479 lines
7.3 KiB
Go
Raw Normal View History

package glob
import (
"bytes"
"fmt"
"strings"
"unicode/utf8"
)
const (
char_any = '*'
char_separator = ','
char_single = '?'
char_escape = '\\'
char_range_open = '['
char_range_close = ']'
char_terms_open = '{'
char_terms_close = '}'
char_range_not = '!'
char_range_between = '-'
)
var specials = []byte{
char_any,
char_single,
char_escape,
char_range_open,
char_range_close,
char_terms_open,
char_terms_close,
}
func special(c byte) bool {
return bytes.IndexByte(specials, c) != -1
}
var eof rune = 0
type stateFn func(*lexer) stateFn
type itemType int
const (
item_eof itemType = iota
item_error
item_text
item_char
item_any
item_super
item_single
item_not
item_separator
item_range_open
item_range_close
item_range_lo
item_range_hi
item_range_between
item_terms_open
item_terms_close
)
func (i itemType) String() string {
switch i {
case item_eof:
return "eof"
case item_error:
return "error"
case item_text:
return "text"
case item_char:
return "char"
case item_any:
return "any"
case item_super:
return "super"
case item_single:
return "single"
case item_not:
return "not"
case item_separator:
return "separator"
case item_range_open:
return "range_open"
case item_range_close:
return "range_close"
case item_range_lo:
return "range_lo"
case item_range_hi:
return "range_hi"
case item_range_between:
return "range_between"
case item_terms_open:
return "terms_open"
case item_terms_close:
return "terms_close"
default:
return "undef"
}
}
type item struct {
t itemType
s string
}
func (i item) String() string {
return fmt.Sprintf("%v<%s>", i.t, i.s)
}
type lexer struct {
input string
start int
pos int
width int
runes int
termScopes []int
termPhrases map[int]int
state stateFn
items chan item
}
func newLexer(source string) *lexer {
l := &lexer{
input: source,
state: lexText,
items: make(chan item, len(source)),
termPhrases: make(map[int]int),
}
return l
}
func (l *lexer) run() {
for state := lexText; state != nil; {
state = state(l)
}
close(l.items)
}
func (l *lexer) nextItem() item {
for {
select {
case item := <-l.items:
return item
default:
if l.state == nil {
return item{t: item_eof}
}
l.state = l.state(l)
}
}
panic("something went wrong")
}
func (l *lexer) read() (r rune) {
if l.pos >= len(l.input) {
return eof
}
r, l.width = utf8.DecodeRuneInString(l.input[l.pos:])
l.pos += l.width
l.runes++
return
}
func (l *lexer) unread() {
l.pos -= l.width
l.runes--
}
func (l *lexer) reset() {
l.pos = l.start
l.runes = 0
}
func (l *lexer) ignore() {
l.start = l.pos
l.runes = 0
}
func (l *lexer) lookahead() rune {
r := l.read()
if r != eof {
l.unread()
}
return r
}
func (l *lexer) accept(valid string) bool {
if strings.IndexRune(valid, l.read()) != -1 {
return true
}
l.unread()
return false
}
func (l *lexer) acceptAll(valid string) {
for strings.IndexRune(valid, l.read()) != -1 {
}
l.unread()
}
func (l *lexer) emit(t itemType) {
if l.pos == len(l.input) {
l.items <- item{t, l.input[l.start:]}
} else {
l.items <- item{t, l.input[l.start:l.pos]}
}
l.start = l.pos
l.runes = 0
l.width = 0
}
func (l *lexer) emitMaybe(t itemType) {
if l.pos > l.start {
l.emit(t)
}
}
func (l *lexer) errorf(format string, args ...interface{}) {
l.items <- item{item_error, fmt.Sprintf(format, args...)}
}
func lexText(l *lexer) stateFn {
for {
c := l.read()
if c == eof {
break
}
switch c {
case char_escape:
l.unread()
l.emitMaybe(item_text)
