syncthing/vendor/github.com/templexxx/reedsolomon/matrix.go

157 lines
2.7 KiB
Go
Raw Normal View History

package reedsolomon
import "errors"
type matrix []byte
func genEncMatrixCauchy(d, p int) matrix {
t := d + p
m := make([]byte, t*d)
for i := 0; i < d; i++ {
m[i*d+i] = byte(1)
}
d2 := d * d
for i := d; i < t; i++ {
for j := 0; j < d; j++ {
d := i ^ j
a := inverseTbl[d]
m[d2] = byte(a)
d2++
}
}
return m
}
func gfExp(b byte, n int) byte {
if n == 0 {
return 1
}
if b == 0 {
return 0
}
a := logTbl[b]
ret := int(a) * n
for ret >= 255 {
ret -= 255
}
return byte(expTbl[ret])
}
func genVandMatrix(vm []byte, t, d int) {
for i := 0; i < t; i++ {
for j := 0; j < d; j++ {
vm[i*d+j] = gfExp(byte(i), j)
}
}
}
func (m matrix) mul(right matrix, rows, cols int, r []byte) {
for i := 0; i < rows; i++ {
for j := 0; j < cols; j++ {
var v byte
for k := 0; k < cols; k++ {
v ^= gfMul(m[i*cols+k], right[k*cols+j])
}
r[i*cols+j] = v
}
}
}
func genEncMatrixVand(d, p int) (matrix, error) {
t := d + p
buf := make([]byte, (2*t+4*d)*d)
vm := buf[:t*d]
genVandMatrix(vm, t, d)
top := buf[t*d : (t+d)*d]
copy(top, vm[:d*d])
raw := buf[(t+d)*d : (t+3*d)*d]
im := buf[(t+3*d)*d : (t+4*d)*d]
err := matrix(top).invert(raw, d, im)
if err != nil {
return nil, err
}
r := buf[(t+4*d)*d : (2*t+4*d)*d]
matrix(vm).mul(im, t, d, r)
return matrix(r), nil
}
// [I|m'] -> [m']
func (m matrix) subMatrix(n int, r []byte) {
for i := 0; i < n; i++ {
off := i * n
copy(r[off:off+n], m[2*off+n:2*(off+n)])
}
}
func (m matrix) invert(raw matrix, n int, im []byte) error {
// [m] -> [m|I]
for i := 0; i < n; i++ {
t := i * n
copy(raw[2*t:2*t+n], m[t:t+n])
raw[2*t+i+n] = byte(1)
}
err := gauss(raw, n)
if err != nil {
return err
}
raw.subMatrix(n, im)
return nil
}
func (m matrix) swap(i, j, n int) {
for k := 0; k < n; k++ {
m[i*n+k], m[j*n+k] = m[j*n+k], m[i*n+k]
}
}
func gfMul(a, b byte) byte {
return mulTbl[a][b]
}
var errSingular = errors.New("rs.invert: matrix is singular")
// [m|I] -> [I|m']
func gauss(m matrix, n int) error {
n2 := 2 * n
for i := 0; i < n; i++ {
if m[i*n2+i] == 0 {
for j := i + 1; j < n; j++ {
if m[j*n2+i] != 0 {
m.swap(i, j, n2)
break
}
}
}
if m[i*n2+i] == 0 {
return errSingular
}
if m[i*n2+i] != 1 {
d := m[i*n2+i]
scale := inverseTbl[d]
for c := 0; c < n2; c++ {
m[i*n2+c] = gfMul(m[i*n2+c], scale)
}
}
for j := i + 1; j < n; j++ {
if m[j*n2+i] != 0 {
scale := m[j*n2+i]
for c := 0; c < n2; c++ {
m[j*n2+c] ^= gfMul(scale, m[i*n2+c])
}
}
}
}
for k := 0; k < n; k++ {
for j := 0; j < k; j++ {
if m[j*n2+k] != 0 {
scale := m[j*n2+k]
for c := 0; c < n2; c++ {
m[j*n2+c] ^= gfMul(scale, m[k*n2+c])
}
}
}
}
return nil
}