cmd/stdiscosrv: New discovery server (fixes #4618)

This is a new revision of the discovery server. Relevant changes and
non-changes:

- Protocol towards clients is unchanged.

- Recommended large scale design is still to be deployed nehind nginx (I
  tested, and it's still a lot faster at terminating TLS).

- Database backend is leveldb again, only. It scales enough, is easy to
  setup, and we don't need any backend to take care of.

- Server supports replication. This is a simple TCP channel - protect it
  with a firewall when deploying over the internet. (We deploy this within
  the same datacenter, and with firewall.) Any incoming client announces
  are sent over the replication channel(s) to other peer discosrvs.
  Incoming replication changes are applied to the database as if they came
  from clients, but without the TLS/certificate overhead.

- Metrics are exposed using the prometheus library, when enabled.

- The database values and replication protocol is protobuf, because JSON
  was quite CPU intensive when I tried that and benchmarked it.

- The "Retry-After" value for failed lookups gets slowly increased from
  a default of 120 seconds, by 5 seconds for each failed lookup,
  independently by each discosrv. This lowers the query load over time for
  clients that are never seen. The Retry-After maxes out at 3600 after a
  couple of weeks of this increase. The number of failed lookups is
  stored in the database, now and then (avoiding making each lookup a
  database put).

All in all this means clients can be pointed towards a cluster using
just multiple A / AAAA records to gain both load sharing and redundancy
(if one is down, clients will talk to the remaining ones).

GitHub-Pull-Request: https://github.com/syncthing/syncthing/pull/4648
This commit is contained in:
Jakob Borg 2018-01-14 08:52:31 +00:00
parent 341b9691a7
commit 916ec63af6
864 changed files with 216825 additions and 64540 deletions

View File

@ -705,7 +705,7 @@ func shouldRebuildAssets(target, srcdir string) bool {
}
func proto() {
runPrint("go", "generate", "github.com/syncthing/syncthing/lib/...")
runPrint("go", "generate", "github.com/syncthing/syncthing/lib/...", "github.com/syncthing/syncthing/cmd/stdiscosrv")
}
func translate() {

View File

@ -1,19 +0,0 @@
Copyright (C) 2014-2015 The Discosrv Authors
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:
- The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@ -6,33 +6,4 @@ This is the global discovery server for the `syncthing` project.
Usage
-----
The discovery server supports `ql` and `postgres` backends.
Specify the backend via `-db-backend` and the database DSN via `-db-dsn`.
By default it will use in-memory `ql` backend. If you wish to persist the
information on disk between restarts in `ql`, specify a file DSN:
```bash
$ stdiscosrv -db-dsn="file:///var/run/stdiscosrv.db"
```
For `postgres`, you will need to create a database and a user with permissions
to create tables in it, then start the stdiscosrv as follows:
```bash
$ export STDISCOSRV_DB_DSN="postgres://user:password@localhost/databasename"
$ stdiscosrv -db-backend="postgres"
```
You can pass the DSN as command line option, but the value what you pass in will
be visible in most process managers, potentially exposing the database password
to other users.
In all cases, the appropriate tables and indexes will be created at first
startup. If it doesn't exit with an error, you're fine.
See `stdiscosrv -help` for other options.
##### Third-party attribution
[cznic/lldb](https://github.com/cznic/lldb), Copyright (C) 2014 The lldb Authors.
https://docs.syncthing.net/users/stdiscosrv.html

394
cmd/stdiscosrv/apisrv.go Normal file
View File

@ -0,0 +1,394 @@
// Copyright (C) 2018 The Syncthing Authors.
//
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this file,
// You can obtain one at https://mozilla.org/MPL/2.0/.
package main
import (
"bytes"
"crypto/tls"
"encoding/json"
"encoding/pem"
"fmt"
"log"
"math/rand"
"net"
"net/http"
"net/url"
"strconv"
"sync"
"time"
"github.com/syncthing/syncthing/lib/protocol"
"golang.org/x/net/context"
)
// announcement is the format received from and sent to clients
type announcement struct {
Seen time.Time `json:"seen"`
Addresses []string `json:"addresses"`
}
type apiSrv struct {
addr string
cert tls.Certificate
db database
listener net.Listener
repl replicator // optional
useHTTP bool
mapsMut sync.Mutex
misses map[string]int32
}
type requestID int64
func (i requestID) String() string {
return fmt.Sprintf("%016x", int64(i))
}
type contextKey int
const idKey contextKey = iota
func newAPISrv(addr string, cert tls.Certificate, db database, repl replicator, useHTTP bool) *apiSrv {
return &apiSrv{
addr: addr,
cert: cert,
db: db,
repl: repl,
useHTTP: useHTTP,
misses: make(map[string]int32),
}
}
func (s *apiSrv) Serve() {
if s.useHTTP {
listener, err := net.Listen("tcp", s.addr)
if err != nil {
log.Println("Listen:", err)
return
}
s.listener = listener
} else {
tlsCfg := &tls.Config{
Certificates: []tls.Certificate{s.cert},
ClientAuth: tls.RequestClientCert,
SessionTicketsDisabled: true,
MinVersion: tls.VersionTLS12,
CipherSuites: []uint16{
tls.TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
tls.TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
tls.TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,
tls.TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,
tls.TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA,
tls.TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA,
},
}
tlsListener, err := tls.Listen("tcp", s.addr, tlsCfg)
if err != nil {
log.Println("Listen:", err)
return
}
s.listener = tlsListener
}
http.HandleFunc("/", s.handler)
http.HandleFunc("/ping", handlePing)
srv := &http.Server{
ReadTimeout: httpReadTimeout,
WriteTimeout: httpWriteTimeout,
MaxHeaderBytes: httpMaxHeaderBytes,
}
if err := srv.Serve(s.listener); err != nil {
log.Println("Serve:", err)
}
}
var topCtx = context.Background()
func (s *apiSrv) handler(w http.ResponseWriter, req *http.Request) {
t0 := time.Now()
lw := NewLoggingResponseWriter(w)
defer func() {
diff := time.Since(t0)
apiRequestsSeconds.WithLabelValues(req.Method).Observe(diff.Seconds())
apiRequestsTotal.WithLabelValues(req.Method, strconv.Itoa(lw.statusCode)).Inc()
}()
reqID := requestID(rand.Int63())
ctx := context.WithValue(topCtx, idKey, reqID)
if debug {
log.Println(reqID, req.Method, req.URL)
}
var remoteIP net.IP
if s.useHTTP {
remoteIP = net.ParseIP(req.Header.Get("X-Forwarded-For"))
} else {
addr, err := net.ResolveTCPAddr("tcp", req.RemoteAddr)
if err != nil {
log.Println("remoteAddr:", err)
lw.Header().Set("Retry-After", errorRetryAfterString())
http.Error(lw, "Internal Server Error", http.StatusInternalServerError)
apiRequestsTotal.WithLabelValues("no_remote_addr").Inc()
return
}
remoteIP = addr.IP
}
switch req.Method {
case "GET":
s.handleGET(ctx, lw, req)
case "POST":
s.handlePOST(ctx, remoteIP, lw, req)
default:
http.Error(lw, "Method Not Allowed", http.StatusMethodNotAllowed)
}
}
func (s *apiSrv) handleGET(ctx context.Context, w http.ResponseWriter, req *http.Request) {
reqID := ctx.Value(idKey).(requestID)
deviceID, err := protocol.DeviceIDFromString(req.URL.Query().Get("device"))
if err != nil {
if debug {
log.Println(reqID, "bad device param")
}
lookupRequestsTotal.WithLabelValues("bad_request").Inc()
w.Header().Set("Retry-After", errorRetryAfterString())
http.Error(w, "Bad Request", http.StatusBadRequest)
return
}
key := deviceID.String()
rec, err := s.db.get(key)
if err != nil {
// some sort of internal error
lookupRequestsTotal.WithLabelValues("internal_error").Inc()
w.Header().Set("Retry-After", errorRetryAfterString())
http.Error(w, "Internal Server Error", http.StatusInternalServerError)
return
}
if len(rec.Addresses) == 0 {
lookupRequestsTotal.WithLabelValues("not_found").Inc()
s.mapsMut.Lock()
misses := s.misses[key]
if misses < rec.Misses {
misses = rec.Misses + 1
} else {
misses++
}
s.misses[key] = misses
s.mapsMut.Unlock()
if misses%notFoundMissesWriteInterval == 0 {
rec.Misses = misses
rec.Addresses = nil
// rec.Seen retained from get
s.db.put(key, rec)
}
w.Header().Set("Retry-After", notFoundRetryAfterString(int(misses)))
http.Error(w, "Not Found", http.StatusNotFound)
return
}
lookupRequestsTotal.WithLabelValues("success").Inc()
bs, _ := json.Marshal(announcement{
Seen: time.Unix(0, rec.Seen),
Addresses: addressStrs(rec.Addresses),
})
w.Header().Set("Content-Type", "application/json")
w.Write(bs)
}
func (s *apiSrv) handlePOST(ctx context.Context, remoteIP net.IP, w http.ResponseWriter, req *http.Request) {
reqID := ctx.Value(idKey).(requestID)
rawCert := certificateBytes(req)
if rawCert == nil {
if debug {
log.Println(reqID, "no certificates")
}
announceRequestsTotal.WithLabelValues("no_certificate").Inc()
w.Header().Set("Retry-After", errorRetryAfterString())
http.Error(w, "Forbidden", http.StatusForbidden)
return
}
var ann announcement
if err := json.NewDecoder(req.Body).Decode(&ann); err != nil {
if debug {
log.Println(reqID, "decode:", err)
}
announceRequestsTotal.WithLabelValues("bad_request").Inc()
w.Header().Set("Retry-After", errorRetryAfterString())
http.Error(w, "Bad Request", http.StatusBadRequest)
return
}
deviceID := protocol.NewDeviceID(rawCert)
addresses := fixupAddresses(remoteIP, ann.Addresses)
if len(addresses) == 0 {
announceRequestsTotal.WithLabelValues("bad_request").Inc()
w.Header().Set("Retry-After", errorRetryAfterString())
http.Error(w, "Bad Request", http.StatusBadRequest)
return
}
if err := s.handleAnnounce(remoteIP, deviceID, addresses); err != nil {
announceRequestsTotal.WithLabelValues("internal_error").Inc()
w.Header().Set("Retry-After", errorRetryAfterString())
http.Error(w, "Internal Server Error", http.StatusInternalServerError)
return
}
announceRequestsTotal.WithLabelValues("success").Inc()
w.Header().Set("Reannounce-After", reannounceAfterString())
w.WriteHeader(http.StatusNoContent)
}
func (s *apiSrv) Stop() {
s.listener.Close()
}
func (s *apiSrv) handleAnnounce(remote net.IP, deviceID protocol.DeviceID, addresses []string) error {
key := deviceID.String()
now := time.Now()
expire := now.Add(addressExpiryTime).UnixNano()
dbAddrs := make([]DatabaseAddress, len(addresses))
for i := range addresses {
dbAddrs[i].Address = addresses[i]
dbAddrs[i].Expires = expire
}
seen := now.UnixNano()
if s.repl != nil {
s.repl.send(key, dbAddrs, seen)
}
return s.db.merge(key, dbAddrs, seen)
}
func handlePing(w http.ResponseWriter, r *http.Request) {
w.WriteHeader(204)
}
func certificateBytes(req *http.Request) []byte {
if req.TLS != nil && len(req.TLS.PeerCertificates) > 0 {
return req.TLS.PeerCertificates[0].Raw
}
if hdr := req.Header.Get("X-SSL-Cert"); hdr != "" {
bs := []byte(hdr)
// The certificate is in PEM format but with spaces for newlines. We
// need to reinstate the newlines for the PEM decoder. But we need to
// leave the spaces in the BEGIN and END lines - the first and last
// space - alone.
firstSpace := bytes.Index(bs, []byte(" "))
lastSpace := bytes.LastIndex(bs, []byte(" "))
for i := firstSpace + 1; i < lastSpace; i++ {
if bs[i] == ' ' {
bs[i] = '\n'
}
}
block, _ := pem.Decode(bs)
if block == nil {
// Decoding failed
return nil
}
return block.Bytes
}
return nil
}
// fixupAddresses checks the list of addresses, removing invalid ones and
// replacing unspecified IPs with the given remote IP.
func fixupAddresses(remote net.IP, addresses []string) []string {
fixed := make([]string, 0, len(addresses))
for _, annAddr := range addresses {
uri, err := url.Parse(annAddr)
if err != nil {
continue
}
host, port, err := net.SplitHostPort(uri.Host)
if err != nil {
continue
}
ip := net.ParseIP(host)
if host == "" || ip.IsUnspecified() {
// Do not use IPv6 remote address if requested scheme is tcp4
if uri.Scheme == "tcp4" && remote.To4() == nil {
continue
}
// Do not use IPv4 remote address if requested scheme is tcp6
if uri.Scheme == "tcp6" && remote.To4() != nil {
continue
}
host = remote.String()
}
uri.Host = net.JoinHostPort(host, port)
fixed = append(fixed, uri.String())
}
return fixed
}
type loggingResponseWriter struct {
http.ResponseWriter
statusCode int
}
func NewLoggingResponseWriter(w http.ResponseWriter) *loggingResponseWriter {
return &loggingResponseWriter{w, http.StatusOK}
}
func (lrw *loggingResponseWriter) WriteHeader(code int) {
lrw.statusCode = code
lrw.ResponseWriter.WriteHeader(code)
}
func addressStrs(dbAddrs []DatabaseAddress) []string {
res := make([]string, len(dbAddrs))
for i, a := range dbAddrs {
res[i] = a.Address
}
return res
}
func errorRetryAfterString() string {
return strconv.Itoa(errorRetryAfterSeconds + rand.Intn(errorRetryFuzzSeconds))
}
func notFoundRetryAfterString(misses int) string {
retryAfterS := notFoundRetryMinSeconds + notFoundRetryIncSeconds*misses
if retryAfterS > notFoundRetryMaxSeconds {
retryAfterS = notFoundRetryMaxSeconds
}
retryAfterS += rand.Intn(notFoundRetryFuzzSeconds)
return strconv.Itoa(retryAfterS)
}
func reannounceAfterString() string {
return strconv.Itoa(reannounceAfterSeconds + rand.Intn(reannounzeFuzzSeconds))
}

View File

@ -1,75 +0,0 @@
// Copyright (C) 2014-2015 Jakob Borg and Contributors (see the CONTRIBUTORS file).
package main
import (
"database/sql"
"log"
"time"
)
type cleansrv struct {
intv time.Duration
db *sql.DB
prep map[string]*sql.Stmt
}
func (s *cleansrv) Serve() {
for {
time.Sleep(next(s.intv))
err := s.cleanOldEntries()
if err != nil {
log.Println("Clean:", err)
}
}
}
func (s *cleansrv) Stop() {
panic("stop unimplemented")
}
func (s *cleansrv) cleanOldEntries() (err error) {
var tx *sql.Tx
tx, err = s.db.Begin()
if err != nil {
return err
}
defer func() {
if err == nil {
err = tx.Commit()
} else {
tx.Rollback()
}
}()
res, err := tx.Stmt(s.prep["cleanAddress"]).Exec()
if err != nil {
return err
}
if rows, _ := res.RowsAffected(); rows > 0 {
log.Printf("Clean: %d old addresses", rows)
}
res, err = tx.Stmt(s.prep["cleanDevice"]).Exec()
if err != nil {
return err
}
if rows, _ := res.RowsAffected(); rows > 0 {
log.Printf("Clean: %d old devices", rows)
}
var devs, addrs int
row := tx.Stmt(s.prep["countDevice"]).QueryRow()
if err = row.Scan(&devs); err != nil {
return err
}
row = tx.Stmt(s.prep["countAddress"]).QueryRow()
if err = row.Scan(&addrs); err != nil {
return err
}
log.Printf("Database: %d devices, %d addresses", devs, addrs)
return nil
}