l.read()
l.ignore()
if l.read() == eof {
l.errorf("unclosed '%s' character", string(char_escape))
return nil
}
case char_single:
l.unread()
l.emitMaybe(item_text)
return lexSingle
case char_any:
var n stateFn
if l.lookahead() == char_any {
n = lexSuper
} else {
n = lexAny
}
l.unread()
l.emitMaybe(item_text)
return n
case char_range_open:
l.unread()
l.emitMaybe(item_text)
return lexRangeOpen
case char_terms_open:
l.unread()
l.emitMaybe(item_text)
return lexTermsOpen
case char_terms_close:
l.unread()
l.emitMaybe(item_text)
return lexTermsClose
case char_separator:
l.unread()
l.emitMaybe(item_text)
return lexSeparator
}
}
if l.pos > l.start {
l.emit(item_text)
}
if len(l.termScopes) != 0 {
l.errorf("invalid pattern syntax: unclosed terms")
return nil
}
l.emit(item_eof)
return nil
}
func lexInsideRange(l *lexer) stateFn {
for {
c := l.read()
if c == eof {
l.errorf("unclosed range construction")
return nil
}
switch c {
case char_range_not:
// only first char makes sense
if l.pos-l.width == l.start {
l.emit(item_not)
}
case char_range_between:
if l.runes != 2 {
l.errorf("unexpected length of lo char inside range")
return nil
}
l.reset()
return lexRangeHiLo
case char_range_close:
l.unread()
l.emitMaybe(item_text)
return lexRangeClose
}
}
}
func lexRangeHiLo(l *lexer) stateFn {
start := l.start
for {
c := l.read()
if c == eof {
l.errorf("unexpected end of input")
return nil
}
switch c {
case char_range_between:
if l.runes != 1 {
l.errorf("unexpected length of range: single character expected before minus")
return nil
}
l.emit(item_range_between)
case char_range_close:
l.unread()
if l.runes != 1 {
l.errorf("unexpected length of range: single character expected before close")
return nil
}
l.emit(item_range_hi)
return lexRangeClose
default:
if start != l.start {
continue
}
if l.runes != 1 {
l.errorf("unexpected length of range: single character expected at the begining")
return nil
}
l.emit(item_range_lo)
}
}
}
func lexAny(l *lexer) stateFn {
l.pos += 1
l.emit(item_any)
return lexText
}
func lexSuper(l *lexer) stateFn {
l.pos += 2
l.emit(item_super)
return lexText
}
func lexSingle(l *lexer) stateFn {
l.pos += 1
l.emit(item_single)
return lexText
}
func lexSeparator(l *lexer) stateFn {
if len(l.termScopes) == 0 {
l.errorf("syntax error: separator not inside terms list")
return nil
}
posOpen := l.termScopes[len(l.termScopes)-1]
if l.pos-posOpen == 1 {
l.errorf("syntax error: empty term before separator")
return nil
}
l.termPhrases[posOpen] += 1
l.pos += 1
l.emit(item_separator)
return lexText
}
func lexTermsOpen(l *lexer) stateFn {
l.termScopes = append(l.termScopes, l.pos)
l.pos += 1
l.emit(item_terms_open)
return lexText
}
func lexTermsClose(l *lexer) stateFn {
if len(l.termScopes) == 0 {
l.errorf("unexpected closing of terms: there is no opened terms")
return nil
}
lastOpen := len(l.termScopes) - 1
posOpen := l.termScopes[lastOpen]
// if it is empty term
if posOpen == l.pos-1 {
l.errorf("term could not be empty")
return nil
}
if l.termPhrases[posOpen] == 0 {
l.errorf("term must contain >1 phrases")
return nil
}
// cleanup
l.termScopes = l.termScopes[:lastOpen]
delete(l.termPhrases, posOpen)
l.pos += 1
l.emit(item_terms_close)
return lexText
}
func lexRangeOpen(l *lexer) stateFn {
l.pos += 1
l.emit(item_range_open)
return lexInsideRange
}
func lexRangeClose(l *lexer) stateFn {
l.pos += 1
l.emit(item_range_close)
return lexText
}