281 lines
6.6 KiB
Go
Raw Normal View History

/*
Reed-Solomon Codes over GF(2^8)
Primitive Polynomial: x^8+x^4+x^3+x^2+1
Galois Filed arithmetic using Intel SIMD instructions (AVX2 or SSSE3)
*/
package reedsolomon
import "errors"
// Encoder implements for Reed-Solomon Encoding/Reconstructing
type Encoder interface {
// Encode multiply generator-matrix with data
// len(vects) must be equal with num of data+parity
Encode(vects [][]byte) error
// Result of reconst will be put into origin position of vects
// it means if you lost vects[0], after reconst the vects[0]'s data will be back in vects[0]
// Reconstruct repair lost data & parity
// Set vect nil if lost
Reconstruct(vects [][]byte) error
// Reconstruct repair lost data
// Set vect nil if lost
ReconstructData(vects [][]byte) error
// ReconstWithPos repair lost data&parity with has&lost vects position
// Save bandwidth&disk I/O (cmp with Reconstruct, if the lost is less than num of parity)
// As erasure codes, we must know which vect is broken,
// so it's necessary to provide such APIs
// len(has) must equal num of data vects
// Example:
// in 3+2, the whole position: [0,1,2,3,4]
// if lost vects[0]
// the "has" could be [1,2,3] or [1,2,4] or ...
// then you must be sure that vects[1] vects[2] vects[3] have correct data (if the "has" is [1,2,3])
// the "dLost" will be [0]
// ps:
// 1. the above lists are in increasing orders TODO support out-of-order
// 2. each vect has same len, don't set it nil
// so we don't need to make slice
ReconstWithPos(vects [][]byte, has, dLost, pLost []int) error
//// ReconstWithPos repair lost data with survived&lost vects position
//// Don't need to append position of parity lost into "lost"
ReconstDataWithPos(vects [][]byte, has, dLost []int) error
}
func checkCfg(d, p int) error {
if (d <= 0) || (p <= 0) {
return errors.New("rs.New: data or parity <= 0")
}
if d+p >= 256 {
return errors.New("rs.New: data+parity >= 256")
}
return nil
}
// New create an Encoder (vandermonde matrix as Encoding matrix)
func New(data, parity int) (enc Encoder, err error) {
err = checkCfg(data, parity)
if err != nil {
return
}
e, err := genEncMatrixVand(data, parity)
if err != nil {
return
}
return newRS(data, parity, e), nil
}
// NewCauchy create an Encoder (cauchy matrix as Generator Matrix)
func NewCauchy(data, parity int) (enc Encoder, err error) {
err = checkCfg(data, parity)
if err != nil {
return
}
e := genEncMatrixCauchy(data, parity)
return newRS(data, parity, e), nil
}
type encBase struct {
data int
parity int
encode []byte
gen []byte
}
func checkEnc(d, p int, vs [][]byte) (size int, err error) {
total := len(vs)
if d+p != total {
err = errors.New("rs.checkER: vects not match rs args")
return
}
size = len(vs[0])
if size == 0 {
err = errors.New("rs.checkER: vects size = 0")
return
}
for i := 1; i < total; i++ {
if len(vs[i]) != size {
err = errors.New("rs.checkER: vects size mismatch")
return
}
}
return
}
func (e *encBase) Encode(vects [][]byte) (err error) {
d := e.data
p := e.parity
_, err = checkEnc(d, p, vects)
if err != nil {
return
}
dv := vects[:d]
pv := vects[d:]
g := e.gen
for i := 0; i < d; i++ {
for j := 0; j < p; j++ {
if i != 0 {
mulVectAdd(g[j*d+i], dv[i], pv[j])
} else {
