mirror of
https://github.com/octoleo/syncthing.git
synced 2024-11-14 01:04:14 +00:00
225 lines
6.1 KiB
Go
225 lines
6.1 KiB
Go
|
// Copyright (c) 2014, Alexander Neumann <alexander@bumpern.de>
|
||
|
// Copyright (c) 2017, Christophe-Marie Duquesne <chmd@chmd.fr>
|
||
|
//
|
||
|
// This file was adapted from restic https://github.com/restic/chunker
|
||
|
//
|
||
|
// All rights reserved.
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without
|
||
|
// modification, are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// 1. Redistributions of source code must retain the above copyright notice, this
|
||
|
// list of conditions and the following disclaimer.
|
||
|
//
|
||
|
// 2. Redistributions in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
//
|
||
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
||
|
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||
|
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||
|
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
||
|
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||
|
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||
|
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||
|
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||
|
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
|
||
|
package rabinkarp64
|
||
|
|
||
|
import (
|
||
|
"sync"
|
||
|
|
||
|
"github.com/chmduquesne/rollinghash"
|
||
|
)
|
||
|
|
||
|
const Size = 8
|
||
|
|
||
|
type tables struct {
|
||
|
out [256]Pol
|
||
|
mod [256]Pol
|
||
|
}
|
||
|
|
||
|
// tables are cacheable for a given pol and windowsize
|
||
|
type index struct {
|
||
|
pol Pol
|
||
|
windowsize int
|
||
|
}
|
||
|
|
||
|
type RabinKarp64 struct {
|
||
|
pol Pol
|
||
|
tables *tables
|
||
|
polShift uint
|
||
|
value Pol
|
||
|
|
||
|
// window is treated like a circular buffer, where the oldest element
|
||
|
// is indicated by d.oldest
|
||
|
window []byte
|
||
|
oldest int
|
||
|
}
|
||
|
|
||
|
// cache precomputed tables, these are read-only anyway
|
||
|
var cache struct {
|
||
|
// For a given polynom and a given window size, we get a table
|
||
|
entries map[index]*tables
|
||
|
sync.Mutex
|
||
|
}
|
||
|
|
||
|
func init() {
|
||
|
cache.entries = make(map[index]*tables)
|
||
|
}
|
||
|
|
||
|
func (d *RabinKarp64) buildTables() {
|
||
|
windowsize := len(d.window)
|
||
|
idx := index{d.pol, windowsize}
|
||
|
|
||
|
cache.Lock()
|
||
|
t, ok := cache.entries[idx]
|
||
|
cache.Unlock()
|
||
|
if ok {
|
||
|
d.tables = t
|
||
|
return
|
||
|
}
|
||
|
|
||
|
t = &tables{}
|
||
|
|
||
|
// calculate table for sliding out bytes. The byte to slide out is used as
|
||
|
// the index for the table, the value contains the following:
|
||
|
// out_table[b] = Hash(b || 0 || ... || 0)
|
||
|
// \ windowsize-1 zero bytes /
|
||
|
// To slide out byte b_0 for window size w with known hash
|
||
|
// H := H(b_0 || ... || b_w), it is sufficient to add out_table[b_0]:
|
||
|
// H(b_0 || ... || b_w) + H(b_0 || 0 || ... || 0)
|
||
|
// = H(b_0 + b_0 || b_1 + 0 || ... || b_w + 0)
|
||
|
// = H( 0 || b_1 || ... || b_w)
|
||
|
//
|
||
|
// Afterwards a new byte can be shifted in.
|
||
|
for b := 0; b < 256; b++ {
|
||
|
var h Pol
|
||
|
h <<= 8
|
||
|
h |= Pol(b)
|
||
|
h = h.Mod(d.pol)
|
||
|
for i := 0; i < windowsize-1; i++ {
|
||
|
h <<= 8
|
||
|
h |= Pol(0)
|
||
|
h = h.Mod(d.pol)
|
||
|
}
|
||
|
t.out[b] = h
|
||
|
}
|
||
|
|
||
|
// calculate table for reduction mod Polynomial
|
||
|
k := d.pol.Deg()
|
||
|
for b := 0; b < 256; b++ {
|
||
|
// mod_table[b] = A | B, where A = (b(x) * x^k mod pol) and B = b(x) * x^k
|
||
|
//
|
||
|
// The 8 bits above deg(Polynomial) determine what happens next and so
|
||
|
// these bits are used as a lookup to this table. The value is split in
|
||
|
// two parts: Part A contains the result of the modulus operation, part
|
||
|
// B is used to cancel out the 8 top bits so that one XOR operation is
|
||
|
// enough to reduce modulo Polynomial
|
||
|
t.mod[b] = Pol(uint64(b)<<uint(k)).Mod(d.pol) | (Pol(b) << uint(k))
|
||
|
}
|
||
|
|
||
|
d.tables = t
|
||
|
cache.Lock()
|
||
|
cache.entries[idx] = d.tables
|
||
|
cache.Unlock()
|
||
|
}
|
||
|
|
||
|
// NewFromPol returns a RabinKarp64 digest from a polynomial over GF(2).