336
cmd/stdiscosrv/database.go Normal file
View File

@ -0,0 +1,336 @@
// Copyright (C) 2018 The Syncthing Authors.
//
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this file,
// You can obtain one at https://mozilla.org/MPL/2.0/.
//go:generate go run ../../script/protofmt.go database.proto
//go:generate protoc -I ../../../../../ -I ../../vendor/ -I ../../vendor/github.com/gogo/protobuf/protobuf -I . --gogofast_out=. database.proto
package main
import (
"sort"
"time"
"github.com/syndtr/goleveldb/leveldb"
"github.com/syndtr/goleveldb/leveldb/util"
)
type clock interface {
Now() time.Time
}
type defaultClock struct{}
func (defaultClock) Now() time.Time {
return time.Now()
}
type database interface {
put(key string, rec DatabaseRecord) error
merge(key string, addrs []DatabaseAddress, seen int64) error
get(key string) (DatabaseRecord, error)
}
type levelDBStore struct {
db *leveldb.DB
inbox chan func()
stop chan struct{}
clock clock
marshalBuf []byte
}
func newLevelDBStore(dir string) (*levelDBStore, error) {
db, err := leveldb.OpenFile(dir, levelDBOptions)
if err != nil {
return nil, err
}
return &levelDBStore{
db: db,
inbox: make(chan func(), 16),
stop: make(chan struct{}),
clock: defaultClock{},
}, nil
}
func (s *levelDBStore) put(key string, rec DatabaseRecord) error {
t0 := time.Now()
defer func() {
databaseOperationSeconds.WithLabelValues(dbOpPut).Observe(time.Since(t0).Seconds())
}()
rc := make(chan error)
s.inbox <- func() {
size := rec.Size()
if len(s.marshalBuf) < size {
s.marshalBuf = make([]byte, size)
}
n, _ := rec.MarshalTo(s.marshalBuf)
rc <- s.db.Put([]byte(key), s.marshalBuf[:n], nil)
}
err := <-rc
if err != nil {
databaseOperations.WithLabelValues(dbOpPut, dbResError).Inc()
} else {
databaseOperations.WithLabelValues(dbOpPut, dbResSuccess).Inc()
}
return err
}
func (s *levelDBStore) merge(key string, addrs []DatabaseAddress, seen int64) error {
t0 := time.Now()
defer func() {
databaseOperationSeconds.WithLabelValues(dbOpMerge).Observe(time.Since(t0).Seconds())
}()
rc := make(chan error)
newRec := DatabaseRecord{
Addresses: addrs,
Seen: seen,
}
s.inbox <- func() {
// grab the existing record
oldRec, err := s.get(key)
if err != nil {
// "not found" is not an error from get, so this is serious
// stuff only
rc <- err
return
}
newRec = merge(newRec, oldRec)
// We replicate s.put() functionality here ourselves instead of
// calling it because we want to serialize our get above together
// with the put in the same function.
size := newRec.Size()
if len(s.marshalBuf) < size {
s.marshalBuf = make([]byte, size)
}
n, _ := newRec.MarshalTo(s.marshalBuf)
rc <- s.db.Put([]byte(key), s.marshalBuf[:n], nil)
}
err := <-rc
if err != nil {
databaseOperations.WithLabelValues(dbOpMerge, dbResError).Inc()
} else {
databaseOperations.WithLabelValues(dbOpMerge, dbResSuccess).Inc()
}
return err
}
func (s *levelDBStore) get(key string) (DatabaseRecord, error) {
t0 := time.Now()
defer func() {
databaseOperationSeconds.WithLabelValues(dbOpGet).Observe(time.Since(t0).Seconds())
}()
keyBs := []byte(key)
val, err := s.db.Get(keyBs, nil)
if err == leveldb.ErrNotFound {
databaseOperations.WithLabelValues(dbOpGet, dbResNotFound).Inc()
return DatabaseRecord{}, nil
}
if err != nil {
databaseOperations.WithLabelValues(dbOpGet, dbResError).Inc()
return DatabaseRecord{}, err
}
var rec DatabaseRecord
if err := rec.Unmarshal(val); err != nil {
databaseOperations.WithLabelValues(dbOpGet, dbResUnmarshalError).Inc()
return DatabaseRecord{}, nil
}
rec.Addresses = expire(rec.Addresses, s.clock.Now().UnixNano())
databaseOperations.WithLabelValues(dbOpGet, dbResSuccess).Inc()
return rec, nil
}
func (s *levelDBStore) Serve() {
t := time.NewTimer(0)
defer t.Stop()
defer s.db.Close()
// Start the statistics serve routine. It will exit with us when
// statisticsTrigger is closed.
statisticsTrigger := make(chan struct{})
defer close(statisticsTrigger)
statisticsDone := make(chan struct{})
go s.statisticsServe(statisticsTrigger, statisticsDone)
for {
select {
case fn := <-s.inbox:
// Run function in serialized order.
fn()
case <-t.C:
// Trigger the statistics routine to do its thing in the
// background.
statisticsTrigger <- struct{}{}
case <-statisticsDone:
// The statistics routine is done with one iteratation, schedule
// the next.
t.Reset(databaseStatisticsInterval)
case <-s.stop:
// We're done.
return
}
}
}
func (s *levelDBStore) statisticsServe(trigger <-chan struct{}, done chan<- struct{}) {
for range trigger {
t0 := time.Now()
nowNanos := t0.UnixNano()
cutoff24h := t0.Add(-24 * time.Hour).UnixNano()
cutoff1w := t0.Add(-7 * 24 * time.Hour).UnixNano()
current, last24h, last1w, inactive, errors := 0, 0, 0, 0, 0
iter := s.db.NewIterator(&util.Range{}, nil)
for iter.Next() {
// Attempt to unmarshal the record and count the
// failure if there's something wrong with it.
var rec DatabaseRecord
if err := rec.Unmarshal(iter.Value()); err != nil {
errors++
continue
}
// If there are addresses that have not expired it's a current
// record, otherwise account it based on when it was last seen
// (last 24 hours or last week) or finally as inactice.
switch {
case len(expire(rec.Addresses, nowNanos)) > 0:
current++
case rec.Seen > cutoff24h:
last24h++
case rec.Seen > cutoff1w:
last1w++
default:
inactive++
}
}
iter.Release()
databaseKeys.WithLabelValues("current").Set(float64(current))
databaseKeys.WithLabelValues("last24h").Set(float64(last24h))
databaseKeys.WithLabelValues("last1w").Set(float64(last1w))
databaseKeys.WithLabelValues("inactive").Set(float64(inactive))
databaseKeys.WithLabelValues("error").Set(float64(errors))
databaseStatisticsSeconds.Set(time.Since(t0).Seconds())
// Signal that we are done and can be scheduled again.
done <- struct{}{}
}
}
func (s *levelDBStore) Stop() {
close(s.stop)
}
// merge returns the merged result of the two database records a and b. The
// result is the union of the two address sets, with the newer expiry time
// chosen for any duplicates.
func merge(a, b DatabaseRecord) DatabaseRecord {
// Both lists must be sorted for this to work.
sort.Slice(a.Addresses, func(i, j int) bool {
return a.Addresses[i].Address < a.Addresses[j].Address
})
sort.Slice(b.Addresses, func(i, j int) bool {
return b.Addresses[i].Address < b.Addresses[j].Address
})
res := DatabaseRecord{
Addresses: make([]DatabaseAddress, 0, len(a.Addresses)+len(b.Addresses)),
Seen: a.Seen,
}
if b.Seen > a.Seen {
res.Seen = b.Seen
}
aIdx := 0
bIdx := 0
aAddrs := a.Addresses
bAddrs := b.Addresses
loop:
for {
switch {
case aIdx == len(aAddrs) && bIdx == len(bAddrs):
// both lists are exhausted, we are done
break loop
case aIdx == len(aAddrs):
// a is exhausted, pick from b and continue
res.Addresses = append(res.Addresses, bAddrs[bIdx])
bIdx++
continue
case bIdx == len(bAddrs):
// b is exhausted, pick from a and continue
res.Addresses = append(res.Addresses, aAddrs[aIdx])
aIdx++
continue
}
// We have values left on both sides.
aVal := aAddrs[aIdx]
bVal := bAddrs[bIdx]
switch {
case aVal.Address == bVal.Address:
// update for same address, pick newer
if aVal.Expires > bVal.Expires {
res.Addresses = append(res.Addresses, aVal)
} else {
res.Addresses = append(res.Addresses, bVal)
}
aIdx++
bIdx++
case aVal.Address < bVal.Address:
// a is smallest, pick it and continue
res.Addresses = append(res.Addresses, aVal)
aIdx++
default:
// b is smallest, pick it and continue
res.Addresses = append(res.Addresses, bVal)
bIdx++
}
}
return res
}
// expire returns the list of addresses after removing expired entries.
// Expiration happen in place, so the slice given as the parameter is
// destroyed. Internal order is not preserved.
func expire(addrs []DatabaseAddress, now int64) []DatabaseAddress {
i := 0
for i < len(addrs) {
if addrs[i].Expires < now {
// This item is expired. Replace it with the last in the list
// (noop if we are at the last item).
addrs[i] = addrs[len(addrs)-1]
// Wipe the last item of the list to release references to
// strings and stuff.
addrs[len(addrs)-1] = DatabaseAddress{}
// Shorten the slice.
addrs = addrs[:len(addrs)-1]
continue
}
i++
}
return addrs
}

View File

@ -0,0 +1,743 @@
// Code generated by protoc-gen-gogo. DO NOT EDIT.
// source: database.proto
/*
Package main is a generated protocol buffer package.
It is generated from these files:
database.proto
It has these top-level messages:
DatabaseRecord
ReplicationRecord
DatabaseAddress
*/
package main
import proto "github.com/gogo/protobuf/proto"
import fmt "fmt"
import math "math"
import _ "github.com/gogo/protobuf/gogoproto"
import io "io"
// Reference imports to suppress errors if they are not otherwise used.
var _ = proto.Marshal
var _ = fmt.Errorf
var _ = math.Inf
// This is a compile-time assertion to ensure that this generated file
// is compatible with the proto package it is being compiled against.
// A compilation error at this line likely means your copy of the
// proto package needs to be updated.
const _ = proto.GoGoProtoPackageIsVersion2 // please upgrade the proto package
type DatabaseRecord struct {
Addresses []DatabaseAddress `protobuf:"bytes,1,rep,name=addresses" json:"addresses"`
Misses int32 `protobuf:"varint,2,opt,name=misses,proto3" json:"misses,omitempty"`
Seen int64 `protobuf:"varint,3,opt,name=seen,proto3" json:"seen,omitempty"`
}
func (m *DatabaseRecord) Reset() { *m = DatabaseRecord{} }
func (m *DatabaseRecord) String() string { return proto.CompactTextString(m) }
func (*DatabaseRecord) ProtoMessage() {}
func (*DatabaseRecord) Descriptor() ([]byte, []int) { return fileDescriptorDatabase, []int{0} }
type ReplicationRecord struct {
Key string `protobuf:"bytes,1,opt,name=key,proto3" json:"key,omitempty"`
Addresses []DatabaseAddress `protobuf:"bytes,2,rep,name=addresses" json:"addresses"`
Seen int64 `protobuf:"varint,3,opt,name=seen,proto3" json:"seen,omitempty"`
}
func (m *ReplicationRecord) Reset() { *m = ReplicationRecord{} }
func (m *ReplicationRecord) String() string { return proto.CompactTextString(m) }
func (*ReplicationRecord) ProtoMessage() {}
func (*ReplicationRecord) Descriptor() ([]byte, []int) { return fileDescriptorDatabase, []int{1} }
type DatabaseAddress struct {
Address string `protobuf:"bytes,1,opt,name=address,proto3" json:"address,omitempty"`
Expires int64 `protobuf:"varint,2,opt,name=expires,proto3" json:"expires,omitempty"`
}
func (m *DatabaseAddress) Reset() { *m = DatabaseAddress{} }
func (m *DatabaseAddress) String() string { return proto.CompactTextString(m) }
func (*DatabaseAddress) ProtoMessage() {}
func (*DatabaseAddress) Descriptor() ([]byte, []int) { return fileDescriptorDatabase, []int{2} }
func init() {
proto.RegisterType((*DatabaseRecord)(nil), "main.DatabaseRecord")
proto.RegisterType((*ReplicationRecord)(nil), "main.ReplicationRecord")
proto.RegisterType((*DatabaseAddress)(nil), "main.DatabaseAddress")
}
func (m *DatabaseRecord) Marshal() (dAtA []byte, err error) {
size := m.Size()
dAtA = make([]byte, size)
n, err := m.MarshalTo(dAtA)
if err != nil {
return nil, err
}
return dAtA[:n], nil
}
func (m *DatabaseRecord) MarshalTo(dAtA []byte) (int, error) {
var i int
_ = i
var l int
_ = l
if len(m.Addresses) > 0 {
for _, msg := range m.Addresses {
dAtA[i] = 0xa
i++
i = encodeVarintDatabase(dAtA, i, uint64(msg.Size()))
n, err := msg.MarshalTo(dAtA[i:])
if err != nil {
return 0, err
}
i += n
}
}
if m.Misses != 0 {
dAtA[i] = 0x10
i++
i = encodeVarintDatabase(dAtA, i, uint64(m.Misses))
}
if m.Seen != 0 {
dAtA[i] = 0x18
i++
i = encodeVarintDatabase(dAtA, i, uint64(m.Seen))
}
return i, nil
}
func (m *ReplicationRecord) Marshal() (dAtA []byte, err error) {
size := m.Size()
dAtA = make([]byte, size)
n, err := m.MarshalTo(dAtA)
if err != nil {
return nil, err
}
return dAtA[:n], nil
}
func (m *ReplicationRecord) MarshalTo(dAtA []byte) (int, error) {
var i int
_ = i
var l int
_ = l
if len(m.Key) > 0 {
dAtA[i] = 0xa
i++
i = encodeVarintDatabase(dAtA, i, uint64(len(m.Key)))
i += copy(dAtA[i:], m.Key)
}
if len(m.Addresses) > 0 {
for _, msg := range m.Addresses {
dAtA[i] = 0x12
i++
i = encodeVarintDatabase(dAtA, i, uint64(msg.Size()))
n, err := msg.MarshalTo(dAtA[i:])
if err != nil {
return 0, err
}
i += n
}
}
if m.Seen != 0 {
dAtA[i] = 0x18
i++
i = encodeVarintDatabase(dAtA, i, uint64(m.Seen))
}
return i, nil
}
func (m *DatabaseAddress) Marshal() (dAtA []byte, err error) {
size := m.Size()
dAtA = make([]byte, size)
n, err := m.MarshalTo(dAtA)
if err != nil {
return nil, err
}
return dAtA[:n], nil
}
func (m *DatabaseAddress) MarshalTo(dAtA []byte) (int, error) {
var i int
_ = i
var l int
_ = l
if len(m.Address) > 0 {
dAtA[i] = 0xa
i++
i = encodeVarintDatabase(dAtA, i, uint64(len(m.Address)))
i += copy(dAtA[i:], m.Address)
}
if m.Expires != 0 {
dAtA[i] = 0x10
i++
i = encodeVarintDatabase(dAtA, i, uint64(m.Expires))
}
return i, nil
}
func encodeFixed64Database(dAtA []byte, offset int, v uint64) int {
dAtA[offset] = uint8(v)
dAtA[offset+1] = uint8(v >> 8)
dAtA[offset+2] = uint8(v >> 16)
dAtA[offset+3] = uint8(v >> 24)
dAtA[offset+4] = uint8(v >> 32)
dAtA[offset+5] = uint8(v >> 40)
dAtA[offset+6] = uint8(v >> 48)
dAtA[offset+7] = uint8(v >> 56)
return offset + 8
}
func encodeFixed32Database(dAtA []byte, offset int, v uint32) int {
dAtA[offset] = uint8(v)
dAtA[offset+1] = uint8(v >> 8)
dAtA[offset+2] = uint8(v >> 16)
dAtA[offset+3] = uint8(v >> 24)
return offset + 4
}
func encodeVarintDatabase(dAtA []byte, offset int, v uint64) int {
for v >= 1<<7 {
dAtA[offset] = uint8(v&0x7f | 0x80)
v >>= 7
offset++
}
dAtA[offset] = uint8(v)
return offset + 1
}
func (m *DatabaseRecord) Size() (n int) {
var l int
_ = l
if len(m.Addresses) > 0 {
for _, e := range m.Addresses {
l = e.Size()
n += 1 + l + sovDatabase(uint64(l))
}
}
if m.Misses != 0 {
n += 1 + sovDatabase(uint64(m.Misses))
}
if m.Seen != 0 {
n += 1 + sovDatabase(uint64(m.Seen))
}
return n
}
func (m *ReplicationRecord) Size() (n int) {
var l int
_ = l
l = len(m.Key)
if l > 0 {
n += 1 + l + sovDatabase(uint64(l))
}
if len(m.Addresses) > 0 {
for _, e := range m.Addresses {
l = e.Size()
n += 1 + l + sovDatabase(uint64(l))
}
}
if m.Seen != 0 {
n += 1 + sovDatabase(uint64(m.Seen))
}
return n
}
func (m *DatabaseAddress) Size() (n int) {
var l int
_ = l
l = len(m.Address)
if l > 0 {
n += 1 + l + sovDatabase(uint64(l))
}
if m.Expires != 0 {
n += 1 + sovDatabase(uint64(m.Expires))
}
return n
}
func sovDatabase(x uint64) (n int) {
for {
n++
x >>= 7
if x == 0 {
break
}
}
return n
}
func sozDatabase(x uint64) (n int) {
return sovDatabase(uint64((x << 1) ^ uint64((int64(x) >> 63))))
}
func (m *DatabaseRecord) Unmarshal(dAtA []byte) error {
l := len(dAtA)
iNdEx := 0
for iNdEx < l {
preIndex := iNdEx
var wire uint64
for shift := uint(0); ; shift += 7 {
if shift >= 64 {
return ErrIntOverflowDatabase
}
if iNdEx >= l {
return io.ErrUnexpectedEOF
}
b := dAtA[iNdEx]
iNdEx++
wire |= (uint64(b) & 0x7F) << shift
if b < 0x80 {
break
}
}
fieldNum := int32(wire >> 3)
wireType := int(wire & 0x7)
if wireType == 4 {
return fmt.Errorf("proto: DatabaseRecord: wiretype end group for non-group")
}
if fieldNum <= 0 {
return fmt.Errorf("proto: DatabaseRecord: illegal tag %d (wire type %d)", fieldNum, wire)
}
switch fieldNum {
case 1:
if wireType != 2 {
return fmt.Errorf("proto: wrong wireType = %d for field Addresses", wireType)
}
var msglen int
for shift := uint(0); ; shift += 7 {
if shift >= 64 {
return ErrIntOverflowDatabase
}
if iNdEx >= l {
return io.ErrUnexpectedEOF
}
b := dAtA[iNdEx]
iNdEx++
msglen |= (int(b) & 0x7F) << shift
if b < 0x80 {
break
}
}
if msglen < 0 {
return ErrInvalidLengthDatabase
}
postIndex := iNdEx + msglen
if postIndex > l {
return io.ErrUnexpectedEOF
}
m.Addresses = append(m.Addresses, DatabaseAddress{})
if err := m.Addresses[len(m.Addresses)-1].Unmarshal(dAtA[iNdEx:postIndex]); err != nil {
return err
}
iNdEx = postIndex
case 2:
if wireType != 0 {
return fmt.Errorf("proto: wrong wireType = %d for field Misses", wireType)
}
m.Misses = 0
for shift := uint(0); ; shift += 7 {
if shift >= 64 {
return ErrIntOverflowDatabase
}
if iNdEx >= l {
return io.ErrUnexpectedEOF
}
b := dAtA[iNdEx]
iNdEx++
m.Misses |= (int32(b) & 0x7F) << shift
if b < 0x80 {
break
}
}
case 3:
if wireType != 0 {
return fmt.Errorf("proto: wrong wireType = %d for field Seen", wireType)
}
m.Seen = 0
for shift := uint(0); ; shift += 7 {
if shift >= 64 {
return ErrIntOverflowDatabase
}
if iNdEx >= l {
return io.ErrUnexpectedEOF
}
b := dAtA[iNdEx]
iNdEx++
m.Seen |= (int64(b) & 0x7F) << shift
if b < 0x80 {
break
}
}
default:
iNdEx = preIndex
skippy, err := skipDatabase(dAtA[iNdEx:])
if err != nil {
return err
}
if skippy < 0 {
return ErrInvalidLengthDatabase
}
if (iNdEx + skippy) > l {
return io.ErrUnexpectedEOF
}
iNdEx += skippy
}
}
if iNdEx > l {
return io.ErrUnexpectedEOF
}
return nil
}
func (m *ReplicationRecord) Unmarshal(dAtA []byte) error {
l := len(dAtA)
iNdEx := 0
for iNdEx < l {
preIndex := iNdEx
var wire uint64
for shift := uint(0); ; shift += 7 {
if shift >= 64 {
return ErrIntOverflowDatabase
}
if iNdEx >= l {
return io.ErrUnexpectedEOF
}
b := dAtA[iNdEx]
iNdEx++
wire |= (uint64(b) & 0x7F) << shift
if b < 0x80 {
break
}
}
fieldNum := int32(wire >> 3)
wireType := int(wire & 0x7)
if wireType == 4 {
return fmt.Errorf("proto: ReplicationRecord: wiretype end group for non-group")
}
if fieldNum <= 0 {
return fmt.Errorf("proto: ReplicationRecord: illegal tag %d (wire type %d)", fieldNum, wire)
}
switch fieldNum {
case 1:
if wireType != 2 {
return fmt.Errorf("proto: wrong wireType = %d for field Key", wireType)
}
var stringLen uint64
for shift := uint(0); ; shift += 7 {
if shift >= 64 {
return ErrIntOverflowDatabase
}
if iNdEx >= l {
return io.ErrUnexpectedEOF
}
b := dAtA[iNdEx]
iNdEx++
stringLen |= (uint64(b) & 0x7F) << shift
if b < 0x80 {
break
}
}
intStringLen := int(stringLen)
if intStringLen < 0 {
return ErrInvalidLengthDatabase
}
postIndex := iNdEx + intStringLen
if postIndex > l {
return io.ErrUnexpectedEOF
}
m.Key = string(dAtA[iNdEx:postIndex])
iNdEx = postIndex
case 2:
if wireType != 2 {
return fmt.Errorf("proto: wrong wireType = %d for field Addresses", wireType)
}
var msglen int
for shift := uint(0); ; shift += 7 {
if shift >= 64 {
return ErrIntOverflowDatabase
}
if iNdEx >= l {
return io.ErrUnexpectedEOF
}
b := dAtA[iNdEx]
iNdEx++
msglen |= (int(b) & 0x7F) << shift
if b < 0x80 {
break
}
}
if msglen < 0 {
return ErrInvalidLengthDatabase
}
postIndex := iNdEx + msglen
if postIndex > l {
return io.ErrUnexpectedEOF
}
m.Addresses = append(m.Addresses, DatabaseAddress{})
if err := m.Addresses[len(m.Addresses)-1].Unmarshal(dAtA[iNdEx:postIndex]); err != nil {
return err
}
iNdEx = postIndex
case 3:
if wireType != 0 {
return fmt.Errorf("proto: wrong wireType = %d for field Seen", wireType)
}
m.Seen = 0
for shift := uint(0); ; shift += 7 {
if shift >= 64 {
return ErrIntOverflowDatabase
}
if iNdEx >= l {
return io.ErrUnexpectedEOF
}
b := dAtA[iNdEx]
iNdEx++
m.Seen |= (int64(b) & 0x7F) << shift
if b < 0x80 {
break
}
}
default:
iNdEx = preIndex
skippy, err := skipDatabase(dAtA[iNdEx:])
if err != nil {
return err
}
if skippy < 0 {
return ErrInvalidLengthDatabase
}
if (iNdEx + skippy) > l {
return io.ErrUnexpectedEOF
}
iNdEx += skippy
}
}
if iNdEx > l {
return io.ErrUnexpectedEOF
}
return nil
}
func (m *DatabaseAddress) Unmarshal(dAtA []byte) error {
l := len(dAtA)
iNdEx := 0
for iNdEx < l {
preIndex := iNdEx
var wire uint64
for shift := uint(0); ; shift += 7 {
if shift >= 64 {
return ErrIntOverflowDatabase
}
if iNdEx >= l {
return io.ErrUnexpectedEOF
}
b := dAtA[iNdEx]
iNdEx++
wire |= (uint64(b) & 0x7F) << shift
if b < 0x80 {
break
}
}
fieldNum := int32(wire >> 3)
wireType := int(wire & 0x7)
if wireType == 4 {
return fmt.Errorf("proto: DatabaseAddress: wiretype end group for non-group")
}
if fieldNum <= 0 {
return fmt.Errorf("proto: DatabaseAddress: illegal tag %d (wire type %d)", fieldNum, wire)
}
switch fieldNum {
case 1:
if wireType != 2 {
return fmt.Errorf("proto: wrong wireType = %d for field Address", wireType)
}
var stringLen uint64
for shift := uint(0); ; shift += 7 {
if shift >= 64 {
return ErrIntOverflowDatabase
}
if iNdEx >= l {
return io.ErrUnexpectedEOF
}
b := dAtA[iNdEx]
iNdEx++
stringLen |= (uint64(b) & 0x7F) << shift
if b < 0x80 {
break
}
}
intStringLen := int(stringLen)
if intStringLen < 0 {
return ErrInvalidLengthDatabase
}
postIndex := iNdEx + intStringLen
if postIndex > l {
return io.ErrUnexpectedEOF
}
m.Address = string(dAtA[iNdEx:postIndex])
iNdEx = postIndex
case 2:
if wireType != 0 {
return fmt.Errorf("proto: wrong wireType = %d for field Expires", wireType)
}
m.Expires = 0
for shift := uint(0); ; shift += 7 {
if shift >= 64 {
return ErrIntOverflowDatabase
}
if iNdEx >= l {
return io.ErrUnexpectedEOF
}
b := dAtA[iNdEx]
iNdEx++
m.Expires |= (int64(b) & 0x7F) << shift
if b < 0x80 {
break
}
}
default:
iNdEx = preIndex
skippy, err := skipDatabase(dAtA[iNdEx:])
if err != nil {
return err
}
if skippy < 0 {
return ErrInvalidLengthDatabase
}
if (iNdEx + skippy) > l {
return io.ErrUnexpectedEOF
}
iNdEx += skippy
}
}
if iNdEx > l {
return io.ErrUnexpectedEOF
}
return nil
}
func skipDatabase(dAtA []byte) (n int, err error) {
l := len(dAtA)
iNdEx := 0
for iNdEx < l {
var wire uint64
for shift := uint(0); ; shift += 7 {
if shift >= 64 {
return 0, ErrIntOverflowDatabase
}
if iNdEx >= l {
return 0, io.ErrUnexpectedEOF
}
b := dAtA[iNdEx]
iNdEx++
wire |= (uint64(b) & 0x7F) << shift
if b < 0x80 {
break
}
}
wireType := int(wire & 0x7)
switch wireType {
case 0:
for shift := uint(0); ; shift += 7 {
if shift >= 64 {
return 0, ErrIntOverflowDatabase
}
if iNdEx >= l {
return 0, io.ErrUnexpectedEOF
}
iNdEx++
if dAtA[iNdEx-1] < 0x80 {
break
}
}
return iNdEx, nil
case 1:
iNdEx += 8
return iNdEx, nil
case 2:
var length int
for shift := uint(0); ; shift += 7 {
if shift >= 64 {
return 0, ErrIntOverflowDatabase
}
if iNdEx >= l {
return 0, io.ErrUnexpectedEOF
}
b := dAtA[iNdEx]
iNdEx++
length |= (int(b) & 0x7F) << shift
if b < 0x80 {
break
}
}
iNdEx += length
if length < 0 {
return 0, ErrInvalidLengthDatabase
}
return iNdEx, nil
case 3:
for {
var innerWire uint64
var start int = iNdEx
for shift := uint(0); ; shift += 7 {
if shift >= 64 {
return 0, ErrIntOverflowDatabase
}
if iNdEx >= l {
return 0, io.ErrUnexpectedEOF
}
b := dAtA[iNdEx]
iNdEx++
innerWire |= (uint64(b) & 0x7F) << shift
if b < 0x80 {
break
}
}
innerWireType := int(innerWire & 0x7)
if innerWireType == 4 {
break
}
next, err := skipDatabase(dAtA[start:])
if err != nil {
return 0, err
}
iNdEx = start + next
}
return iNdEx, nil
case 4:
return iNdEx, nil
case 5:
iNdEx += 4
return iNdEx, nil
default:
return 0, fmt.Errorf("proto: illegal wireType %d", wireType)
}
}
panic("unreachable")
}
var (
ErrInvalidLengthDatabase = fmt.Errorf("proto: negative length found during unmarshaling")
ErrIntOverflowDatabase = fmt.Errorf("proto: integer overflow")
)
func init() { proto.RegisterFile("database.proto", fileDescriptorDatabase) }
var fileDescriptorDatabase = []byte{
// 254 bytes of a gzipped FileDescriptorProto
0x1f, 0x8b, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0xff, 0xe2, 0xe2, 0x4b, 0x49, 0x2c, 0x49,
0x4c, 0x4a, 0x2c, 0x4e, 0xd5, 0x2b, 0x28, 0xca, 0x2f, 0xc9, 0x17, 0x62, 0xc9, 0x4d, 0xcc, 0xcc,
0x93, 0xd2, 0x4d, 0xcf, 0x2c, 0xc9, 0x28, 0x4d, 0xd2, 0x4b, 0xce, 0xcf, 0xd5, 0x4f, 0xcf, 0x4f,
0xcf, 0xd7, 0x07, 0x4b, 0x26, 0x95, 0xa6, 0x81, 0x79, 0x60, 0x0e, 0x98, 0x05, 0xd1, 0xa4, 0x54,
0xce, 0xc5, 0xe7, 0x02, 0x35, 0x26, 0x28, 0x35, 0x39, 0xbf, 0x28, 0x45, 0xc8, 0x92, 0x8b, 0x33,
0x31, 0x25, 0xa5, 0x28, 0xb5, 0xb8, 0x38, 0xb5, 0x58, 0x82, 0x51, 0x81, 0x59, 0x83, 0xdb, 0x48,
0x54, 0x0f, 0x64, 0xb4, 0x1e, 0x4c, 0xa1, 0x23, 0x44, 0xda, 0x89, 0xe5, 0xc4, 0x3d, 0x79, 0x86,
0x20, 0x84, 0x6a, 0x21, 0x31, 0x2e, 0xb6, 0xdc, 0x4c, 0xb0, 0x3e, 0x26, 0x05, 0x46, 0x0d, 0xd6,
0x20, 0x28, 0x4f, 0x48, 0x88, 0x8b, 0xa5, 0x38, 0x35, 0x35, 0x4f, 0x82, 0x59, 0x81, 0x51, 0x83,
0x39, 0x08, 0xcc, 0x56, 0x2a, 0xe1, 0x12, 0x0c, 0x4a, 0x2d, 0xc8, 0xc9, 0x4c, 0x4e, 0x2c, 0xc9,
0xcc, 0xcf, 0x83, 0xda, 0x2d, 0xc0, 0xc5, 0x9c, 0x9d, 0x5a, 0x29, 0xc1, 0xa8, 0xc0, 0xa8, 0xc1,
0x19, 0x04, 0x62, 0xa2, 0xba, 0x86, 0x89, 0x24, 0xd7, 0x60, 0xb3, 0xd5, 0x95, 0x8b, 0x1f, 0x4d,
0x9f, 0x90, 0x04, 0x17, 0x3b, 0x54, 0x0f, 0xd4, 0x5e, 0x18, 0x17, 0x24, 0x93, 0x5a, 0x51, 0x90,
0x59, 0x04, 0xf5, 0x0f, 0x73, 0x10, 0x8c, 0xeb, 0x24, 0x70, 0xe2, 0xa1, 0x1c, 0xc3, 0x89, 0x47,
0x72, 0x8c, 0x17, 0x1e, 0xc9, 0x31, 0x3e, 0x78, 0x24, 0xc7, 0x98, 0xc4, 0x06, 0x0e, 0x4e, 0x63,
0x40, 0x00, 0x00, 0x00, 0xff, 0xff, 0x9e, 0x45, 0x60, 0x7e, 0x95, 0x01, 0x00, 0x00,
}