mulVect(g[j*d], dv[0], pv[j])
}
}
}
return
}
func mulVect(c byte, a, b []byte) {
t := mulTbl[c]
for i := 0; i < len(a); i++ {
b[i] = t[a[i]]
}
}
func mulVectAdd(c byte, a, b []byte) {
t := mulTbl[c]
for i := 0; i < len(a); i++ {
b[i] ^= t[a[i]]
}
}
func (e *encBase) Reconstruct(vects [][]byte) (err error) {
return e.reconstruct(vects, false)
}
func (e *encBase) ReconstructData(vects [][]byte) (err error) {
return e.reconstruct(vects, true)
}
func (e *encBase) ReconstWithPos(vects [][]byte, has, dLost, pLost []int) error {
return e.reconstWithPos(vects, has, dLost, pLost, false)
}
func (e *encBase) ReconstDataWithPos(vects [][]byte, has, dLost []int) error {
return e.reconstWithPos(vects, has, dLost, nil, true)
}
func (e *encBase) reconst(vects [][]byte, has, dLost, pLost []int, dataOnly bool) (err error) {
d := e.data
em := e.encode
dCnt := len(dLost)
size := len(vects[has[0]])
if dCnt != 0 {
vtmp := make([][]byte, d+dCnt)
for i, p := range has {
vtmp[i] = vects[p]
}
for i, p := range dLost {
if len(vects[p]) == 0 {
vects[p] = make([]byte, size)
}
vtmp[i+d] = vects[p]
}
matrixbuf := make([]byte, 4*d*d+dCnt*d)
m := matrixbuf[:d*d]
for i, l := range has {
copy(m[i*d:i*d+d], em[l*d:l*d+d])
}
raw := matrixbuf[d*d : 3*d*d]
im := matrixbuf[3*d*d : 4*d*d]
err2 := matrix(m).invert(raw, d, im)
if err2 != nil {
return err2
}
g := matrixbuf[4*d*d:]
for i, l := range dLost {
copy(g[i*d:i*d+d], im[l*d:l*d+d])
}
etmp := &encBase{data: d, parity: dCnt, gen: g}
err2 = etmp.Encode(vtmp[:d+dCnt])
if err2 != nil {
return err2
}
}
if dataOnly {
return
}
pCnt := len(pLost)
if pCnt != 0 {
vtmp := make([][]byte, d+pCnt)
g := make([]byte, pCnt*d)
for i, l := range pLost {
copy(g[i*d:i*d+d], em[l*d:l*d+d])
}
for i := 0; i < d; i++ {
vtmp[i] = vects[i]
}
for i, p := range pLost {
if len(vects[p]) == 0 {
vects[p] = make([]byte, size)
}
vtmp[i+d] = vects[p]
}
etmp := &encBase{data: d, parity: pCnt, gen: g}
err2 := etmp.Encode(vtmp[:d+pCnt])
if err2 != nil {
return err2
}
}
return
}
func (e *encBase) reconstWithPos(vects [][]byte, has, dLost, pLost []int, dataOnly bool) (err error) {
d := e.data
p := e.parity
// TODO check more, maybe element in has show in lost & deal with len(has) > d
if len(has) != d {
return errors.New("rs.Reconst: not enough vects")
}
dCnt := len(dLost)
if dCnt > p {
return errors.New("rs.Reconst: not enough vects")
}
pCnt := len(pLost)
if pCnt > p {
return errors.New("rs.Reconst: not enough vects")
}
return e.reconst(vects, has, dLost, pLost, dataOnly)
}
func (e *encBase) reconstruct(vects [][]byte, dataOnly bool) (err error) {
d := e.data
p := e.parity
t := d + p
listBuf := make([]int, t+p)
has := listBuf[:d]
dLost := listBuf[d:t]
pLost := listBuf[t : t+p]
hasCnt, dCnt, pCnt := 0, 0, 0
for i := 0; i < t; i++ {
if vects[i] != nil {
if hasCnt < d {
has[hasCnt] = i
hasCnt++
}
} else {
if i < d {
if dCnt < p {
dLost[dCnt] = i
dCnt++
} else {
return errors.New("rs.Reconst: not enough vects")
}
} else {
if pCnt < p {
pLost[pCnt] = i
pCnt++
} else {
return errors.New("rs.Reconst: not enough vects")
}
}
}
}
if hasCnt != d {
return errors.New("rs.Reconst: not enough vects")
}
dLost = dLost[:dCnt]
pLost = pLost[:pCnt]
return e.reconst(vects, has, dLost, pLost, dataOnly)
}