not using cache.
AutoLock auto_lock(&FdManager::fd_manager_lock);
for(fdent_map_t::iterator iter = fent.begin(); iter != fent.end(); ++iter){
if((*iter).second && (*iter).second->IsOpen() && (ignore_existfd || ((*iter).second->GetFd() == existfd))){
// found opened fd in map
if(0 == strcmp((*iter).second->GetPath(), path)){
ent = (*iter).second;
ent->Dup();
}else{
// found fd, but it is used another file(file descriptor is recycled)
// so returns NULL.
}
break;
}
}
}
return ent;
}
void FdManager::Rename(const std::string &from, const std::string &to)
{
AutoLock auto_lock(&FdManager::fd_manager_lock);
fdent_map_t::iterator iter = fent.find(from);
if(fent.end() == iter && !FdManager::IsCacheDir()){
// If the cache directory is not specified, s3fs opens a temporary file
// when the file is opened.
// Then if it could not find a entity in map for the file, s3fs should
// search a entity in all which opened the temporary file.
//
for(iter = fent.begin(); iter != fent.end(); ++iter){
if((*iter).second && (*iter).second->IsOpen() && 0 == strcmp((*iter).second->GetPath(), from.c_str())){
break; // found opened fd in mapping
}
}
}
if(fent.end() != iter){
// found
S3FS_PRN_DBG("[from=%s][to=%s]", from.c_str(), to.c_str());
FdEntity* ent = (*iter).second;
// retrieve old fd entity from map
fent.erase(iter);
// rename path and caches in fd entity
string fentmapkey;
if(!ent->RenamePath(to, fentmapkey)){
S3FS_PRN_ERR("Failed to rename FdEntity object for %s to %s", from.c_str(), to.c_str());
return;
}
// set new fd entity to map
fent[fentmapkey] = ent;
}
}
bool FdManager::Close(FdEntity* ent)
{
S3FS_PRN_DBG("[ent->file=%s][ent->fd=%d]", ent ? ent->GetPath() : "", ent ? ent->GetFd() : -1);
if(!ent){
return true; // returns success
}
AutoLock auto_lock(&FdManager::fd_manager_lock);
for(fdent_map_t::iterator iter = fent.begin(); iter != fent.end(); ++iter){
if((*iter).second == ent){
ent->Close();
if(!ent->IsOpen()){
// remove found entity from map.
fent.erase(iter++);
// check another key name for entity value to be on the safe side
for(; iter != fent.end(); ){
if((*iter).second == ent){
fent.erase(iter++);
}else{
++iter;
}
}
delete ent;
}
return true;
}
}
return false;
}
bool FdManager::ChangeEntityToTempPath(FdEntity* ent, const char* path)
{
AutoLock auto_lock(&FdManager::fd_manager_lock);
for(fdent_map_t::iterator iter = fent.begin(); iter != fent.end(); ){
if((*iter).second == ent){
fent.erase(iter++);
string tmppath;
FdManager::MakeRandomTempPath(path, tmppath);
fent[tmppath] = ent;
}else{
++iter;
}
}
return false;
}
void FdManager::CleanupCacheDir()
{
//S3FS_PRN_DBG("cache cleanup requested");
if(!FdManager::IsCacheDir()){
return;
}
AutoLock auto_lock_no_wait(&FdManager::cache_cleanup_lock, AutoLock::NO_WAIT);
if(auto_lock_no_wait.isLockAcquired()){
//S3FS_PRN_DBG("cache cleanup started");
CleanupCacheDirInternal("");
//S3FS_PRN_DBG("cache cleanup ended");
}else{
// wait for other thread to finish cache cleanup
AutoLock auto_lock(&FdManager::cache_cleanup_lock);
}
}
void FdManager::CleanupCacheDirInternal(const std::string &path)
{
DIR* dp;
struct dirent* dent;
std::string abs_path = cache_dir + "/" + bucket + path;
if(NULL == (dp = opendir(abs_path.c_str()))){
S3FS_PRN_ERR("could not open cache dir(%s) - errno(%d)", abs_path.c_str(), errno);
return;
}
for(dent = readdir(dp); dent; dent = readdir(dp)){
if(0 == strcmp(dent->d_name, "..") || 0 == strcmp(dent->d_name, ".")){
continue;
}
string fullpath = abs_path;
fullpath += "/";
fullpath += dent->d_name;
struct stat st;
if(0 != lstat(fullpath.c_str(), &st)){
S3FS_PRN_ERR("could not get stats of file(%s) - errno(%d)", fullpath.c_str(), errno);
closedir(dp);
return;
}
string next_path = path + "/" + dent->d_name;
if(S_ISDIR(st.st_mode)){
CleanupCacheDirInternal(next_path);
}else{
AutoLock auto_lock(&FdManager::fd_manager_lock, AutoLock::NO_WAIT);
if (!auto_lock.isLockAcquired()) {
S3FS_PRN_ERR("could not get fd_manager_lock when clean up file(%s)", next_path.c_str());
continue;
}
fdent_map_t::iterator iter = fent.find(next_path);
if(fent.end() == iter) {
S3FS_PRN_DBG("cleaned up: %s", next_path.c_str());
FdManager::DeleteCacheFile(next_path.c_str());
}
}
}
closedir(dp);
}
bool FdManager::ReserveDiskSpace(off_t size)
{
if(IsSafeDiskSpace(NULL, size)){
AutoLock auto_lock(&FdManager::reserved_diskspace_lock);
free_disk_space += size;
return true;
}
return false;
}
void FdManager::FreeReservedDiskSpace(off_t size)
{
AutoLock auto_lock(&FdManager::reserved_diskspace_lock);
free_disk_space -= size;
}
/*
* Local variables:
* tab-width: 4
* c-basic-offset: 4
* End:
* vim600: noet sw=4 ts=4 fdm=marker
* vim<600: noet sw=4 ts=4
*/