View File

@ -0,0 +1,30 @@
// Copyright (C) 2018 The Syncthing Authors.
//
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this file,
// You can obtain one at https://mozilla.org/MPL/2.0/.
syntax = "proto3";
package main;
import "github.com/gogo/protobuf/gogoproto/gogo.proto";
option (gogoproto.goproto_getters_all) = false;
message DatabaseRecord {
repeated DatabaseAddress addresses = 1 [(gogoproto.nullable) = false];
int32 misses = 2; // Number of lookups without hits
int64 seen = 3; // Unix nanos, last device announce
}
message ReplicationRecord {
string key = 1;
repeated DatabaseAddress addresses = 2 [(gogoproto.nullable) = false];
int64 seen = 3; // Unix nanos, last device announce
}
message DatabaseAddress {
string address = 1;
int64 expires = 2; // Unix nanos
}

View File

@ -0,0 +1,211 @@
// Copyright (C) 2018 The Syncthing Authors.
//
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this file,
// You can obtain one at https://mozilla.org/MPL/2.0/.
package main
import (
"fmt"
"os"
"testing"
"time"
)
func TestDatabaseGetSet(t *testing.T) {
os.RemoveAll("_database")
defer os.RemoveAll("_database")
db, err := newLevelDBStore("_database")
if err != nil {
t.Fatal(err)
}
go db.Serve()
defer db.Stop()
// Check missing record
rec, err := db.get("abcd")
if err != nil {
t.Error("not found should not be an error")
}
if len(rec.Addresses) != 0 {
t.Error("addresses should be empty")
}
if rec.Misses != 0 {
t.Error("missing should be zero")
}
// Set up a clock
now := time.Now()
tc := &testClock{now}
db.clock = tc
// Put a record
rec.Addresses = []DatabaseAddress{
{Address: "tcp://1.2.3.4:5", Expires: tc.Now().Add(time.Minute).UnixNano()},
}
if err := db.put("abcd", rec); err != nil {
t.Fatal(err)
}
// Verify it
rec, err = db.get("abcd")
if err != nil {
t.Fatal(err)
}
if len(rec.Addresses) != 1 {
t.Log(rec.Addresses)
t.Fatal("should have one address")
}
if rec.Addresses[0].Address != "tcp://1.2.3.4:5" {
t.Log(rec.Addresses)
t.Error("incorrect address")
}
// Wind the clock one half expiry, and merge in a new address
tc.wind(30 * time.Second)
addrs := []DatabaseAddress{
{Address: "tcp://6.7.8.9:0", Expires: tc.Now().Add(time.Minute).UnixNano()},
}
if err := db.merge("abcd", addrs, tc.Now().UnixNano()); err != nil {
t.Fatal(err)
}
// Verify it
rec, err = db.get("abcd")
if err != nil {
t.Fatal(err)
}
if len(rec.Addresses) != 2 {
t.Log(rec.Addresses)
t.Fatal("should have two addresses")
}
if rec.Addresses[0].Address != "tcp://1.2.3.4:5" {
t.Log(rec.Addresses)
t.Error("incorrect address[0]")
}
if rec.Addresses[1].Address != "tcp://6.7.8.9:0" {
t.Log(rec.Addresses)
t.Error("incorrect address[1]")
}
// Pass the first expiry time
tc.wind(45 * time.Second)
// Verify it
rec, err = db.get("abcd")
if err != nil {
t.Fatal(err)
}
if len(rec.Addresses) != 1 {
t.Log(rec.Addresses)
t.Fatal("should have one address")
}
if rec.Addresses[0].Address != "tcp://6.7.8.9:0" {
t.Log(rec.Addresses)
t.Error("incorrect address")
}
// Put a record with misses
rec = DatabaseRecord{Misses: 42}
if err := db.put("efgh", rec); err != nil {
t.Fatal(err)
}
// Verify it
rec, err = db.get("efgh")
if err != nil {
t.Fatal(err)
}
if len(rec.Addresses) != 0 {
t.Log(rec.Addresses)
t.Fatal("should have no addresses")
}
if rec.Misses != 42 {
t.Log(rec.Misses)
t.Error("incorrect misses")
}
// Set an address
addrs = []DatabaseAddress{
{Address: "tcp://6.7.8.9:0", Expires: tc.Now().Add(time.Minute).UnixNano()},
}
if err := db.merge("efgh", addrs, tc.Now().UnixNano()); err != nil {
t.Fatal(err)
}
// Verify it
rec, err = db.get("efgh")
if err != nil {
t.Fatal(err)
}
if len(rec.Addresses) != 1 {
t.Log(rec.Addresses)
t.Fatal("should have one addres")
}
if rec.Misses != 0 {
t.Log(rec.Misses)
t.Error("should have no misses")
}
}
func TestFilter(t *testing.T) {
// all cases are expired with t=10
cases := []struct {
a []DatabaseAddress
b []DatabaseAddress
}{
{
a: nil,
b: nil,
},
{
a: []DatabaseAddress{{Address: "a", Expires: 9}, {Address: "b", Expires: 9}, {Address: "c", Expires: 9}},
b: []DatabaseAddress{},
},
{
a: []DatabaseAddress{{Address: "a", Expires: 10}},
b: []DatabaseAddress{{Address: "a", Expires: 10}},
},
{
a: []DatabaseAddress{{Address: "a", Expires: 10}, {Address: "b", Expires: 10}, {Address: "c", Expires: 10}},
b: []DatabaseAddress{{Address: "a", Expires: 10}, {Address: "b", Expires: 10}, {Address: "c", Expires: 10}},
},
{
a: []DatabaseAddress{{Address: "a", Expires: 5}, {Address: "b", Expires: 15}, {Address: "c", Expires: 5}, {Address: "d", Expires: 15}, {Address: "e", Expires: 5}},
b: []DatabaseAddress{{Address: "d", Expires: 15}, {Address: "b", Expires: 15}}, // gets reordered
},
}
for _, tc := range cases {
res := expire(tc.a, 10)
if fmt.Sprint(res) != fmt.Sprint(tc.b) {
t.Errorf("Incorrect result %v, expected %v", res, tc.b)
}
}
}
type testClock struct {
now time.Time
}
func (t *testClock) wind(d time.Duration) {
t.now = t.now.Add(d)
}
func (t *testClock) Now() time.Time {
return t.now
}

View File

@ -1,32 +0,0 @@
// Copyright (C) 2014-2015 Jakob Borg and Contributors (see the CONTRIBUTORS file).
package main
import (
"database/sql"
"fmt"
)
type setupFunc func(db *sql.DB) error
type compileFunc func(db *sql.DB) (map[string]*sql.Stmt, error)
var (
setupFuncs = make(map[string]setupFunc)
compileFuncs = make(map[string]compileFunc)
)
func register(name string, setup setupFunc, compile compileFunc) {
setupFuncs[name] = setup
compileFuncs[name] = compile
}
func setup(backend string, db *sql.DB) (map[string]*sql.Stmt, error) {
setup, ok := setupFuncs[backend]
if !ok {
return nil, fmt.Errorf("Unsupported backend")
}
if err := setup(db); err != nil {
return nil, err
}
return compileFuncs[backend](db)
}

View File

@ -1,29 +1,70 @@
// Copyright (C) 2014-2015 Jakob Borg and Contributors (see the CONTRIBUTORS file).
// Copyright (C) 2018 The Syncthing Authors.
//
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this file,
// You can obtain one at https://mozilla.org/MPL/2.0/.
package main
import (
"crypto/tls"
"database/sql"
"flag"
"fmt"
"log"
"net"
"net/http"
"os"
"runtime"
"strconv"
"strings"
"time"
"github.com/prometheus/client_golang/prometheus/promhttp"
"github.com/syncthing/syncthing/lib/protocol"
"github.com/syncthing/syncthing/lib/tlsutil"
"github.com/syndtr/goleveldb/leveldb/opt"
"github.com/thejerf/suture"
)
const (
minNegCache = 60 // seconds
maxNegCache = 3600 // seconds
maxDeviceAge = 7 * 86400 // one week, in seconds
addressExpiryTime = 2 * time.Hour
databaseStatisticsInterval = 5 * time.Minute
// Reannounce-After is set to reannounceAfterSeconds +
// random(reannounzeFuzzSeconds), similar for Retry-After
reannounceAfterSeconds = 3300
reannounzeFuzzSeconds = 300
errorRetryAfterSeconds = 1500
errorRetryFuzzSeconds = 300
// Retry for not found is minSeconds + failures * incSeconds +
// random(fuzz), where failures is the number of consecutive lookups
// with no answer, up to maxSeconds. The fuzz is applied after capping
// to maxSeconds.
notFoundRetryMinSeconds = 60
notFoundRetryMaxSeconds = 3540
notFoundRetryIncSeconds = 10
notFoundRetryFuzzSeconds = 60
// How often (in requests) we serialize the missed counter to database.
notFoundMissesWriteInterval = 10
httpReadTimeout = 5 * time.Second
httpWriteTimeout = 5 * time.Second
httpMaxHeaderBytes = 1 << 10
// Size of the replication outbox channel
replicationOutboxSize = 10000
)
// These options make the database a little more optimized for writes, at
// the expense of some memory usage and risk of losing writes in a (system)
// crash.
var levelDBOptions = &opt.Options{
NoSync: true,
WriteBuffer: 32 << 20, // default 4<<20
}
var (
Version string
BuildStamp string
@ -43,17 +84,7 @@ func init() {
}
var (
lruSize = 10240
limitAvg = 5
limitBurst = 20
globalStats stats
statsFile string
backend = "ql"
dsn = getEnvDefault("STDISCOSRV_DB_DSN", "memory://stdiscosrv")
certFile = "cert.pem"
keyFile = "key.pem"
debug = false
useHTTP = false
debug = false
)
func main() {
@ -63,84 +94,112 @@ func main() {
)
var listen string
var dir string
var metricsListen string
var replicationListen string
var replicationPeers string
var certFile string
var keyFile string
var useHTTP bool
log.SetOutput(os.Stdout)
log.SetFlags(0)
flag.StringVar(&certFile, "cert", "./cert.pem", "Certificate file")
flag.StringVar(&dir, "db-dir", "./discovery.db", "Database directory")
flag.BoolVar(&debug, "debug", false, "Print debug output")
flag.BoolVar(&useHTTP, "http", false, "Listen on HTTP (behind an HTTPS proxy)")
flag.StringVar(&listen, "listen", ":8443", "Listen address")
flag.IntVar(&lruSize, "limit-cache", lruSize, "Limiter cache entries")
flag.IntVar(&limitAvg, "limit-avg", limitAvg, "Allowed average package rate, per 10 s")
flag.IntVar(&limitBurst, "limit-burst", limitBurst, "Allowed burst size, packets")
flag.StringVar(&statsFile, "stats-file", statsFile, "File to write periodic operation stats to")
flag.StringVar(&backend, "db-backend", backend, "Database backend to use")
flag.StringVar(&dsn, "db-dsn", dsn, "Database DSN")
flag.StringVar(&certFile, "cert", certFile, "Certificate file")
flag.StringVar(&keyFile, "key", keyFile, "Key file")
flag.BoolVar(&debug, "debug", debug, "Debug")
flag.BoolVar(&useHTTP, "http", useHTTP, "Listen on HTTP (behind an HTTPS proxy)")
flag.StringVar(&keyFile, "key", "./key.pem", "Key file")
flag.StringVar(&metricsListen, "metrics-listen", "", "Metrics listen address")
flag.StringVar(&replicationPeers, "replicate", "", "Replication peers, id@address, comma separated")
flag.StringVar(&replicationListen, "replication-listen", ":19200", "Replication listen address")
flag.Parse()
log.Println(LongVersion)
var cert tls.Certificate
var err error
if !useHTTP {
cert, err = tls.LoadX509KeyPair(certFile, keyFile)
cert, err := tls.LoadX509KeyPair(certFile, keyFile)
if err != nil {
log.Println("Failed to load keypair. Generating one, this might take a while...")
cert, err = tlsutil.NewCertificate(certFile, keyFile, "stdiscosrv", 0)
if err != nil {
log.Println("Failed to load keypair. Generating one, this might take a while...")
cert, err = tlsutil.NewCertificate(certFile, keyFile, "stdiscosrv", 3072)
if err != nil {
log.Fatalln("Failed to generate X509 key pair:", err)
}
log.Fatalln("Failed to generate X509 key pair:", err)
}
devID := protocol.NewDeviceID(cert.Certificate[0])
log.Println("Server device ID is", devID)
}
db, err := sql.Open(backend, dsn)
if err != nil {
log.Fatalln("sql.Open:", err)
}
prep, err := setup(backend, db)
if err != nil {
log.Fatalln("Setup:", err)
devID := protocol.NewDeviceID(cert.Certificate[0])
log.Println("Server device ID is", devID)
// Parse the replication specs, if any.
var allowedReplicationPeers []protocol.DeviceID
var replicationDestinations []string
parts := strings.Split(replicationPeers, ",")
for _, part := range parts {
fields := strings.Split(part, "@")
switch len(fields) {
case 2:
// This is an id@address specification. Grab the address for the
// destination list. Try to resolve it once to catch obvious
// syntax errors here rather than having the sender service fail
// repeatedly later.
_, err := net.ResolveTCPAddr("tcp", fields[1])
if err != nil {
log.Fatalln("Resolving address:", err)
}
replicationDestinations = append(replicationDestinations, fields[1])
fallthrough // N.B.
case 1:
// The first part is always a device ID.
id, err := protocol.DeviceIDFromString(fields[0])
if err != nil {
log.Fatalln("Parsing device ID:", err)
}
allowedReplicationPeers = append(allowedReplicationPeers, id)
default:
log.Fatalln("Unrecognized replication spec:", part)
}
}
// Root of the service tree.
main := suture.NewSimple("main")
main.Add(&querysrv{
addr: listen,
cert: cert,
db: db,
prep: prep,
})
// Start the database.
db, err := newLevelDBStore(dir)
if err != nil {
log.Fatalln("Open database:", err)
}
main.Add(db)
main.Add(&cleansrv{
intv: cleanIntv,
db: db,
prep: prep,
})
// Start any replication senders.
var repl replicationMultiplexer
for _, dst := range replicationDestinations {
rs := newReplicationSender(dst, cert, allowedReplicationPeers)
main.Add(rs)
repl = append(repl, rs)
}
main.Add(&statssrv{
intv: statsIntv,
file: statsFile,
db: db,
})
// If we have replication configured, start the replication listener.
if len(allowedReplicationPeers) > 0 {
rl := newReplicationListener(replicationListen, cert, allowedReplicationPeers, db)
main.Add(rl)
}
globalStats.Reset()
// Start the main API server.
qs := newAPISrv(listen, cert, db, repl, useHTTP)
main.Add(qs)
// If we have a metrics port configured, start a metrics handler.
if metricsListen != "" {
go func() {
mux := http.NewServeMux()
mux.Handle("/metrics", promhttp.Handler())
log.Fatal(http.ListenAndServe(metricsListen, mux))
}()
}
// Engage!
main.Serve()
}
func getEnvDefault(key, def string) string {
if val := os.Getenv(key); val != "" {
return val
}
return def
}
func next(intv time.Duration) time.Duration {
t0 := time.Now()
t1 := t0.Add(intv).Truncate(intv)
return t1.Sub(t0)
}