|
||
|
// It is assumed that the input polynomial is irreducible. You can obtain
|
||
|
// such a polynomial using the RandomPolynomial function.
|
||
|
func NewFromPol(p Pol) *RabinKarp64 {
|
||
|
res := &RabinKarp64{
|
||
|
pol: p,
|
||
|
tables: nil,
|
||
|
polShift: uint(p.Deg() - 8),
|
||
|
value: 0,
|
||
|
window: make([]byte, 0, rollinghash.DefaultWindowCap),
|
||
|
oldest: 0,
|
||
|
}
|
||
|
return res
|
||
|
}
|
||
|
|
||
|
// New returns a RabinKarp64 digest from the default polynomial obtained
|
||
|
// when using RandomPolynomial with the seed 1.
|
||
|
func New() *RabinKarp64 {
|
||
|
p, err := RandomPolynomial(1)
|
||
|
if err != nil {
|
||
|
panic(err)
|
||
|
}
|
||
|
return NewFromPol(p)
|
||
|
}
|
||
|
|
||
|
// Reset resets the running hash to its initial state
|
||
|
func (d *RabinKarp64) Reset() {
|
||
|
d.tables = nil
|
||
|
d.value = 0
|
||
|
d.window = d.window[:1]
|
||
|
d.window[0] = 0
|
||
|
d.oldest = 0
|
||
|
}
|
||
|
|
||
|
// Size is 8 bytes
|
||
|
func (d *RabinKarp64) Size() int { return Size }
|
||
|
|
||
|
// BlockSize is 1 byte
|
||
|
func (d *RabinKarp64) BlockSize() int { return 1 }
|
||
|
|
||
|
// Write (re)initializes the rolling window with the input byte slice and
|
||
|
// adds its data to the digest. It never returns an error.
|
||
|
func (d *RabinKarp64) Write(data []byte) (int, error) {
|
||
|
// Copy the window
|
||
|
l := len(data)
|
||
|
if l == 0 {
|
||
|
l = 1
|
||
|
}
|
||
|
if len(d.window) >= l {
|
||
|
d.window = d.window[:l]
|
||
|
} else {
|
||
|
d.window = make([]byte, l)
|
||
|
}
|
||
|
copy(d.window, data)
|
||
|
|
||
|
for _, b := range d.window {
|
||
|
d.value <<= 8
|
||
|
d.value |= Pol(b)
|
||
|
d.value = d.value.Mod(d.pol)
|
||
|
}
|
||
|
|
||
|
d.buildTables()
|
||
|
|
||
|
return len(d.window), nil
|
||
|
}
|
||
|
|
||
|
// Sum64 returns the hash as a uint64
|
||
|
func (d *RabinKarp64) Sum64() uint64 {
|
||
|
return uint64(d.value)
|
||
|
}
|
||
|
|
||
|
// Sum returns the hash as byte slice
|
||
|
func (d *RabinKarp64) Sum(b []byte) []byte {
|
||
|
v := d.Sum64()
|
||
|
return append(b, byte(v>>56), byte(v>>48), byte(v>>40), byte(v>>32), byte(v>>24), byte(v>>16), byte(v>>8), byte(v))
|
||
|
}
|
||
|
|
||
|
// Roll updates the checksum of the window from the entering byte. You
|
||
|
// MUST initialize a window with Write() before calling this method.
|
||
|
func (d *RabinKarp64) Roll(c byte) {
|
||
|
// extract the entering/leaving bytes and update the circular buffer.
|
||
|
enter := c
|
||
|
leave := uint64(d.window[d.oldest])
|
||
|
d.window[d.oldest] = c
|
||
|
d.oldest += 1
|
||
|
if d.oldest >= len(d.window) {
|
||
|
d.oldest = 0
|
||
|
}
|
||
|
|
||
|
d.value ^= d.tables.out[leave]
|
||
|
index := byte(d.value >> d.polShift)
|
||
|
d.value <<= 8
|
||
|
d.value |= Pol(enter)
|
||
|
d.value ^= d.tables.mod[index]
|
||
|
}
|