syncthing/vendor/github.com/chmduquesne/rollinghash/rabinkarp64/rabinkarp64.go

225 lines
6.1 KiB
Go
Raw Normal View History

// Copyright (c) 2014, Alexander Neumann <alexander@bumpern.de>
// Copyright (c) 2017, Christophe-Marie Duquesne <chmd@chmd.fr>
//
// This file was adapted from restic https://github.com/restic/chunker
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package rabinkarp64
import (
"sync"
"github.com/chmduquesne/rollinghash"
)
const Size = 8
type tables struct {
out [256]Pol
mod [256]Pol
}
// tables are cacheable for a given pol and windowsize
type index struct {
pol Pol
windowsize int
}
type RabinKarp64 struct {
pol Pol
tables *tables
polShift uint
value Pol
// window is treated like a circular buffer, where the oldest element
// is indicated by d.oldest
window []byte
oldest int
}
// cache precomputed tables, these are read-only anyway
var cache struct {
// For a given polynom and a given window size, we get a table
entries map[index]*tables
sync.Mutex
}
func init() {
cache.entries = make(map[index]*tables)
}
func (d *RabinKarp64) buildTables() {
windowsize := len(d.window)
idx := index{d.pol, windowsize}
cache.Lock()
t, ok := cache.entries[idx]
cache.Unlock()
if ok {
d.tables = t
return
}
t = &tables{}
// calculate table for sliding out bytes. The byte to slide out is used as
// the index for the table, the value contains the following:
// out_table[b] = Hash(b || 0 || ... || 0)
// \ windowsize-1 zero bytes /
// To slide out byte b_0 for window size w with known hash
// H := H(b_0 || ... || b_w), it is sufficient to add out_table[b_0]:
// H(b_0 || ... || b_w) + H(b_0 || 0 || ... || 0)
// = H(b_0 + b_0 || b_1 + 0 || ... || b_w + 0)
// = H( 0 || b_1 || ... || b_w)
//
// Afterwards a new byte can be shifted in.
for b := 0; b < 256; b++ {
var h Pol
h <<= 8
h |= Pol(b)
h = h.Mod(d.pol)
for i := 0; i < windowsize-1; i++ {
h <<= 8
h |= Pol(0)
h = h.Mod(d.pol)
}
t.out[b] = h
}
// calculate table for reduction mod Polynomial
k := d.pol.Deg()
for b := 0; b < 256; b++ {
// mod_table[b] = A | B, where A = (b(x) * x^k mod pol) and B = b(x) * x^k
//
// The 8 bits above deg(Polynomial) determine what happens next and so
// these bits are used as a lookup to this table. The value is split in
// two parts: Part A contains the result of the modulus operation, part
// B is used to cancel out the 8 top bits so that one XOR operation is
// enough to reduce modulo Polynomial
t.mod[b] = Pol(uint64(b)<<uint(k)).Mod(d.pol) | (Pol(b) << uint(k))
}
d.tables = t
cache.Lock()
cache.entries[idx] = d.tables
cache.Unlock()
}
// NewFromPol returns a RabinKarp64 digest from a polynomial over GF(2).
// It is assumed that the input polynomial is irreducible. You can obtain
// such a polynomial using the RandomPolynomial function.
func NewFromPol(p Pol) *RabinKarp64 {
res := &RabinKarp64{
pol: p,
tables: nil,
polShift: uint(p.Deg() - 8),
value: 0,
window: make([]byte, 0, rollinghash.DefaultWindowCap),
oldest: 0,
}
return res
}
// New returns a RabinKarp64 digest from the default polynomial obtained
// when using RandomPolynomial with the seed 1.
func New() *RabinKarp64 {
p, err := RandomPolynomial(1)
if err != nil {
panic(err)
}
return NewFromPol(p)
}
// Reset resets the running hash to its initial state
func (d *RabinKarp64) Reset() {
d.tables = nil
d.value = 0
d.window = d.window[:1]
d.window[0] = 0
d.oldest = 0
}
// Size is 8 bytes
func (d *RabinKarp64) Size() int { return Size }
// BlockSize is 1 byte
func (d *RabinKarp64) BlockSize() int { return 1 }
// Write (re)initializes the rolling window with the input byte slice and
// adds its data to the digest. It never returns an error.
func (d *RabinKarp64) Write(data []byte) (int, error) {
// Copy the window
l := len(data)
if l == 0 {
l = 1
}
if len(d.window) >= l {
d.window = d.window[:l]
} else {
d.window = make([]byte, l)
}
copy(d.window, data)
for _, b := range d.window {
d.value <<= 8
d.value |= Pol(b)
d.value = d.value.Mod(d.pol)
}
d.buildTables()
return len(d.window), nil
}
// Sum64 returns the hash as a uint64
func (d *RabinKarp64) Sum64() uint64 {
return uint64(d.value)
}
// Sum returns the hash as byte slice
func (d *RabinKarp64) Sum(b []byte) []byte {
v := d.Sum64()
return append(b, byte(v>>56), byte(v>>48), byte(v>>40), byte(v>>32), byte(v>>24), byte(v>>16), byte(v>>8), byte(v))
}
// Roll updates the checksum of the window from the entering byte. You
// MUST initialize a window with Write() before calling this method.
func (d *RabinKarp64) Roll(c byte) {
// extract the entering/leaving bytes and update the circular buffer.
enter := c
leave := uint64(d.window[d.oldest])
d.window[d.oldest] = c
d.oldest += 1
if d.oldest >= len(d.window) {
d.oldest = 0
}
d.value ^= d.tables.out[leave]
index := byte(d.value >> d.polShift)
d.value <<= 8
d.value |= Pol(enter)
d.value ^= d.tables.mod[index]
}