View File

@ -1,98 +0,0 @@
// Copyright (C) 2014-2015 Jakob Borg and Contributors (see the CONTRIBUTORS file).
package main
import (
"database/sql"
"fmt"
_ "github.com/lib/pq"
)
func init() {
register("postgres", postgresSetup, postgresCompile)
}
func postgresSetup(db *sql.DB) error {
var err error
db.SetMaxIdleConns(4)
db.SetMaxOpenConns(8)
_, err = db.Exec(`CREATE TABLE IF NOT EXISTS Devices (
DeviceID CHAR(63) NOT NULL PRIMARY KEY,
Seen TIMESTAMP NOT NULL
)`)
if err != nil {
return err
}
var tmp string
row := db.QueryRow(`SELECT 'DevicesDeviceIDIndex'::regclass`)
if err = row.Scan(&tmp); err != nil {
_, err = db.Exec(`CREATE INDEX DevicesDeviceIDIndex ON Devices (DeviceID)`)
}
if err != nil {
return err
}
row = db.QueryRow(`SELECT 'DevicesSeenIndex'::regclass`)
if err = row.Scan(&tmp); err != nil {
_, err = db.Exec(`CREATE INDEX DevicesSeenIndex ON Devices (Seen)`)
}
if err != nil {
return err
}
_, err = db.Exec(`CREATE TABLE IF NOT EXISTS Addresses (
DeviceID CHAR(63) NOT NULL,
Seen TIMESTAMP NOT NULL,
Address VARCHAR(2048) NOT NULL
)`)
if err != nil {
return err
}
row = db.QueryRow(`SELECT 'AddressesDeviceIDSeenIndex'::regclass`)
if err = row.Scan(&tmp); err != nil {
_, err = db.Exec(`CREATE INDEX AddressesDeviceIDSeenIndex ON Addresses (DeviceID, Seen)`)
}
if err != nil {
return err
}
row = db.QueryRow(`SELECT 'AddressesDeviceIDAddressIndex'::regclass`)
if err = row.Scan(&tmp); err != nil {
_, err = db.Exec(`CREATE INDEX AddressesDeviceIDAddressIndex ON Addresses (DeviceID, Address)`)
}
if err != nil {
return err
}
return nil
}
func postgresCompile(db *sql.DB) (map[string]*sql.Stmt, error) {
stmts := map[string]string{
"cleanAddress": "DELETE FROM Addresses WHERE Seen < now() - '2 hour'::INTERVAL",
"cleanDevice": fmt.Sprintf("DELETE FROM Devices WHERE Seen < now() - '%d hour'::INTERVAL", maxDeviceAge/3600),
"countAddress": "SELECT count(*) FROM Addresses",
"countDevice": "SELECT count(*) FROM Devices",
"insertAddress": "INSERT INTO Addresses (DeviceID, Seen, Address) VALUES ($1, now(), $2)",
"insertDevice": "INSERT INTO Devices (DeviceID, Seen) VALUES ($1, now())",
"selectAddress": "SELECT Address FROM Addresses WHERE DeviceID=$1 AND Seen > now() - '1 hour'::INTERVAL ORDER BY random() LIMIT 16",
"selectDevice": "SELECT Seen FROM Devices WHERE DeviceID=$1",
"updateAddress": "UPDATE Addresses SET Seen=now() WHERE DeviceID=$1 AND Address=$2",
"updateDevice": "UPDATE Devices SET Seen=now() WHERE DeviceID=$1",
}
res := make(map[string]*sql.Stmt, len(stmts))
for key, stmt := range stmts {
prep, err := db.Prepare(stmt)
if err != nil {
return nil, err
}
res[key] = prep
}
return res, nil
}

View File

@ -1,81 +0,0 @@
// Copyright (C) 2015 Audrius Butkevicius and Contributors (see the CONTRIBUTORS file).
package main
import (
"database/sql"
"fmt"
"log"
"github.com/cznic/ql"
)
func init() {
ql.RegisterDriver()
register("ql", qlSetup, qlCompile)
}
func qlSetup(db *sql.DB) (err error) {
tx, err := db.Begin()
if err != nil {
return
}
defer func() {
if err == nil {
err = tx.Commit()
} else {
tx.Rollback()
}
}()
_, err = tx.Exec(`CREATE TABLE IF NOT EXISTS Devices (
DeviceID STRING NOT NULL,
Seen TIME NOT NULL
)`)
if err != nil {
return
}
if _, err = tx.Exec(`CREATE INDEX IF NOT EXISTS DevicesDeviceIDIndex ON Devices (DeviceID)`); err != nil {
return
}
_, err = tx.Exec(`CREATE TABLE IF NOT EXISTS Addresses (
DeviceID STRING NOT NULL,
Seen TIME NOT NULL,
Address STRING NOT NULL,
)`)
if err != nil {
return
}
_, err = tx.Exec(`CREATE INDEX IF NOT EXISTS AddressesDeviceIDAddressIndex ON Addresses (DeviceID, Address)`)
return
}
func qlCompile(db *sql.DB) (map[string]*sql.Stmt, error) {
stmts := map[string]string{
"cleanAddress": `DELETE FROM Addresses WHERE Seen < now() - duration("2h")`,
"cleanDevice": fmt.Sprintf(`DELETE FROM Devices WHERE Seen < now() - duration("%dh")`, maxDeviceAge/3600),
"countAddress": "SELECT count(*) FROM Addresses",
"countDevice": "SELECT count(*) FROM Devices",
"insertAddress": "INSERT INTO Addresses (DeviceID, Seen, Address) VALUES ($1, now(), $2)",
"insertDevice": "INSERT INTO Devices (DeviceID, Seen) VALUES ($1, now())",
"selectAddress": `SELECT Address from Addresses WHERE DeviceID==$1 AND Seen > now() - duration("1h") LIMIT 16`,
"selectDevice": "SELECT Seen FROM Devices WHERE DeviceID==$1",
"updateAddress": "UPDATE Addresses Seen=now() WHERE DeviceID==$1 AND Address==$2",
"updateDevice": "UPDATE Devices Seen=now() WHERE DeviceID==$1",
}
res := make(map[string]*sql.Stmt, len(stmts))
for key, stmt := range stmts {
prep, err := db.Prepare(stmt)
if err != nil {
log.Println("Failed to compile", stmt)
return nil, err
}
res[key] = prep
}
return res, nil
}

View File

@ -1,492 +0,0 @@
// Copyright (C) 2014-2015 Jakob Borg and Contributors (see the CONTRIBUTORS file).
package main
import (
"bytes"
"crypto/tls"
"database/sql"
"encoding/json"
"encoding/pem"
"fmt"
"log"
"math/rand"
"net"
"net/http"
"net/url"
"strconv"
"sync"
"time"
"github.com/golang/groupcache/lru"
"github.com/syncthing/syncthing/lib/protocol"
"golang.org/x/net/context"
"golang.org/x/time/rate"
)
type querysrv struct {
addr string
db *sql.DB
prep map[string]*sql.Stmt
limiter *safeCache
cert tls.Certificate
listener net.Listener
}
type announcement struct {
Seen time.Time `json:"seen"`
Addresses []string `json:"addresses"`
}
type safeCache struct {
*lru.Cache
mut sync.Mutex
}
func (s *safeCache) Get(key string) (val interface{}, ok bool) {
s.mut.Lock()
val, ok = s.Cache.Get(key)
s.mut.Unlock()
return
}
func (s *safeCache) Add(key string, val interface{}) {
s.mut.Lock()
s.Cache.Add(key, val)
s.mut.Unlock()
}
type requestID int64
func (i requestID) String() string {
return fmt.Sprintf("%016x", int64(i))
}
type contextKey int
const idKey contextKey = iota
func negCacheFor(lastSeen time.Time) int {
since := time.Since(lastSeen).Seconds()
if since >= maxDeviceAge {
return maxNegCache
}
if since < 0 {
// That's weird
return minNegCache
}
// Return a value linearly scaled from minNegCache (at zero seconds ago)
// to maxNegCache (at maxDeviceAge seconds ago).
r := since / maxDeviceAge
return int(minNegCache + r*(maxNegCache-minNegCache))
}
func (s *querysrv) Serve() {
s.limiter = &safeCache{
Cache: lru.New(lruSize),
}
if useHTTP {
listener, err := net.Listen("tcp", s.addr)
if err != nil {
log.Println("Listen:", err)
return
}
s.listener = listener
} else {
tlsCfg := &tls.Config{
Certificates: []tls.Certificate{s.cert},
ClientAuth: tls.RequestClientCert,
SessionTicketsDisabled: true,
MinVersion: tls.VersionTLS12,
CipherSuites: []uint16{
tls.TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
tls.TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
tls.TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,
tls.TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,
tls.TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA,
tls.TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA,
},
}
tlsListener, err := tls.Listen("tcp", s.addr, tlsCfg)
if err != nil {
log.Println("Listen:", err)
return
}
s.listener = tlsListener
}
http.HandleFunc("/v2/", s.handler)
http.HandleFunc("/ping", handlePing)
srv := &http.Server{
ReadTimeout: 5 * time.Second,
WriteTimeout: 5 * time.Second,
MaxHeaderBytes: 1 << 10,
}
if err := srv.Serve(s.listener); err != nil {
log.Println("Serve:", err)
}
}
var topCtx = context.Background()
func (s *querysrv) handler(w http.ResponseWriter, req *http.Request) {
reqID := requestID(rand.Int63())
ctx := context.WithValue(topCtx, idKey, reqID)
if debug {
log.Println(reqID, req.Method, req.URL)
}
t0 := time.Now()
defer func() {
diff := time.Since(t0)
var comment string
if diff > time.Second {
comment = "(very slow request)"
} else if diff > 100*time.Millisecond {
comment = "(slow request)"
}
if comment != "" || debug {
log.Println(reqID, req.Method, req.URL, "completed in", diff, comment)
}
}()
var remoteIP net.IP
if useHTTP {
remoteIP = net.ParseIP(req.Header.Get("X-Forwarded-For"))
} else {
addr, err := net.ResolveTCPAddr("tcp", req.RemoteAddr)
if err != nil {
log.Println("remoteAddr:", err)
http.Error(w, "Internal Server Error", http.StatusInternalServerError)
return
}
remoteIP = addr.IP
}
if s.limit(remoteIP) {
if debug {
log.Println(remoteIP, "is limited")
}
w.Header().Set("Retry-After", "60")
http.Error(w, "Too Many Requests", 429)
return
}
switch req.Method {
case "GET":
s.handleGET(ctx, w, req)
case "POST":
s.handlePOST(ctx, remoteIP, w, req)
default:
globalStats.Error()
http.Error(w, "Method Not Allowed", http.StatusMethodNotAllowed)
}
}
func (s *querysrv) handleGET(ctx context.Context, w http.ResponseWriter, req *http.Request) {
reqID := ctx.Value(idKey).(requestID)
deviceID, err := protocol.DeviceIDFromString(req.URL.Query().Get("device"))
if err != nil {
if debug {
log.Println(reqID, "bad device param")
}
globalStats.Error()
http.Error(w, "Bad Request", http.StatusBadRequest)
return
}
var ann announcement
ann.Seen, err = s.getDeviceSeen(deviceID)
negCache := strconv.Itoa(negCacheFor(ann.Seen))
w.Header().Set("Retry-After", negCache)
w.Header().Set("Cache-Control", "public, max-age="+negCache)
if err != nil {
// The device is not in the database.
globalStats.Query()
http.Error(w, "Not Found", http.StatusNotFound)
return
}
t0 := time.Now()
ann.Addresses, err = s.getAddresses(ctx, deviceID)
if err != nil {
log.Println(reqID, "getAddresses:", err)
globalStats.Error()
http.Error(w, "Internal Server Error", http.StatusInternalServerError)
return
}
if debug {
log.Println(reqID, "getAddresses in", time.Since(t0))
}
globalStats.Query()
if len(ann.Addresses) == 0 {
http.Error(w, "Not Found", http.StatusNotFound)
return
}
globalStats.Answer()
w.Header().Set("Content-Type", "application/json")
json.NewEncoder(w).Encode(ann)
}
func (s *querysrv) handlePOST(ctx context.Context, remoteIP net.IP, w http.ResponseWriter, req *http.Request) {
reqID := ctx.Value(idKey).(requestID)
rawCert := certificateBytes(req)
if rawCert == nil {
if debug {
log.Println(reqID, "no certificates")
}
globalStats.Error()
http.Error(w, "Forbidden", http.StatusForbidden)
return
}
var ann announcement
if err := json.NewDecoder(req.Body).Decode(&ann); err != nil {
if debug {
log.Println(reqID, "decode:", err)
}
globalStats.Error()
http.Error(w, "Bad Request", http.StatusBadRequest)
return
}
deviceID := protocol.NewDeviceID(rawCert)
// handleAnnounce returns *two* errors. The first indicates a problem with
// something the client posted to us. We should return a 400 Bad Request
// and not worry about it. The second indicates that the request was fine,
// but something internal messed up. We should log it and respond with a
// more apologetic 500 Internal Server Error.
userErr, internalErr := s.handleAnnounce(ctx, remoteIP, deviceID, ann.Addresses)
if userErr != nil {
if debug {
log.Println(reqID, "handleAnnounce:", userErr)
}
globalStats.Error()
http.Error(w, "Bad Request", http.StatusBadRequest)
return
}
if internalErr != nil {
log.Println(reqID, "handleAnnounce:", internalErr)
globalStats.Error()
http.Error(w, "Internal Server Error", http.StatusInternalServerError)
return
}
globalStats.Announce()
// TODO: Slowly increase this for stable clients
w.Header().Set("Reannounce-After", "1800")
// We could return the lookup result here, but it's kind of unnecessarily
// expensive to go query the database again so we let the client decide to
// do a lookup if they really care.
w.WriteHeader(http.StatusNoContent)
}
func (s *querysrv) Stop() {
s.listener.Close()
}
func (s *querysrv) handleAnnounce(ctx context.Context, remote net.IP, deviceID protocol.DeviceID, addresses []string) (userErr, internalErr error) {
reqID := ctx.Value(idKey).(requestID)
tx, err := s.db.Begin()
if err != nil {
internalErr = err
return
}
defer func() {
// Since we return from a bunch of different places, we handle
// rollback in the defer.
if internalErr != nil || userErr != nil {
tx.Rollback()
}
}()
for _, annAddr := range addresses {
uri, err := url.Parse(annAddr)
if err != nil {
userErr = err
return
}
host, port, err := net.SplitHostPort(uri.Host)
if err != nil {
userErr = err
return
}
ip := net.ParseIP(host)
if host == "" || ip.IsUnspecified() {
// Do not use IPv6 remote address if requested scheme is tcp4
if uri.Scheme == "tcp4" && remote.To4() == nil {
continue
}
// Do not use IPv4 remote address if requested scheme is tcp6
if uri.Scheme == "tcp6" && remote.To4() != nil {
continue
}
host = remote.String()
}
uri.Host = net.JoinHostPort(host, port)
if err := s.updateAddress(ctx, tx, deviceID, uri.String()); err != nil {
internalErr = err
return
}
}
if err := s.updateDevice(ctx, tx, deviceID); err != nil {
internalErr = err
return
}
t0 := time.Now()
internalErr = tx.Commit()
if debug {
log.Println(reqID, "commit in", time.Since(t0))
}
return
}
func (s *querysrv) limit(remote net.IP) bool {
key := remote.String()
bkt, ok := s.limiter.Get(key)
if ok {
bkt := bkt.(*rate.Limiter)
if !bkt.Allow() {
// Rate limit exceeded; ignore packet
return true
}
} else {
// limitAvg is in packets per ten seconds.
s.limiter.Add(key, rate.NewLimiter(rate.Limit(limitAvg)/10, limitBurst))
}
return false
}
func (s *querysrv) updateDevice(ctx context.Context, tx *sql.Tx, device protocol.DeviceID) error {
reqID := ctx.Value(idKey).(requestID)
t0 := time.Now()
res, err := tx.Stmt(s.prep["updateDevice"]).Exec(device.String())
if err != nil {
return err
}
if debug {
log.Println(reqID, "updateDevice in", time.Since(t0))
}
if rows, _ := res.RowsAffected(); rows == 0 {
t0 = time.Now()
_, err := tx.Stmt(s.prep["insertDevice"]).Exec(device.String())
if err != nil {
return err
}
if debug {
log.Println(reqID, "insertDevice in", time.Since(t0))
}
}
return nil
}
func (s *querysrv) updateAddress(ctx context.Context, tx *sql.Tx, device protocol.DeviceID, uri string) error {
res, err := tx.Stmt(s.prep["updateAddress"]).Exec(device.String(), uri)
if err != nil {
return err
}
if rows, _ := res.RowsAffected(); rows == 0 {
_, err := tx.Stmt(s.prep["insertAddress"]).Exec(device.String(), uri)
if err != nil {
return err
}
}
return nil
}
func (s *querysrv) getAddresses(ctx context.Context, device protocol.DeviceID) ([]string, error) {
rows, err := s.prep["selectAddress"].Query(device.String())
if err != nil {
return nil, err
}
defer rows.Close()
var res []string
for rows.Next() {
var addr string
err := rows.Scan(&addr)
if err != nil {
log.Println("Scan:", err)
continue
}
res = append(res, addr)
}
return res, nil
}
func (s *querysrv) getDeviceSeen(device protocol.DeviceID) (time.Time, error) {
row := s.prep["selectDevice"].QueryRow(device.String())
var seen time.Time
if err := row.Scan(&seen); err != nil {
return time.Time{}, err
}
return seen.In(time.UTC), nil
}
func handlePing(w http.ResponseWriter, r *http.Request) {
w.WriteHeader(204)
}
func certificateBytes(req *http.Request) []byte {
if req.TLS != nil && len(req.TLS.PeerCertificates) > 0 {
return req.TLS.PeerCertificates[0].Raw
}
if hdr := req.Header.Get("X-SSL-Cert"); hdr != "" {
bs := []byte(hdr)
// The certificate is in PEM format but with spaces for newlines. We
// need to reinstate the newlines for the PEM decoder. But we need to
// leave the spaces in the BEGIN and END lines - the first and last
// space - alone.
firstSpace := bytes.Index(bs, []byte(" "))
lastSpace := bytes.LastIndex(bs, []byte(" "))
for i := firstSpace + 1; i < lastSpace; i++ {
if bs[i] == ' ' {
bs[i] = '\n'
}
}
block, _ := pem.Decode(bs)
if block == nil {
// Decoding failed
return nil
}
return block.Bytes
}
return nil
}

View File

@ -0,0 +1,304 @@
// Copyright (C) 2018 The Syncthing Authors.
//
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this file,
// You can obtain one at https://mozilla.org/MPL/2.0/.
package main
import (
"crypto/tls"
"encoding/binary"
"fmt"
io "io"
"log"
"net"
"time"
"github.com/syncthing/syncthing/lib/protocol"
)
type replicator interface {
send(key string, addrs []DatabaseAddress, seen int64)
}
// a replicationSender tries to connect to the remote address and provide
// them with a feed of replication updates.
type replicationSender struct {
dst string
cert tls.Certificate // our certificate
allowedIDs []protocol.DeviceID
outbox chan ReplicationRecord
stop chan struct{}
}
func newReplicationSender(dst string, cert tls.Certificate, allowedIDs []protocol.DeviceID) *replicationSender {
return &replicationSender{
dst: dst,
cert: cert,
allowedIDs: allowedIDs,
outbox: make(chan ReplicationRecord, replicationOutboxSize),
stop: make(chan struct{}),
}
}
func (s *replicationSender) Serve() {
// Sleep a little at startup. Peers often restart at the same time, and
// this avoid the service failing and entering backoff state
// unnecessarily, while also reducing the reconnect rate to something
// reasonable by default.
time.Sleep(2 * time.Second)
tlsCfg := &tls.Config{
Certificates: []tls.Certificate{s.cert},
MinVersion: tls.VersionTLS12,
InsecureSkipVerify: true,
}
// Dial the TLS connection.
conn, err := tls.Dial("tcp", s.dst, tlsCfg)
if err != nil {
log.Println("Replication connect:", err)
return
}
defer func() {
conn.SetWriteDeadline(time.Now().Add(time.Second))
conn.Close()
}()
// Get the other side device ID.
remoteID, err := deviceID(conn)
if err != nil {
log.Println("Replication connect:", err)
return
}
// Verify it's in the set of allowed device IDs.
if !deviceIDIn(remoteID, s.allowedIDs) {
log.Println("Replication connect: unexpected device ID:", remoteID)
return
}
// Send records.
buf := make([]byte, 1024)
for {
select {
case rec := <-s.outbox:
// Buffer must hold record plus four bytes for size
size := rec.Size()
if len(buf) < size+4 {
buf = make([]byte, size+4)
}
// Record comes after the four bytes size
n, err := rec.MarshalTo(buf[4:])
if err != nil {
// odd to get an error here, but we haven't sent anything
// yet so it's not fatal
replicationSendsTotal.WithLabelValues("error").Inc()
log.Println("Replication marshal:", err)
continue
}
binary.BigEndian.PutUint32(buf, uint32(n))
// Send
conn.SetWriteDeadline(time.Now().Add(5 * time.Second))
if _, err := conn.Write(buf[:4+n]); err != nil {
replicationSendsTotal.WithLabelValues("error").Inc()
log.Println("Replication write:", err)
return
}
replicationSendsTotal.WithLabelValues("success").Inc()
case <-s.stop:
return
}
}
}
func (s *replicationSender) Stop() {
close(s.stop)
}
func (s *replicationSender) String() string {
return fmt.Sprintf("replicationSender(%q)", s.dst)
}
func (s *replicationSender) send(key string, ps []DatabaseAddress, seen int64) {
item := ReplicationRecord{
Key: key,
Addresses: ps,
}
// The send should never block. The inbox is suitably buffered for at
// least a few seconds of stalls, which shouldn't happen in practice.
select {
case s.outbox <- item:
default:
replicationSendsTotal.WithLabelValues("drop").Inc()
}
}
// a replicationMultiplexer sends to multiple replicators
type replicationMultiplexer []replicator
func (m replicationMultiplexer) send(key string, ps []DatabaseAddress, seen int64) {
for _, s := range m {
// each send is nonblocking
s.send(key, ps, seen)
}
}
// replicationListener acceptes incoming connections and reads replication
// items from them. Incoming items are applied to the KV store.
type replicationListener struct {
addr string
cert tls.Certificate
allowedIDs []protocol.DeviceID
db database
stop chan struct{}
}
func newReplicationListener(addr string, cert tls.Certificate, allowedIDs []protocol.DeviceID, db database) *replicationListener {
return &replicationListener{
addr: addr,
cert: cert,
allowedIDs: allowedIDs,
db: db,
stop: make(chan struct{}),
}
}
func (l *replicationListener) Serve() {
tlsCfg := &tls.Config{
Certificates: []tls.Certificate{l.cert},
ClientAuth: tls.RequestClientCert,
MinVersion: tls.VersionTLS12,
InsecureSkipVerify: true,
}
lst, err := tls.Listen("tcp", l.addr, tlsCfg)
if err != nil {
log.Println("Replication listen:", err)
return
}
defer lst.Close()
for {
select {
case <-l.stop:
return
default:
}
// Accept a connection
conn, err := lst.Accept()
if err != nil {
log.Println("Replication accept:", err)
return
}
// Figure out the other side device ID
remoteID, err := deviceID(conn.(*tls.Conn))
if err != nil {
log.Println("Replication accept:", err)
conn.SetWriteDeadline(time.Now().Add(time.Second))
conn.Close()
continue
}
// Verify it is in the set of allowed device IDs
if !deviceIDIn(remoteID, l.allowedIDs) {
log.Println("Replication accept: unexpected device ID:", remoteID)
conn.SetWriteDeadline(time.Now().Add(time.Second))
conn.Close()
continue
}
go l.handle(conn)
}
}
func (l *replicationListener) Stop() {
close(l.stop)
}
func (l *replicationListener) String() string {
return fmt.Sprintf("replicationListener(%q)", l.addr)
}
func (l *replicationListener) handle(conn net.Conn) {
defer func() {
conn.SetWriteDeadline(time.Now().Add(time.Second))
conn.Close()
}()
buf := make([]byte, 1024)
for {
select {
case <-l.stop:
return
default:
}
conn.SetReadDeadline(time.Now().Add(time.Minute))
// First four bytes are the size
if _, err := io.ReadFull(conn, buf[:4]); err != nil {
log.Println("Replication read size:", err)
replicationRecvsTotal.WithLabelValues("error").Inc()
return
}
// Read the rest of the record
size := int(binary.BigEndian.Uint32(buf[:4]))
if len(buf) < size {
buf = make([]byte, size)
}
if _, err := io.ReadFull(conn, buf[:size]); err != nil {
log.Println("Replication read record:", err)
replicationRecvsTotal.WithLabelValues("error").Inc()
return
}
// Unmarshal
var rec ReplicationRecord
if err := rec.Unmarshal(buf[:size]); err != nil {
log.Println("Replication unmarshal:", err)
replicationRecvsTotal.WithLabelValues("error").Inc()
continue
}
// Store
l.db.merge(rec.Key, rec.Addresses, rec.Seen)
replicationRecvsTotal.WithLabelValues("success").Inc()
}
}
func deviceID(conn *tls.Conn) (protocol.DeviceID, error) {
// Handshake may not be complete on the server side yet, which we need
// to get the client certificate.
if !conn.ConnectionState().HandshakeComplete {
if err := conn.Handshake(); err != nil {
return protocol.DeviceID{}, err
}
}
// We expect exactly one certificate.
certs := conn.ConnectionState().PeerCertificates
if len(certs) != 1 {
return protocol.DeviceID{}, fmt.Errorf("unexpected number of certificates (%d != 1)", len(certs))
}
return protocol.NewDeviceID(certs[0].Raw), nil
}
func deviceIDIn(id protocol.DeviceID, ids []protocol.DeviceID) bool {
for _, candidate := range ids {
if id == candidate {
return true
}
}
return false
}

View File

@ -1,141 +1,108 @@
// Copyright (C) 2014-2015 Jakob Borg and Contributors (see the CONTRIBUTORS file).
// Copyright (C) 2018 The Syncthing Authors.
//
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this file,
// You can obtain one at https://mozilla.org/MPL/2.0/.
package main
import (
"bytes"
"database/sql"
"fmt"
"io/ioutil"
"log"
"os"
"sync/atomic"
"time"
"github.com/prometheus/client_golang/prometheus"
)
type stats struct {
// Incremented atomically
announces int64
queries int64
answers int64
errors int64
}
func (s *stats) Announce() {
atomic.AddInt64(&s.announces, 1)
}
func (s *stats) Query() {
atomic.AddInt64(&s.queries, 1)
}
func (s *stats) Answer() {
atomic.AddInt64(&s.answers, 1)
}
func (s *stats) Error() {
atomic.AddInt64(&s.errors, 1)
}
// Reset returns a copy of the current stats and resets the counters to
// zero.
func (s *stats) Reset() stats {
// Create a copy of the stats using atomic reads
copy := stats{
announces: atomic.LoadInt64(&s.announces),
queries: atomic.LoadInt64(&s.queries),
answers: atomic.LoadInt64(&s.answers),
errors: atomic.LoadInt64(&s.errors),
}
// Reset the stats by subtracting the values that we copied
atomic.AddInt64(&s.announces, -copy.announces)
atomic.AddInt64(&s.queries, -copy.queries)
atomic.AddInt64(&s.answers, -copy.answers)
atomic.AddInt64(&s.errors, -copy.errors)
return copy
}
type statssrv struct {
intv time.Duration
file string
db *sql.DB
}
func (s *statssrv) Serve() {
lastReset := time.Now()
for {
time.Sleep(next(s.intv))
stats := globalStats.Reset()
d := time.Since(lastReset).Seconds()
lastReset = time.Now()
log.Printf("Stats: %.02f announces/s, %.02f queries/s, %.02f answers/s, %.02f errors/s",
float64(stats.announces)/d, float64(stats.queries)/d, float64(stats.answers)/d, float64(stats.errors)/d)
if s.file != "" {
s.writeToFile(stats, d)
}
}
}
func (s *statssrv) Stop() {
panic("stop unimplemented")
}
func (s *statssrv) writeToFile(stats stats, secs float64) {
newLine := []byte("\n")
var addrs int
row := s.db.QueryRow("SELECT COUNT(*) FROM Addresses")
if err := row.Scan(&addrs); err != nil {
log.Println("stats query:", err)
return
}
fd, err := os.OpenFile(s.file, os.O_RDWR|os.O_CREATE, 0666)
if err != nil {
log.Println("stats file:", err)
return
}
defer func() {
err = fd.Close()
if err != nil {
log.Println("stats file:", err)
}
}()
bs, err := ioutil.ReadAll(fd)
if err != nil {
log.Println("stats file:", err)
return
}
lines := bytes.Split(bytes.TrimSpace(bs), newLine)
if len(lines) > 12 {
lines = lines[len(lines)-12:]
}
latest := fmt.Sprintf("%v: %6d addresses, %8.02f announces/s, %8.02f queries/s, %8.02f answers/s, %8.02f errors/s\n",
time.Now().UTC().Format(time.RFC3339), addrs,
float64(stats.announces)/secs, float64(stats.queries)/secs, float64(stats.answers)/secs, float64(stats.errors)/secs)
lines = append(lines, []byte(latest))
_, err = fd.Seek(0, 0)
if err != nil {
log.Println("stats file:", err)
return
}
err = fd.Truncate(0)
if err != nil {
log.Println("stats file:", err)
return
}
_, err = fd.Write(bytes.Join(lines, newLine))
if err != nil {
log.Println("stats file:", err)
return
}
var (
apiRequestsTotal = prometheus.NewCounterVec(
prometheus.CounterOpts{
Namespace: "syncthing",
Subsystem: "discovery",
Name: "api_requests_total",
Help: "Number of API requests.",
}, []string{"type", "result"})
apiRequestsSeconds = prometheus.NewSummaryVec(
prometheus.SummaryOpts{
Namespace: "syncthing",
Subsystem: "discovery",
Name: "api_requests_seconds",
Help: "Latency of API requests.",
Objectives: map[float64]float64{0.5: 0.05, 0.9: 0.01, 0.99: 0.001},
}, []string{"type"})
lookupRequestsTotal = prometheus.NewCounterVec(
prometheus.CounterOpts{
Namespace: "syncthing",
Subsystem: "discovery",
Name: "lookup_requests_total",
Help: "Number of lookup requests.",
}, []string{"result"})
announceRequestsTotal = prometheus.NewCounterVec(
prometheus.CounterOpts{
Namespace: "syncthing",
Subsystem: "discovery",
Name: "announcement_requests_total",
Help: "Number of announcement requests.",
}, []string{"result"})
replicationSendsTotal = prometheus.NewCounterVec(
prometheus.CounterOpts{
Namespace: "syncthing",
Subsystem: "discovery",
Name: "replication_sends_total",
Help: "Number of replication sends.",
}, []string{"result"})
replicationRecvsTotal = prometheus.NewCounterVec(
prometheus.CounterOpts{
Namespace: "syncthing",
Subsystem: "discovery",
Name: "replication_recvs_total",
Help: "Number of replication receives.",
}, []string{"result"})
databaseKeys = prometheus.NewGaugeVec(
prometheus.GaugeOpts{
Namespace: "syncthing",
Subsystem: "discovery",
Name: "database_keys",
Help: "Number of database keys at last count.",
}, []string{"category"})
databaseStatisticsSeconds = prometheus.NewGauge(
prometheus.GaugeOpts{
Namespace: "syncthing",
Subsystem: "discovery",
Name: "database_statistics_seconds",
Help: "Time spent running the statistics routine.",
})
databaseOperations = prometheus.NewCounterVec(
prometheus.CounterOpts{
Namespace: "syncthing",
Subsystem: "discovery",
Name: "database_operations_total",
Help: "Number of database operations.",
}, []string{"operation", "result"})
databaseOperationSeconds = prometheus.NewSummaryVec(
prometheus.SummaryOpts{
Namespace: "syncthing",
Subsystem: "discovery",
Name: "database_operation_seconds",
Help: "Latency of database operations.",
Objectives: map[float64]float64{0.5: 0.05, 0.9: 0.01, 0.99: 0.001},
}, []string{"operation"})
)
const (
dbOpGet = "get"
dbOpPut = "put"
dbOpMerge = "merge"
dbResSuccess = "success"
dbResNotFound = "not_found"
dbResError = "error"
dbResUnmarshalError = "unmarsh_err"
)
func init() {
prometheus.MustRegister(apiRequestsTotal, apiRequestsSeconds,
lookupRequestsTotal, announceRequestsTotal,
replicationSendsTotal, replicationRecvsTotal,
databaseKeys, databaseStatisticsSeconds,
databaseOperations, databaseOperationSeconds)
}

21
vendor/github.com/BurntSushi/toml/COPYING generated vendored Normal file
View File

@ -0,0 +1,21 @@
The MIT License (MIT)
Copyright (c) 2013 TOML authors
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

View File

@ -0,0 +1,90 @@
// Command toml-test-decoder satisfies the toml-test interface for testing
// TOML decoders. Namely, it accepts TOML on stdin and outputs JSON on stdout.
package main
import (
"encoding/json"
"flag"
"fmt"
"log"
"os"
"path"
"time"
"github.com/BurntSushi/toml"
)
func init() {
log.SetFlags(0)
flag.Usage = usage
flag.Parse()
}
func usage() {
log.Printf("Usage: %s < toml-file\n", path.Base(os.Args[0]))
flag.PrintDefaults()
os.Exit(1)
}
func main() {
if flag.NArg() != 0 {
flag.Usage()
}
var tmp interface{}
if _, err := toml.DecodeReader(os.Stdin, &tmp); err != nil {
log.Fatalf("Error decoding TOML: %s", err)
}
typedTmp := translate(tmp)
if err := json.NewEncoder(os.Stdout).Encode(typedTmp); err != nil {
log.Fatalf("Error encoding JSON: %s", err)
}
}
func translate(tomlData interface{}) interface{} {
switch orig := tomlData.(type) {
case map[string]interface{}:
typed := make(map[string]interface{}, len(orig))
for k, v := range orig {
typed[k] = translate(v)
}
return typed
case []map[string]interface{}:
typed := make([]map[string]interface{}, len(orig))
for i, v := range orig {
typed[i] = translate(v).(map[string]interface{})
}
return typed
case []interface{}:
typed := make([]interface{}, len(orig))
for i, v := range orig {
typed[i] = translate(v)
}
// We don't really need to tag arrays, but let's be future proof.
// (If TOML ever supports tuples, we'll need this.)
return tag("array", typed)
case time.Time:
return tag("datetime", orig.Format("2006-01-02T15:04:05Z"))
case bool:
return tag("bool", fmt.Sprintf("%v", orig))
case int64:
return tag("integer", fmt.Sprintf("%d", orig))
case float64:
return tag("float", fmt.Sprintf("%v", orig))
case string:
return tag("string", orig)
}
panic(fmt.Sprintf("Unknown type: %T", tomlData))
}
func tag(typeName string, data interface{}) map[string]interface{} {
return map[string]interface{}{
"type": typeName,
"value": data,
}
}

View File

@ -0,0 +1,131 @@
// Command toml-test-encoder satisfies the toml-test interface for testing
// TOML encoders. Namely, it accepts JSON on stdin and outputs TOML on stdout.
package main
import (
"encoding/json"
"flag"
"log"
"os"
"path"
"strconv"
"time"
"github.com/BurntSushi/toml"
)
func init() {
log.SetFlags(0)
flag.Usage = usage
flag.Parse()
}
func usage() {
log.Printf("Usage: %s < json-file\n", path.Base(os.Args[0]))
flag.PrintDefaults()
os.Exit(1)
}
func main() {
if flag.NArg() != 0 {
flag.Usage()
}
var tmp interface{}
if err := json.NewDecoder(os.Stdin).Decode(&tmp); err != nil {
log.Fatalf("Error decoding JSON: %s", err)
}
tomlData := translate(tmp)
if err := toml.NewEncoder(os.Stdout).Encode(tomlData); err != nil {
log.Fatalf("Error encoding TOML: %s", err)
}
}
func translate(typedJson interface{}) interface{} {
switch v := typedJson.(type) {
case map[string]interface{}:
if len(v) == 2 && in("type", v) && in("value", v) {
return untag(v)
}
m := make(map[string]interface{}, len(v))
for k, v2 := range v {
m[k] = translate(v2)
}
return m
case []interface{}:
tabArray := make([]map[string]interface{}, len(v))
for i := range v {
if m, ok := translate(v[i]).(map[string]interface{}); ok {
tabArray[i] = m
} else {
log.Fatalf("JSON arrays may only contain objects. This " +
"corresponds to only tables being allowed in " +
"TOML table arrays.")
}
}
return tabArray
}
log.Fatalf("Unrecognized JSON format '%T'.", typedJson)
panic("unreachable")
}
func untag(typed map[string]interface{}) interface{} {
t := typed["type"].(string)
v := typed["value"]
switch t {
case "string":
return v.(string)
case "integer":
v := v.(string)
n, err := strconv.Atoi(v)
if err != nil {
log.Fatalf("Could not parse '%s' as integer: %s", v, err)
}
return n
case "float":
v := v.(string)
f, err := strconv.ParseFloat(v, 64)
if err != nil {
log.Fatalf("Could not parse '%s' as float64: %s", v, err)
}
return f
case "datetime":
v := v.(string)
t, err := time.Parse("2006-01-02T15:04:05Z", v)
if err != nil {
log.Fatalf("Could not parse '%s' as a datetime: %s", v, err)
}
return t
case "bool":
v := v.(string)
switch v {
case "true":
return true
case "false":
return false
}
log.Fatalf("Could not parse '%s' as a boolean.", v)
case "array":
v := v.([]interface{})
array := make([]interface{}, len(v))
for i := range v {
if m, ok := v[i].(map[string]interface{}); ok {
array[i] = untag(m)
} else {
log.Fatalf("Arrays may only contain other arrays or "+
"primitive values, but found a '%T'.", m)
}
}
return array
}
log.Fatalf("Unrecognized tag type '%s'.", t)
panic("unreachable")
}
func in(key string, m map[string]interface{}) bool {
_, ok := m[key]
return ok
}

61
vendor/github.com/BurntSushi/toml/cmd/tomlv/main.go generated vendored Normal file
View File

@ -0,0 +1,61 @@
// Command tomlv validates TOML documents and prints each key's type.
package main
import (
"flag"
"fmt"
"log"
"os"
"path"
"strings"
"text/tabwriter"
"github.com/BurntSushi/toml"
)
var (
flagTypes = false
)
func init() {
log.SetFlags(0)
flag.BoolVar(&flagTypes, "types", flagTypes,
"When set, the types of every defined key will be shown.")
flag.Usage = usage
flag.Parse()
}
func usage() {
log.Printf("Usage: %s toml-file [ toml-file ... ]\n",
path.Base(os.Args[0]))
flag.PrintDefaults()
os.Exit(1)
}
func main() {
if flag.NArg() < 1 {
flag.Usage()
}
for _, f := range flag.Args() {
var tmp interface{}
md, err := toml.DecodeFile(f, &tmp)
if err != nil {
log.Fatalf("Error in '%s': %s", f, err)
}
if flagTypes {
printTypes(md)
}
}
}
func printTypes(md toml.MetaData) {
tabw := tabwriter.NewWriter(os.Stdout, 0, 0, 2, ' ', 0)
for _, key := range md.Keys() {
fmt.Fprintf(tabw, "%s%s\t%s\n",
strings.Repeat(" ", len(key)-1), key, md.Type(key...))
}
tabw.Flush()
}

509
vendor/github.com/BurntSushi/toml/decode.go generated vendored Normal file
View File

@ -0,0 +1,509 @@
package toml
import (
"fmt"
"io"
"io/ioutil"
"math"
"reflect"
"strings"
"time"
)
func e(format string, args ...interface{}) error {
return fmt.Errorf("toml: "+format, args...)
}
// Unmarshaler is the interface implemented by objects that can unmarshal a
// TOML description of themselves.
type Unmarshaler interface {
UnmarshalTOML(interface{}) error
}
// Unmarshal decodes the contents of `p` in TOML format into a pointer `v`.
func Unmarshal(p []byte, v interface{}) error {
_, err := Decode(string(p), v)
return err
}
// Primitive is a TOML value that hasn't been decoded into a Go value.
// When using the various `Decode*` functions, the type `Primitive` may
// be given to any value, and its decoding will be delayed.
//
// A `Primitive` value can be decoded using the `PrimitiveDecode` function.
//
// The underlying representation of a `Primitive` value is subject to change.
// Do not rely on it.
//
// N.B. Primitive values are still parsed, so using them will only avoid
// the overhead of reflection. They can be useful when you don't know the
// exact type of TOML data until run time.
type Primitive struct {
undecoded interface{}
context Key
}
// DEPRECATED!
//
// Use MetaData.PrimitiveDecode instead.
func PrimitiveDecode(primValue Primitive, v interface{}) error {
md := MetaData{decoded: make(map[string]bool)}
return md.unify(primValue.undecoded, rvalue(v))
}
// PrimitiveDecode is just like the other `Decode*` functions, except it
// decodes a TOML value that has already been parsed. Valid primitive values
// can *only* be obtained from values filled by the decoder functions,
// including this method. (i.e., `v` may contain more `Primitive`
// values.)
//
// Meta data for primitive values is included in the meta data returned by
// the `Decode*` functions with one exception: keys returned by the Undecoded
// method will only reflect keys that were decoded. Namely, any keys hidden
// behind a Primitive will be considered undecoded. Executing this method will
// update the undecoded keys in the meta data. (See the example.)
func (md *MetaData) PrimitiveDecode(primValue Primitive, v interface{}) error {
md.context = primValue.context
defer func() { md.context = nil }()
return md.unify(primValue.undecoded, rvalue(v))
}
// Decode will decode the contents of `data` in TOML format into a pointer
// `v`.
//
// TOML hashes correspond to Go structs or maps. (Dealer's choice. They can be
// used interchangeably.)
//
// TOML arrays of tables correspond to either a slice of structs or a slice
// of maps.
//
// TOML datetimes correspond to Go `time.Time` values.
//
// All other TOML types (float, string, int, bool and array) correspond
// to the obvious Go types.
//
// An exception to the above rules is if a type implements the
// encoding.TextUnmarshaler interface. In this case, any primitive TOML value
// (floats, strings, integers, booleans and datetimes) will be converted to
// a byte string and given to the value's UnmarshalText method. See the
// Unmarshaler example for a demonstration with time duration strings.
//
// Key mapping
//
// TOML keys can map to either keys in a Go map or field names in a Go
// struct. The special `toml` struct tag may be used to map TOML keys to
// struct fields that don't match the key name exactly. (See the example.)
// A case insensitive match to struct names will be tried if an exact match
// can't be found.
//
// The mapping between TOML values and Go values is loose. That is, there
// may exist TOML values that cannot be placed into your representation, and
// there may be parts of your representation that do not correspond to
// TOML values. This loose mapping can be made stricter by using the IsDefined
// and/or Undecoded methods on the MetaData returned.
//
// This decoder will not handle cyclic types. If a cyclic type is passed,
// `Decode` will not terminate.
func Decode(data string, v interface{}) (MetaData, error) {
rv := reflect.ValueOf(v)
if rv.Kind() != reflect.Ptr {
return MetaData{}, e("Decode of non-pointer %s", reflect.TypeOf(v))
}
if rv.IsNil() {
return MetaData{}, e("Decode of nil %s", reflect.TypeOf(v))
}
p, err := parse(data)
if err != nil {
return MetaData{}, err
}
md := MetaData{
p.mapping, p.types, p.ordered,
make(map[string]bool, len(p.ordered)), nil,
}
return md, md.unify(p.mapping, indirect(rv))
}
// DecodeFile is just like Decode, except it will automatically read the
// contents of the file at `fpath` and decode it for you.
func DecodeFile(fpath string, v interface{}) (MetaData, error) {
bs, err := ioutil.ReadFile(fpath)
if err != nil {
return MetaData{}, err
}
return Decode(string(bs), v)
}
// DecodeReader is just like Decode, except it will consume all bytes
// from the reader and decode it for you.
func DecodeReader(r io.Reader, v interface{}) (MetaData, error) {
bs, err := ioutil.ReadAll(r)
if err != nil {
return MetaData{}, err
}
return Decode(string(bs), v)
}
// unify performs a sort of type unification based on the structure of `rv`,
// which is the client representation.
//
// Any type mismatch produces an error. Finding a type that we don't know
// how to handle produces an unsupported type error.
func (md *MetaData) unify(data interface{}, rv reflect.Value) error {
// Special case. Look for a `Primitive` value.
if rv.Type() == reflect.TypeOf((*Primitive)(nil)).Elem() {
// Save the undecoded data and the key context into the primitive
// value.
context := make(Key, len(md.context))
copy(context, md.context)
rv.Set(reflect.ValueOf(Primitive{
undecoded: data,
context: context,
}))
return nil
}
// Special case. Unmarshaler Interface support.
if rv.CanAddr() {
if v, ok := rv.Addr().Interface().(Unmarshaler); ok {
return v.UnmarshalTOML(data)
}
}
// Special case. Handle time.Time values specifically.
// TODO: Remove this code when we decide to drop support for Go 1.1.
// This isn't necessary in Go 1.2 because time.Time satisfies the encoding
// interfaces.
if rv.Type().AssignableTo(rvalue(time.Time{}).Type()) {
return md.unifyDatetime(data, rv)
}
// Special case. Look for a value satisfying the TextUnmarshaler interface.
if v, ok := rv.Interface().(TextUnmarshaler); ok {
return md.unifyText(data, v)
}
// BUG(burntsushi)
// The behavior here is incorrect whenever a Go type satisfies the
// encoding.TextUnmarshaler interface but also corresponds to a TOML
// hash or array. In particular, the unmarshaler should only be applied
// to primitive TOML values. But at this point, it will be applied to
// all kinds of values and produce an incorrect error whenever those values
// are hashes or arrays (including arrays of tables).
k := rv.Kind()
// laziness
if k >= reflect.Int && k <= reflect.Uint64 {
return md.unifyInt(data, rv)
}
switch k {
case reflect.Ptr:
elem := reflect.New(rv.Type().Elem())
err := md.unify(data, reflect.Indirect(elem))
if err != nil {
return err
}
rv.Set(elem)
return nil
case reflect.Struct:
return md.unifyStruct(data, rv)
case reflect.Map:
return md.unifyMap(data, rv)
case reflect.Array:
return md.unifyArray(data, rv)
case reflect.Slice:
return md.unifySlice(data, rv)
case reflect.String:
return md.unifyString(data, rv)
case reflect.Bool:
return md.unifyBool(data, rv)
case reflect.Interface:
// we only support empty interfaces.
if rv.NumMethod() > 0 {
return e("unsupported type %s", rv.Type())
}
return md.unifyAnything(data, rv)
case reflect.Float32:
fallthrough
case reflect.Float64:
return md.unifyFloat64(data, rv)
}
return e("unsupported type %s", rv.Kind())
}
func (md *MetaData) unifyStruct(mapping interface{}, rv reflect.Value) error {
tmap, ok := mapping.(map[string]interface{})
if !ok {
if mapping == nil {
return nil
}
return e("type mismatch for %s: expected table but found %T",
rv.Type().String(), mapping)
}
for key, datum := range tmap {
var f *field
fields := cachedTypeFields(rv.Type())
for i := range fields {
ff := &fields[i]
if ff.name == key {
f = ff
break
}
if f == nil && strings.EqualFold(ff.name, key) {
f = ff
}
}
if f != nil {
subv := rv
for _, i := range f.index {
subv = indirect(subv.Field(i))
}
if isUnifiable(subv) {
md.decoded[md.context.add(key).String()] = true
md.context = append(md.context, key)
if err := md.unify(datum, subv); err != nil {
return err
}
md.context = md.context[0 : len(md.context)-1]
} else if f.name != "" {
// Bad user! No soup for you!
return e("cannot write unexported field %s.%s",
rv.Type().String(), f.name)
}
}
}
return nil
}
func (md *MetaData) unifyMap(mapping interface{}, rv reflect.Value) error {
tmap, ok := mapping.(map[string]interface{})
if !ok {
if tmap == nil {
return nil
}
return badtype("map", mapping)
}
if rv.IsNil() {
rv.Set(reflect.MakeMap(rv.Type()))
}
for k, v := range tmap {
md.decoded[md.context.add(k).String()] = true
md.context = append(md.context, k)
rvkey := indirect(reflect.New(rv.Type().Key()))
rvval := reflect.Indirect(reflect.New(rv.Type().Elem()))
if err := md.unify(v, rvval); err != nil {
return err
}
md.context = md.context[0 : len(md.context)-1]
rvkey.SetString(k)
rv.SetMapIndex(rvkey, rvval)
}
return nil
}
func (md *MetaData) unifyArray(data interface{}, rv reflect.Value) error {
datav := reflect.ValueOf(data)
if datav.Kind() != reflect.Slice {
if !datav.IsValid() {
return nil
}
return badtype("slice", data)
}
sliceLen := datav.Len()
if sliceLen != rv.Len() {
return e("expected array length %d; got TOML array of length %d",
rv.Len(), sliceLen)
}
return md.unifySliceArray(datav, rv)
}
func (md *MetaData) unifySlice(data interface{}, rv reflect.Value) error {
datav := reflect.ValueOf(data)
if datav.Kind() != reflect.Slice {
if !datav.IsValid() {
return nil
}
return badtype("slice", data)
}
n := datav.Len()
if rv.IsNil() || rv.Cap() < n {
rv.Set(reflect.MakeSlice(rv.Type(), n, n))
}
rv.SetLen(n)
return md.unifySliceArray(datav, rv)
}
func (md *MetaData) unifySliceArray(data, rv reflect.Value) error {
sliceLen := data.Len()
for i := 0; i < sliceLen; i++ {
v := data.Index(i).Interface()
sliceval := indirect(rv.Index(i))
if err := md.unify(v, sliceval); err != nil {
return err
}
}
return nil
}
func (md *MetaData) unifyDatetime(data interface{}, rv reflect.Value) error {
if _, ok := data.(time.Time); ok {
rv.Set(reflect.ValueOf(data))
return nil
}
return badtype("time.Time", data)
}
func (md *MetaData) unifyString(data interface{}, rv reflect.Value) error {
if s, ok := data.(string); ok {
rv.SetString(s)
return nil
}
return badtype("string", data)
}
func (md *MetaData) unifyFloat64(data interface{}, rv reflect.Value) error {
if num, ok := data.(float64); ok {
switch rv.Kind() {
case reflect.Float32:
fallthrough
case reflect.Float64:
rv.SetFloat(num)
default:
panic("bug")
}
return nil
}
return badtype("float", data)
}
func (md *MetaData) unifyInt(data interface{}, rv reflect.Value) error {
if num, ok := data.(int64); ok {
if rv.Kind() >= reflect.Int && rv.Kind() <= reflect.Int64 {
switch rv.Kind() {
case reflect.Int, reflect.Int64:
// No bounds checking necessary.
case reflect.Int8:
if num < math.MinInt8 || num > math.MaxInt8 {
return e("value %d is out of range for int8", num)
}
case reflect.Int16:
if num < math.MinInt16 || num > math.MaxInt16 {
return e("value %d is out of range for int16", num)
}
case reflect.Int32:
if num < math.MinInt32 || num > math.MaxInt32 {
return e("value %d is out of range for int32", num)
}
}
rv.SetInt(num)
} else if rv.Kind() >= reflect.Uint && rv.Kind() <= reflect.Uint64 {
unum := uint64(num)
switch rv.Kind() {
case reflect.Uint, reflect.Uint64:
// No bounds checking necessary.
case reflect.Uint8:
if num < 0 || unum > math.MaxUint8 {
return e("value %d is out of range for uint8", num)
}
case reflect.Uint16:
if num < 0 || unum > math.MaxUint16 {
return e("value %d is out of range for uint16", num)
}
case reflect.Uint32:
if num < 0 || unum > math.MaxUint32 {
return e("value %d is out of range for uint32", num)
}
}
rv.SetUint(unum)
} else {
panic("unreachable")
}
return nil
}
return badtype("integer", data)
}
func (md *MetaData) unifyBool(data interface{}, rv reflect.Value) error {
if b, ok := data.(bool); ok {
rv.SetBool(b)
return nil
}
return badtype("boolean", data)
}
func (md *MetaData) unifyAnything(data interface{}, rv reflect.Value) error {
rv.Set(reflect.ValueOf(data))
return nil
}
func (md *MetaData) unifyText(data interface{}, v TextUnmarshaler) error {
var s string
switch sdata := data.(type) {
case TextMarshaler:
text, err := sdata.MarshalText()
if err != nil {
return err
}
s = string(text)
case fmt.Stringer:
s = sdata.String()
case string:
s = sdata
case bool:
s = fmt.Sprintf("%v", sdata)
case int64:
s = fmt.Sprintf("%d", sdata)
case float64:
s = fmt.Sprintf("%f", sdata)
default:
return badtype("primitive (string-like)", data)
}
if err := v.UnmarshalText([]byte(s)); err != nil {
return err
}
return nil
}
// rvalue returns a reflect.Value of `v`. All pointers are resolved.
func rvalue(v interface{}) reflect.Value {
return indirect(reflect.ValueOf(v))
}
// indirect returns the value pointed to by a pointer.
// Pointers are followed until the value is not a pointer.
// New values are allocated for each nil pointer.
//
// An exception to this rule is if the value satisfies an interface of
// interest to us (like encoding.TextUnmarshaler).
func indirect(v reflect.Value) reflect.Value {
if v.Kind() != reflect.Ptr {
if v.CanSet() {
pv := v.Addr()
if _, ok := pv.Interface().(TextUnmarshaler); ok {
return pv
}
}
return v
}
if v.IsNil() {
v.Set(reflect.New(v.Type().Elem()))
}
return indirect(reflect.Indirect(v))
}
func isUnifiable(rv reflect.Value) bool {
if rv.CanSet() {
return true
}
if _, ok := rv.Interface().(TextUnmarshaler); ok {
return true
}
return false
}
func badtype(expected string, data interface{}) error {
return e("cannot load TOML value of type %T into a Go %s", data, expected)
}

121
vendor/github.com/BurntSushi/toml/decode_meta.go generated vendored Normal file
View File

@ -0,0 +1,121 @@
package toml
import "strings"
// MetaData allows access to meta information about TOML data that may not
// be inferrable via reflection. In particular, whether a key has been defined
// and the TOML type of a key.
type MetaData struct {
mapping map[string]interface{}
types map[string]tomlType
keys []Key
decoded map[string]bool
context Key // Used only during decoding.
}
// IsDefined returns true if the key given exists in the TOML data. The key
// should be specified hierarchially. e.g.,
//
// // access the TOML key 'a.b.c'
// IsDefined("a", "b", "c")
//
// IsDefined will return false if an empty key given. Keys are case sensitive.
func (md *MetaData) IsDefined(key ...string) bool {
if len(key) == 0 {
return false
}
var hash map[string]interface{}
var ok bool
var hashOrVal interface{} = md.mapping
for _, k := range key {
if hash, ok = hashOrVal.(map[string]interface{}); !ok {
return false
}
if hashOrVal, ok = hash[k]; !ok {
return false
}
}
return true
}
// Type returns a string representation of the type of the key specified.
//
// Type will return the empty string if given an empty key or a key that
// does not exist. Keys are case sensitive.
func (md *MetaData) Type(key ...string) string {
fullkey := strings.Join(key, ".")
if typ, ok := md.types[fullkey]; ok {
return typ.typeString()
}
return ""
}
// Key is the type of any TOML key, including key groups. Use (MetaData).Keys
// to get values of this type.
type Key []string
func (k Key) String() string {
return strings.Join(k, ".")
}
func (k Key) maybeQuotedAll() string {
var ss []string
for i := range k {
ss = append(ss, k.maybeQuoted(i))
}
return strings.Join(ss, ".")
}
func (k Key) maybeQuoted(i int) string {
quote := false
for _, c := range k[i] {
if !isBareKeyChar(c) {
quote = true
break
}
}
if quote {
return "\"" + strings.Replace(k[i], "\"", "\\\"", -1) + "\""
}
return k[i]
}
func (k Key) add(piece string) Key {
newKey := make(Key, len(k)+1)
copy(newKey, k)
newKey[len(k)] = piece
return newKey
}
// Keys returns a slice of every key in the TOML data, including key groups.
// Each key is itself a slice, where the first element is the top of the
// hierarchy and the last is the most specific.
//
// The list will have the same order as the keys appeared in the TOML data.
//
// All keys returned are non-empty.
func (md *MetaData) Keys() []Key {
return md.keys
}
// Undecoded returns all keys that have not been decoded in the order in which
// they appear in the original TOML document.
//
// This includes keys that haven't been decoded because of a Primitive value.
// Once the Primitive value is decoded, the keys will be considered decoded.
//
// Also note that decoding into an empty interface will result in no decoding,
// and so no keys will be considered decoded.
//
// In this sense, the Undecoded keys correspond to keys in the TOML document
// that do not have a concrete type in your representation.
func (md *MetaData) Undecoded() []Key {
undecoded := make([]Key, 0, len(md.keys))
for _, key := range md.keys {
if !md.decoded[key.String()] {
undecoded = append(undecoded, key)
}
}
return undecoded
}

27
vendor/github.com/BurntSushi/toml/doc.go generated vendored Normal file
View File

@ -0,0 +1,27 @@
/*
Package toml provides facilities for decoding and encoding TOML configuration
files via reflection. There is also support for delaying decoding with
the Primitive type, and querying the set of keys in a TOML document with the
MetaData type.
The specification implemented: https://github.com/toml-lang/toml
The sub-command github.com/BurntSushi/toml/cmd/tomlv can be used to verify
whether a file is a valid TOML document. It can also be used to print the
type of each key in a TOML document.
Testing
There are two important types of tests used for this package. The first is
contained inside '*_test.go' files and uses the standard Go unit testing
framework. These tests are primarily devoted to holistically testing the
decoder and encoder.
The second type of testing is used to verify the implementation's adherence
to the TOML specification. These tests have been factored into their own
project: https://github.com/BurntSushi/toml-test
The reason the tests are in a separate project is so that they can be used by
any implementation of TOML. Namely, it is language agnostic.
*/
package toml

568
vendor/github.com/BurntSushi/toml/encode.go generated vendored Normal file
View File

@ -0,0 +1,568 @@
package toml
import (
"bufio"
"errors"
"fmt"
"io"
"reflect"
"sort"
"strconv"
"strings"
"time"
)
type tomlEncodeError struct{ error }
var (
errArrayMixedElementTypes = errors.New(
"toml: cannot encode array with mixed element types")
errArrayNilElement = errors.New(
"toml: cannot encode array with nil element")
errNonString = errors.New(
"toml: cannot encode a map with non-string key type")
errAnonNonStruct = errors.New(
"toml: cannot encode an anonymous field that is not a struct")
errArrayNoTable = errors.New(
"toml: TOML array element cannot contain a table")
errNoKey = errors.New(
"toml: top-level values must be Go maps or structs")
errAnything = errors.New("") // used in testing
)
var quotedReplacer = strings.NewReplacer(
"\t", "\\t",
"\n", "\\n",
"\r", "\\r",
"\"", "\\\"",
"\\", "\\\\",
)
// Encoder controls the encoding of Go values to a TOML document to some
// io.Writer.
//
// The indentation level can be controlled with the Indent field.
type Encoder struct {
// A single indentation level. By default it is two spaces.
Indent string
// hasWritten is whether we have written any output to w yet.
hasWritten bool
w *bufio.Writer
}
// NewEncoder returns a TOML encoder that encodes Go values to the io.Writer
// given. By default, a single indentation level is 2 spaces.
func NewEncoder(w io.Writer) *Encoder {
return &Encoder{
w: bufio.NewWriter(w),
Indent: " ",
}
}
// Encode writes a TOML representation of the Go value to the underlying
// io.Writer. If the value given cannot be encoded to a valid TOML document,
// then an error is returned.
//
// The mapping between Go values and TOML values should be precisely the same
// as for the Decode* functions. Similarly, the TextMarshaler interface is
// supported by encoding the resulting bytes as strings. (If you want to write
// arbitrary binary data then you will need to use something like base64 since
// TOML does not have any binary types.)
//
// When encoding TOML hashes (i.e., Go maps or structs), keys without any
// sub-hashes are encoded first.
//
// If a Go map is encoded, then its keys are sorted alphabetically for
// deterministic output. More control over this behavior may be provided if
// there is demand for it.
//
// Encoding Go values without a corresponding TOML representation---like map
// types with non-string keys---will cause an error to be returned. Similarly
// for mixed arrays/slices, arrays/slices with nil elements, embedded
// non-struct types and nested slices containing maps or structs.
// (e.g., [][]map[string]string is not allowed but []map[string]string is OK
// and so is []map[string][]string.)
func (enc *Encoder) Encode(v interface{}) error {
rv := eindirect(reflect.ValueOf(v))
if err := enc.safeEncode(Key([]string{}), rv); err != nil {
return err
}
return enc.w.Flush()
}
func (enc *Encoder) safeEncode(key Key, rv reflect.Value) (err error) {
defer func() {
if r := recover(); r != nil {
if terr, ok := r.(tomlEncodeError); ok {
err = terr.error
return
}
panic(r)
}
}()
enc.encode(key, rv)
return nil
}
func (enc *Encoder) encode(key Key, rv reflect.Value) {
// Special case. Time needs to be in ISO8601 format.
// Special case. If we can marshal the type to text, then we used that.
// Basically, this prevents the encoder for handling these types as
// generic structs (or whatever the underlying type of a TextMarshaler is).
switch rv.Interface().(type) {
case time.Time, TextMarshaler:
enc.keyEqElement(key, rv)
return
}
k := rv.Kind()
switch k {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32,
reflect.Int64,
reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32,
reflect.Uint64,
reflect.Float32, reflect.Float64, reflect.String, reflect.Bool:
enc.keyEqElement(key, rv)
case reflect.Array, reflect.Slice:
if typeEqual(tomlArrayHash, tomlTypeOfGo(rv)) {
enc.eArrayOfTables(key, rv)
} else {
enc.keyEqElement(key, rv)
}
case reflect.Interface:
if rv.IsNil() {
return
}
enc.encode(key, rv.Elem())
case reflect.Map:
if rv.IsNil() {
return
}
enc.eTable(key, rv)
case reflect.Ptr:
if rv.IsNil() {
return
}
enc.encode(key, rv.Elem())
case reflect.Struct:
enc.eTable(key, rv)
default:
panic(e("unsupported type for key '%s': %s", key, k))
}
}
// eElement encodes any value that can be an array element (primitives and
// arrays).
func (enc *Encoder) eElement(rv reflect.Value) {
switch v := rv.Interface().(type) {
case time.Time:
// Special case time.Time as a primitive. Has to come before
// TextMarshaler below because time.Time implements
// encoding.TextMarshaler, but we need to always use UTC.
enc.wf(v.UTC().Format("2006-01-02T15:04:05Z"))
return
case TextMarshaler:
// Special case. Use text marshaler if it's available for this value.
if s, err := v.MarshalText(); err != nil {
encPanic(err)
} else {
enc.writeQuoted(string(s))
}
return
}
switch rv.Kind() {
case reflect.Bool:
enc.wf(strconv.FormatBool(rv.Bool()))
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32,
reflect.Int64:
enc.wf(strconv.FormatInt(rv.Int(), 10))
case reflect.Uint, reflect.Uint8, reflect.Uint16,
reflect.Uint32, reflect.Uint64:
enc.wf(strconv.FormatUint(rv.Uint(), 10))
case reflect.Float32:
enc.wf(floatAddDecimal(strconv.FormatFloat(rv.Float(), 'f', -1, 32)))
case reflect.Float64:
enc.wf(floatAddDecimal(strconv.FormatFloat(rv.Float(), 'f', -1, 64)))
case reflect.Array, reflect.Slice:
enc.eArrayOrSliceElement(rv)
case reflect.Interface:
enc.eElement(rv.Elem())
case reflect.String:
enc.writeQuoted(rv.String())
default:
panic(e("unexpected primitive type: %s", rv.Kind()))
}
}
// By the TOML spec, all floats must have a decimal with at least one
// number on either side.
func floatAddDecimal(fstr string) string {
if !strings.Contains(fstr, ".") {
return fstr + ".0"
}
return fstr
}
func (enc *Encoder) writeQuoted(s string) {
enc.wf("\"%s\"", quotedReplacer.Replace(s))
}
func (enc *Encoder) eArrayOrSliceElement(rv reflect.Value) {
length := rv.Len()
enc.wf("[")
for i := 0; i < length; i++ {
elem := rv.Index(i)
enc.eElement(elem)
if i != length-1 {
enc.wf(", ")
}
}
enc.wf("]")
}
func (enc *Encoder) eArrayOfTables(key Key, rv reflect.Value) {
if len(key) == 0 {
encPanic(errNoKey)
}
for i := 0; i < rv.Len(); i++ {
trv := rv.Index(i)
if isNil(trv) {
continue
}
panicIfInvalidKey(key)
enc.newline()
enc.wf("%s[[%s]]", enc.indentStr(key), key.maybeQuotedAll())
enc.newline()
enc.eMapOrStruct(key, trv)
}
}
func (enc *Encoder) eTable(key Key, rv reflect.Value) {
panicIfInvalidKey(key)
if len(key) == 1 {
// Output an extra newline between top-level tables.
// (The newline isn't written if nothing else has been written though.)
enc.newline()
}
if len(key) > 0 {
enc.wf("%s[%s]", enc.indentStr(key), key.maybeQuotedAll())
enc.newline()
}
enc.eMapOrStruct(key, rv)
}
func (enc *Encoder) eMapOrStruct(key Key, rv reflect.Value) {
switch rv := eindirect(rv); rv.Kind() {
case reflect.Map:
enc.eMap(key, rv)
case reflect.Struct:
enc.eStruct(key, rv)
default:
panic("eTable: unhandled reflect.Value Kind: " + rv.Kind().String())
}
}
func (enc *Encoder) eMap(key Key, rv reflect.Value) {
rt := rv.Type()
if rt.Key().Kind() != reflect.String {
encPanic(errNonString)
}
// Sort keys so that we have deterministic output. And write keys directly
// underneath this key first, before writing sub-structs or sub-maps.
var mapKeysDirect, mapKeysSub []string
for _, mapKey := range rv.MapKeys() {
k := mapKey.String()
if typeIsHash(tomlTypeOfGo(rv.MapIndex(mapKey))) {
mapKeysSub = append(mapKeysSub, k)
} else {
mapKeysDirect = append(mapKeysDirect, k)
}
}
var writeMapKeys = func(mapKeys []string) {
sort.Strings(mapKeys)
for _, mapKey := range mapKeys {
mrv := rv.MapIndex(reflect.ValueOf(mapKey))
if isNil(mrv) {
// Don't write anything for nil fields.
continue
}
enc.encode(key.add(mapKey), mrv)
}
}
writeMapKeys(mapKeysDirect)
writeMapKeys(mapKeysSub)
}
func (enc *Encoder) eStruct(key Key, rv reflect.Value) {
// Write keys for fields directly under this key first, because if we write
// a field that creates a new table, then all keys under it will be in that
// table (not the one we're writing here).
rt := rv.Type()
var fieldsDirect, fieldsSub [][]int
var addFields func(rt reflect.Type, rv reflect.Value, start []int)
addFields = func(rt reflect.Type, rv reflect.Value, start []int) {
for i := 0; i < rt.NumField(); i++ {
f := rt.Field(i)
// skip unexported fields
if f.PkgPath != "" && !f.Anonymous {
continue
}
frv := rv.Field(i)
if f.Anonymous {
t := f.Type
switch t.Kind() {
case reflect.Struct:
// Treat anonymous struct fields with
// tag names as though they are not
// anonymous, like encoding/json does.
if getOptions(f.Tag).name == "" {
addFields(t, frv, f.Index)
continue
}
case reflect.Ptr:
if t.Elem().Kind() == reflect.Struct &&
getOptions(f.Tag).name == "" {
if !frv.IsNil() {
addFields(t.Elem(), frv.Elem(), f.Index)
}
continue
}
// Fall through to the normal field encoding logic below
// for non-struct anonymous fields.
}
}
if typeIsHash(tomlTypeOfGo(frv)) {
fieldsSub = append(fieldsSub, append(start, f.Index...))
} else {
fieldsDirect = append(fieldsDirect, append(start, f.Index...))
}
}
}
addFields(rt, rv, nil)
var writeFields = func(fields [][]int) {
for _, fieldIndex := range fields {
sft := rt.FieldByIndex(fieldIndex)
sf := rv.FieldByIndex(fieldIndex)
if isNil(sf) {
// Don't write anything for nil fields.
continue
}
opts := getOptions(sft.Tag)
if opts.skip {
continue
}
keyName := sft.Name
if opts.name != "" {
keyName = opts.name
}
if opts.omitempty && isEmpty(sf) {
continue
}
if opts.omitzero && isZero(sf) {
continue
}
enc.encode(key.add(keyName), sf)
}
}
writeFields(fieldsDirect)
writeFields(fieldsSub)
}
// tomlTypeName returns the TOML type name of the Go value's type. It is
// used to determine whether the types of array elements are mixed (which is
// forbidden). If the Go value is nil, then it is illegal for it to be an array
// element, and valueIsNil is returned as true.
// Returns the TOML type of a Go value. The type may be `nil`, which means
// no concrete TOML type could be found.
func tomlTypeOfGo(rv reflect.Value) tomlType {
if isNil(rv) || !rv.IsValid() {
return nil
}
switch rv.Kind() {
case reflect.Bool:
return tomlBool
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32,
reflect.Int64,
reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32,
reflect.Uint64:
return tomlInteger
case reflect.Float32, reflect.Float64:
return tomlFloat
case reflect.Array, reflect.Slice:
if typeEqual(tomlHash, tomlArrayType(rv)) {
return tomlArrayHash
}
return tomlArray
case reflect.Ptr, reflect.Interface:
return tomlTypeOfGo(rv.Elem())
case reflect.String:
return tomlString
case reflect.Map:
return tomlHash
case reflect.Struct:
switch rv.Interface().(type) {
case time.Time:
return tomlDatetime
case TextMarshaler:
return tomlString
default:
return tomlHash
}
default:
panic("unexpected reflect.Kind: " + rv.Kind().String())
}
}
// tomlArrayType returns the element type of a TOML array. The type returned
// may be nil if it cannot be determined (e.g., a nil slice or a zero length
// slize). This function may also panic if it finds a type that cannot be
// expressed in TOML (such as nil elements, heterogeneous arrays or directly
// nested arrays of tables).
func tomlArrayType(rv reflect.Value) tomlType {
if isNil(rv) || !rv.IsValid() || rv.Len() == 0 {
return nil
}
firstType := tomlTypeOfGo(rv.Index(0))
if firstType == nil {
encPanic(errArrayNilElement)
}
rvlen := rv.Len()
for i := 1; i < rvlen; i++ {
elem := rv.Index(i)
switch elemType := tomlTypeOfGo(elem); {
case elemType == nil:
encPanic(errArrayNilElement)
case !typeEqual(firstType, elemType):
encPanic(errArrayMixedElementTypes)
}
}
// If we have a nested array, then we must make sure that the nested
// array contains ONLY primitives.
// This checks arbitrarily nested arrays.
if typeEqual(firstType, tomlArray) || typeEqual(firstType, tomlArrayHash) {
nest := tomlArrayType(eindirect(rv.Index(0)))
if typeEqual(nest, tomlHash) || typeEqual(nest, tomlArrayHash) {
encPanic(errArrayNoTable)
}
}
return firstType
}
type tagOptions struct {
skip bool // "-"
name string
omitempty bool
omitzero bool
}
func getOptions(tag reflect.StructTag) tagOptions {
t := tag.Get("toml")
if t == "-" {
return tagOptions{skip: true}
}
var opts tagOptions
parts := strings.Split(t, ",")
opts.name = parts[0]
for _, s := range parts[1:] {
switch s {
case "omitempty":
opts.omitempty = true
case "omitzero":
opts.omitzero = true
}
}
return opts
}
func isZero(rv reflect.Value) bool {
switch rv.Kind() {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return rv.Int() == 0
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64:
return rv.Uint() == 0
case reflect.Float32, reflect.Float64:
return rv.Float() == 0.0
}
return false
}
func isEmpty(rv reflect.Value) bool {
switch rv.Kind() {
case reflect.Array, reflect.Slice, reflect.Map, reflect.String:
return rv.Len() == 0
case reflect.Bool:
return !rv.Bool()
}
return false
}
func (enc *Encoder) newline() {
if enc.hasWritten {
enc.wf("\n")
}
}
func (enc *Encoder) keyEqElement(key Key, val reflect.Value) {
if len(key) == 0 {
encPanic(errNoKey)
}
panicIfInvalidKey(key)
enc.wf("%s%s = ", enc.indentStr(key), key.maybeQuoted(len(key)-1))
enc.eElement(val)
enc.newline()
}
func (enc *Encoder) wf(format string, v ...interface{}) {
if _, err := fmt.Fprintf(enc.w, format, v...); err != nil {
encPanic(err)
}
enc.hasWritten = true
}
func (enc *Encoder) indentStr(key Key) string {
return strings.Repeat(enc.Indent, len(key)-1)
}
func encPanic(err error) {
panic(tomlEncodeError{err})
}
func eindirect(v reflect.Value) reflect.Value {
switch v.Kind() {
case reflect.Ptr, reflect.Interface:
return eindirect(v.Elem())
default:
return v
}
}
func isNil(rv reflect.Value) bool {
switch rv.Kind() {
case reflect.Interface, reflect.Map, reflect.Ptr, reflect.Slice:
return rv.IsNil()
default:
return false
}
}
func panicIfInvalidKey(key Key) {
for _, k := range key {
if len(k) == 0 {
encPanic(e("Key '%s' is not a valid table name. Key names "+
"cannot be empty.", key.maybeQuotedAll()))
}
}
}
func isValidKeyName(s string) bool {
return len(s) != 0
}

19
vendor/github.com/BurntSushi/toml/encoding_types.go generated vendored Normal file
View File

@ -0,0 +1,19 @@
// +build go1.2
package toml
// In order to support Go 1.1, we define our own TextMarshaler and
// TextUnmarshaler types. For Go 1.2+, we just alias them with the
// standard library interfaces.
import (
"encoding"
)
// TextMarshaler is a synonym for encoding.TextMarshaler. It is defined here
// so that Go 1.1 can be supported.
type TextMarshaler encoding.TextMarshaler
// TextUnmarshaler is a synonym for encoding.TextUnmarshaler. It is defined
// here so that Go 1.1 can be supported.
type TextUnmarshaler encoding.TextUnmarshaler

View File

@ -0,0 +1,18 @@
// +build !go1.2
package toml
// These interfaces were introduced in Go 1.2, so we add them manually when
// compiling for Go 1.1.
// TextMarshaler is a synonym for encoding.TextMarshaler. It is defined here
// so that Go 1.1 can be supported.
type TextMarshaler interface {
MarshalText() (text []byte, err error)
}
// TextUnmarshaler is a synonym for encoding.TextUnmarshaler. It is defined
// here so that Go 1.1 can be supported.
type TextUnmarshaler interface {
UnmarshalText(text []byte) error
}

953
vendor/github.com/BurntSushi/toml/lex.go generated vendored Normal file
View File

@ -0,0 +1,953 @@
package toml
import (
"fmt"
"strings"
"unicode"
"unicode/utf8"
)
type itemType int
const (
itemError itemType = iota
itemNIL // used in the parser to indicate no type
itemEOF
itemText
itemString
itemRawString
itemMultilineString
itemRawMultilineString
itemBool
itemInteger
itemFloat
itemDatetime
itemArray // the start of an array
itemArrayEnd
itemTableStart
itemTableEnd
itemArrayTableStart
itemArrayTableEnd
itemKeyStart
itemCommentStart
itemInlineTableStart
itemInlineTableEnd
)
const (
eof = 0
comma = ','
tableStart = '['
tableEnd = ']'
arrayTableStart = '['
arrayTableEnd = ']'
tableSep = '.'
keySep = '='
arrayStart = '['
arrayEnd = ']'
commentStart = '#'
stringStart = '"'
stringEnd = '"'
rawStringStart = '\''
rawStringEnd = '\''
inlineTableStart = '{'
inlineTableEnd = '}'
)
type stateFn func(lx *lexer) stateFn
type lexer struct {
input string
start int
pos int
line int
state stateFn
items chan item
// Allow for backing up up to three runes.
// This is necessary because TOML contains 3-rune tokens (""" and ''').
prevWidths [3]int
nprev int // how many of prevWidths are in use
// If we emit an eof, we can still back up, but it is not OK to call
// next again.
atEOF bool
// A stack of state functions used to maintain context.
// The idea is to reuse parts of the state machine in various places.
// For example, values can appear at the top level or within arbitrarily
// nested arrays. The last state on the stack is used after a value has
// been lexed. Similarly for comments.
stack []stateFn
}
type item struct {
typ itemType
val string
line int
}
func (lx *lexer) nextItem() item {
for {
select {
case item := <-lx.items:
return item
default:
lx.state = lx.state(lx)
}
}
}
func lex(input string) *lexer {
lx := &lexer{
input: input,
state: lexTop,
line: 1,
items: make(chan item, 10),
stack: make([]stateFn, 0, 10),
}
return lx
}
func (lx *lexer) push(state stateFn) {
lx.stack = append(lx.stack, state)
}
func (lx *lexer) pop() stateFn {
if len(lx.stack) == 0 {
return lx.errorf("BUG in lexer: no states to pop")
}
last := lx.stack[len(lx.stack)-1]
lx.stack = lx.stack[0 : len(lx.stack)-1]
return last
}
func (lx *lexer) current() string {
return lx.input[lx.start:lx.pos]
}
func (lx *lexer) emit(typ itemType) {
lx.items <- item{typ, lx.current(), lx.line}
lx.start = lx.pos
}
func (lx *lexer) emitTrim(typ itemType) {
lx.items <- item{typ, strings.TrimSpace(lx.current()), lx.line}
lx.start = lx.pos
}
func (lx *lexer) next() (r rune) {
if lx.atEOF {
panic("next called after EOF")
}
if lx.pos >= len(lx.input) {
lx.atEOF = true
return eof
}
if lx.input[lx.pos] == '\n' {
lx.line++
}
lx.prevWidths[2] = lx.prevWidths[1]
lx.prevWidths[1] = lx.prevWidths[0]
if lx.nprev < 3 {
lx.nprev++
}
r, w := utf8.DecodeRuneInString(lx.input[lx.pos:])
lx.prevWidths[0] = w
lx.pos += w
return r
}
// ignore skips over the pending input before this point.
func (lx *lexer) ignore() {
lx.start = lx.pos
}
// backup steps back one rune. Can be called only twice between calls to next.
func (lx *lexer) backup() {
if lx.atEOF {
lx.atEOF = false
return
}
if lx.nprev < 1 {
panic("backed up too far")
}
w := lx.prevWidths[0]
lx.prevWidths[0] = lx.prevWidths[1]
lx.prevWidths[1] = lx.prevWidths[2]
lx.nprev--
lx.pos -= w
if lx.pos < len(lx.input) && lx.input[lx.pos] == '\n' {
lx.line--
}
}
// accept consumes the next rune if it's equal to `valid`.
func (lx *lexer) accept(valid rune) bool {
if lx.next() == valid {
return true
}
lx.backup()
return false
}
// peek returns but does not consume the next rune in the input.
func (lx *lexer) peek() rune {
r := lx.next()
lx.backup()
return r
}
// skip ignores all input that matches the given predicate.
func (lx *lexer) skip(pred func(rune) bool) {
for {
r := lx.next()
if pred(r) {
continue
}
lx.backup()
lx.ignore()
return
}
}
// errorf stops all lexing by emitting an error and returning `nil`.
// Note that any value that is a character is escaped if it's a special
// character (newlines, tabs, etc.).
func (lx *lexer) errorf(format string, values ...interface{}) stateFn {
lx.items <- item{
itemError,
fmt.Sprintf(format, values...),
lx.line,
}
return nil
}
// lexTop consumes elements at the top level of TOML data.
func lexTop(lx *lexer) stateFn {
r := lx.next()
if isWhitespace(r) || isNL(r) {
return lexSkip(lx, lexTop)
}
switch r {
case commentStart:
lx.push(lexTop)
return lexCommentStart
case tableStart:
return lexTableStart
case eof:
if lx.pos > lx.start {
return lx.errorf("unexpected EOF")
}
lx.emit(itemEOF)
return nil
}
// At this point, the only valid item can be a key, so we back up
// and let the key lexer do the rest.
lx.backup()
lx.push(lexTopEnd)
return lexKeyStart
}
// lexTopEnd is entered whenever a top-level item has been consumed. (A value
// or a table.) It must see only whitespace, and will turn back to lexTop
// upon a newline. If it sees EOF, it will quit the lexer successfully.
func lexTopEnd(lx *lexer) stateFn {
r := lx.next()
switch {
case r == commentStart:
// a comment will read to a newline for us.
lx.push(lexTop)
return lexCommentStart
case isWhitespace(r):
return lexTopEnd
case isNL(r):
lx.ignore()
return lexTop
case r == eof:
lx.emit(itemEOF)
return nil
}
return lx.errorf("expected a top-level item to end with a newline, "+
"comment, or EOF, but got %q instead", r)
}
// lexTable lexes the beginning of a table. Namely, it makes sure that
// it starts with a character other than '.' and ']'.
// It assumes that '[' has already been consumed.
// It also handles the case that this is an item in an array of tables.
// e.g., '[[name]]'.
func lexTableStart(lx *lexer) stateFn {
if lx.peek() == arrayTableStart {
lx.next()
lx.emit(itemArrayTableStart)
lx.push(lexArrayTableEnd)
} else {
lx.emit(itemTableStart)
lx.push(lexTableEnd)
}
return lexTableNameStart
}
func lexTableEnd(lx *lexer) stateFn {
lx.emit(itemTableEnd)
return lexTopEnd
}
func lexArrayTableEnd(lx *lexer) stateFn {
if r := lx.next(); r != arrayTableEnd {
return lx.errorf("expected end of table array name delimiter %q, "+
"but got %q instead", arrayTableEnd, r)
}
lx.emit(itemArrayTableEnd)
return lexTopEnd
}
func lexTableNameStart(lx *lexer) stateFn {
lx.skip(isWhitespace)
switch r := lx.peek(); {
case r == tableEnd || r == eof:
return lx.errorf("unexpected end of table name " +
"(table names cannot be empty)")
case r == tableSep:
return lx.errorf("unexpected table separator " +
"(table names cannot be empty)")
case r == stringStart || r == rawStringStart:
lx.ignore()
lx.push(lexTableNameEnd)
return lexValue // reuse string lexing
default:
return lexBareTableName
}
}
// lexBareTableName lexes the name of a table. It assumes that at least one
// valid character for the table has already been read.
func lexBareTableName(lx *lexer) stateFn {
r := lx.next()
if isBareKeyChar(r) {
return lexBareTableName
}
lx.backup()
lx.emit(itemText)
return lexTableNameEnd
}
// lexTableNameEnd reads the end of a piece of a table name, optionally
// consuming whitespace.
func lexTableNameEnd(lx *lexer) stateFn {
lx.skip(isWhitespace)
switch r := lx.next(); {
case isWhitespace(r):
return lexTableNameEnd
case r == tableSep:
lx.ignore()
return lexTableNameStart
case r == tableEnd:
return lx.pop()
default:
return lx.errorf("expected '.' or ']' to end table name, "+
"but got %q instead", r)
}
}
// lexKeyStart consumes a key name up until the first non-whitespace character.
// lexKeyStart will ignore whitespace.
func lexKeyStart(lx *lexer) stateFn {
r := lx.peek()
switch {
case r == keySep:
return lx.errorf("unexpected key separator %q", keySep)
case isWhitespace(r) || isNL(r):
lx.next()
return lexSkip(lx, lexKeyStart)
case r == stringStart || r == rawStringStart:
lx.ignore()
lx.emit(itemKeyStart)
lx.push(lexKeyEnd)
return lexValue // reuse string lexing
default:
lx.ignore()
lx.emit(itemKeyStart)
return lexBareKey
}
}
// lexBareKey consumes the text of a bare key. Assumes that the first character
// (which is not whitespace) has not yet been consumed.
func lexBareKey(lx *lexer) stateFn {
switch r := lx.next(); {
case isBareKeyChar(r):
return lexBareKey
case isWhitespace(r):
lx.backup()
lx.emit(itemText)
return lexKeyEnd
case r == keySep:
lx.backup()
lx.emit(itemText)
return lexKeyEnd
default:
return lx.errorf("bare keys cannot contain %q", r)
}
}
// lexKeyEnd consumes the end of a key and trims whitespace (up to the key
// separator).
func lexKeyEnd(lx *lexer) stateFn {
switch r := lx.next(); {
case r == keySep:
return lexSkip(lx, lexValue)
case isWhitespace(r):
return lexSkip(lx, lexKeyEnd)
default:
return lx.errorf("expected key separator %q, but got %q instead",
keySep, r)
}
}
// lexValue starts the consumption of a value anywhere a value is expected.
// lexValue will ignore whitespace.
// After a value is lexed, the last state on the next is popped and returned.
func lexValue(lx *lexer) stateFn {
// We allow whitespace to precede a value, but NOT newlines.
// In array syntax, the array states are responsible for ignoring newlines.
r := lx.next()
switch {
case isWhitespace(r):
return lexSkip(lx, lexValue)
case isDigit(r):
lx.backup() // avoid an extra state and use the same as above
return lexNumberOrDateStart
}
switch r {
case arrayStart:
lx.ignore()
lx.emit(itemArray)
return lexArrayValue
case inlineTableStart:
lx.ignore()
lx.emit(itemInlineTableStart)
return lexInlineTableValue
case stringStart:
if lx.accept(stringStart) {
if lx.accept(stringStart) {
lx.ignore() // Ignore """
return lexMultilineString
}
lx.backup()
}
lx.ignore() // ignore the '"'
return lexString
case rawStringStart:
if lx.accept(rawStringStart) {
if lx.accept(rawStringStart) {
lx.ignore() // Ignore """
return lexMultilineRawString
}
lx.backup()
}
lx.ignore() // ignore the "'"
return lexRawString
case '+', '-':
return lexNumberStart
case '.': // special error case, be kind to users
return lx.errorf("floats must start with a digit, not '.'")
}
if unicode.IsLetter(r) {
// Be permissive here; lexBool will give a nice error if the
// user wrote something like
// x = foo
// (i.e. not 'true' or 'false' but is something else word-like.)
lx.backup()
return lexBool
}
return lx.errorf("expected value but found %q instead", r)
}
// lexArrayValue consumes one value in an array. It assumes that '[' or ','
// have already been consumed. All whitespace and newlines are ignored.
func lexArrayValue(lx *lexer) stateFn {
r := lx.next()
switch {
case isWhitespace(r) || isNL(r):
return lexSkip(lx, lexArrayValue)
case r == commentStart:
lx.push(lexArrayValue)
return lexCommentStart
case r == comma:
return lx.errorf("unexpected comma")
case r == arrayEnd:
// NOTE(caleb): The spec isn't clear about whether you can have
// a trailing comma or not, so we'll allow it.
return lexArrayEnd
}
lx.backup()
lx.push(lexArrayValueEnd)
return lexValue
}
// lexArrayValueEnd consumes everything between the end of an array value and
// the next value (or the end of the array): it ignores whitespace and newlines
// and expects either a ',' or a ']'.
func lexArrayValueEnd(lx *lexer) stateFn {
r := lx.next()
switch {
case isWhitespace(r) || isNL(r):
return lexSkip(lx, lexArrayValueEnd)
case r == commentStart:
lx.push(lexArrayValueEnd)
return lexCommentStart
case r == comma:
lx.ignore()
return lexArrayValue // move on to the next value
case r == arrayEnd:
return lexArrayEnd
}
return lx.errorf(
"expected a comma or array terminator %q, but got %q instead",
arrayEnd, r,
)
}
// lexArrayEnd finishes the lexing of an array.
// It assumes that a ']' has just been consumed.
func lexArrayEnd(lx *lexer) stateFn {
lx.ignore()
lx.emit(itemArrayEnd)
return lx.pop()
}
// lexInlineTableValue consumes one key/value pair in an inline table.
// It assumes that '{' or ',' have already been consumed. Whitespace is ignored.
func lexInlineTableValue(lx *lexer) stateFn {
r := lx.next()
switch {
case isWhitespace(r):
return lexSkip(lx, lexInlineTableValue)
case isNL(r):
return lx.errorf("newlines not allowed within inline tables")
case r == commentStart:
lx.push(lexInlineTableValue)
return lexCommentStart
case r == comma:
return lx.errorf("unexpected comma")
case r == inlineTableEnd:
return lexInlineTableEnd
}
lx.backup()
lx.push(lexInlineTableValueEnd)
return lexKeyStart
}
// lexInlineTableValueEnd consumes everything between the end of an inline table
// key/value pair and the next pair (or the end of the table):
// it ignores whitespace and expects either a ',' or a '}'.
func lexInlineTableValueEnd(lx *lexer) stateFn {
r := lx.next()
switch {
case isWhitespace(r):
return lexSkip(lx, lexInlineTableValueEnd)
case isNL(r):
return lx.errorf("newlines not allowed within inline tables")
case r == commentStart:
lx.push(lexInlineTableValueEnd)
return lexCommentStart
case r == comma:
lx.ignore()
return lexInlineTableValue
case r == inlineTableEnd:
return lexInlineTableEnd
}
return lx.errorf("expected a comma or an inline table terminator %q, "+
"but got %q instead", inlineTableEnd, r)
}
// lexInlineTableEnd finishes the lexing of an inline table.
// It assumes that a '}' has just been consumed.
func lexInlineTableEnd(lx *lexer) stateFn {
lx.ignore()
lx.emit(itemInlineTableEnd)
return lx.pop()
}
// lexString consumes the inner contents of a string. It assumes that the
// beginning '"' has already been consumed and ignored.
func lexString(lx *lexer) stateFn {
r := lx.next()
switch {
case r == eof:
return lx.errorf("unexpected EOF")
case isNL(r):
return lx.errorf("strings cannot contain newlines")
case r == '\\':
lx.push(lexString)
return lexStringEscape
case r == stringEnd:
lx.backup()
lx.emit(itemString)
lx.next()
lx.ignore()
return lx.pop()
}
return lexString
}
// lexMultilineString consumes the inner contents of a string. It assumes that
// the beginning '"""' has already been consumed and ignored.
func lexMultilineString(lx *lexer) stateFn {
switch lx.next() {
case eof:
return lx.errorf("unexpected EOF")
case '\\':
return lexMultilineStringEscape
case stringEnd:
if lx.accept(stringEnd) {
if lx.accept(stringEnd) {
lx.backup()
lx.backup()
lx.backup()
lx.emit(itemMultilineString)
lx.next()
lx.next()
lx.next()
lx.ignore()
return lx.pop()
}
lx.backup()
}
}
return lexMultilineString
}
// lexRawString consumes a raw string. Nothing can be escaped in such a string.
// It assumes that the beginning "'" has already been consumed and ignored.
func lexRawString(lx *lexer) stateFn {
r := lx.next()
switch {
case r == eof:
return lx.errorf("unexpected EOF")
case isNL(r):
return lx.errorf("strings cannot contain newlines")
case r == rawStringEnd:
lx.backup()
lx.emit(itemRawString)
lx.next()
lx.ignore()
return lx.pop()
}
return lexRawString
}
// lexMultilineRawString consumes a raw string. Nothing can be escaped in such
// a string. It assumes that the beginning "'''" has already been consumed and
// ignored.
func lexMultilineRawString(lx *lexer) stateFn {
switch lx.next() {
case eof:
return lx.errorf("unexpected EOF")
case rawStringEnd:
if lx.accept(rawStringEnd) {
if lx.accept(rawStringEnd) {
lx.backup()
lx.backup()
lx.backup()
lx.emit(itemRawMultilineString)
lx.next()
lx.next()
lx.next()
lx.ignore()
return lx.pop()
}
lx.backup()
}
}
return lexMultilineRawString
}
// lexMultilineStringEscape consumes an escaped character. It assumes that the
// preceding '\\' has already been consumed.
func lexMultilineStringEscape(lx *lexer) stateFn {
// Handle the special case first:
if isNL(lx.next()) {
return lexMultilineString
}
lx.backup()
lx.push(lexMultilineString)
return lexStringEscape(lx)
}
func lexStringEscape(lx *lexer) stateFn {
r := lx.next()
switch r {
case 'b':
fallthrough
case 't':
fallthrough
case 'n':
fallthrough
case 'f':
fallthrough
case 'r':
fallthrough
case '"':
fallthrough
case '\\':
return lx.pop()
case 'u':
return lexShortUnicodeEscape
case 'U':
return lexLongUnicodeEscape
}
return lx.errorf("invalid escape character %q; only the following "+
"escape characters are allowed: "+
`\b, \t, \n, \f, \r, \", \\, \uXXXX, and \UXXXXXXXX`, r)
}
func lexShortUnicodeEscape(lx *lexer) stateFn {
var r rune
for i := 0; i < 4; i++ {
r = lx.next()
if !isHexadecimal(r) {
return lx.errorf(`expected four hexadecimal digits after '\u', `+
"but got %q instead", lx.current())
}
}
return lx.pop()
}
func lexLongUnicodeEscape(lx *lexer) stateFn {
var r rune
for i := 0; i < 8; i++ {
r = lx.next()
if !isHexadecimal(r) {
return lx.errorf(`expected eight hexadecimal digits after '\U', `+
"but got %q instead", lx.current())
}
}
return lx.pop()
}
// lexNumberOrDateStart consumes either an integer, a float, or datetime.
func lexNumberOrDateStart(lx *lexer) stateFn {
r := lx.next()
if isDigit(r) {
return lexNumberOrDate
}
switch r {
case '_':
return lexNumber
case 'e', 'E':
return lexFloat
case '.':
return lx.errorf("floats must start with a digit, not '.'")
}
return lx.errorf("expected a digit but got %q", r)
}
// lexNumberOrDate consumes either an integer, float or datetime.
func lexNumberOrDate(lx *lexer) stateFn {
r := lx.next()
if isDigit(r) {
return lexNumberOrDate
}
switch r {
case '-':
return lexDatetime
case '_':
return lexNumber
case '.', 'e', 'E':
return lexFloat
}
lx.backup()
lx.emit(itemInteger)
return lx.pop()
}
// lexDatetime consumes a Datetime, to a first approximation.
// The parser validates that it matches one of the accepted formats.
func lexDatetime(lx *lexer) stateFn {
r := lx.next()
if isDigit(r) {
return lexDatetime
}
switch r {
case '-', 'T', ':', '.', 'Z', '+':
return lexDatetime
}
lx.backup()
lx.emit(itemDatetime)
return lx.pop()
}
// lexNumberStart consumes either an integer or a float. It assumes that a sign
// has already been read, but that *no* digits have been consumed.
// lexNumberStart will move to the appropriate integer or float states.
func lexNumberStart(lx *lexer) stateFn {
// We MUST see a digit. Even floats have to start with a digit.
r := lx.next()
if !isDigit(r) {
if r == '.' {
return lx.errorf("floats must start with a digit, not '.'")
}
return lx.errorf("expected a digit but got %q", r)
}
return lexNumber
}
// lexNumber consumes an integer or a float after seeing the first digit.
func lexNumber(lx *lexer) stateFn {
r := lx.next()
if isDigit(r) {
return lexNumber
}
switch r {
case '_':
return lexNumber
case '.', 'e', 'E':
return lexFloat
}
lx.backup()
lx.emit(itemInteger)
return lx.pop()
}
// lexFloat consumes the elements of a float. It allows any sequence of
// float-like characters, so floats emitted by the lexer are only a first
// approximation and must be validated by the parser.
func lexFloat(lx *lexer) stateFn {
r := lx.next()
if isDigit(r) {
return lexFloat
}
switch r {
case '_', '.', '-', '+', 'e', 'E':
return lexFloat
}
lx.backup()
lx.emit(itemFloat)
return lx.pop()
}
// lexBool consumes a bool string: 'true' or 'false.
func lexBool(lx *lexer) stateFn {
var rs []rune
for {
r := lx.next()
if !unicode.IsLetter(r) {
lx.backup()
break
}
rs = append(rs, r)
}
s := string(rs)
switch s {
case "true", "false":
lx.emit(itemBool)
return lx.pop()
}
return lx.errorf("expected value but found %q instead", s)
}
// lexCommentStart begins the lexing of a comment. It will emit
// itemCommentStart and consume no characters, passing control to lexComment.
func lexCommentStart(lx *lexer) stateFn {
lx.ignore()
lx.emit(itemCommentStart)
return lexComment
}
// lexComment lexes an entire comment. It assumes that '#' has been consumed.
// It will consume *up to* the first newline character, and pass control
// back to the last state on the stack.
func lexComment(lx *lexer) stateFn {
r := lx.peek()
if isNL(r) || r == eof {
lx.emit(itemText)
return lx.pop()
}
lx.next()
return lexComment
}
// lexSkip ignores all slurped input and moves on to the next state.
func lexSkip(lx *lexer, nextState stateFn) stateFn {
return func(lx *lexer) stateFn {
lx.ignore()
return nextState
}
}
// isWhitespace returns true if `r` is a whitespace character according
// to the spec.
func isWhitespace(r rune) bool {
return r == '\t' || r == ' '
}
func isNL(r rune) bool {
return r == '\n' || r == '\r'
}
func isDigit(r rune) bool {
return r >= '0' && r <= '9'
}
func isHexadecimal(r rune) bool {
return (r >= '0' && r <= '9') ||
(r >= 'a' && r <= 'f') ||
(r >= 'A' && r <= 'F')
}
func isBareKeyChar(r rune) bool {
return (r >= 'A' && r <= 'Z') ||
(r >= 'a' && r <= 'z') ||
(r >= '0' && r <= '9') ||
r == '_' ||
r == '-'
}
func (itype itemType) String() string {
switch itype {
case itemError:
return "Error"
case itemNIL:
return "NIL"
case itemEOF:
return "EOF"
case itemText:
return "Text"
case itemString, itemRawString, itemMultilineString, itemRawMultilineString:
return "String"
case itemBool:
return "Bool"
case itemInteger:
return "Integer"
case itemFloat:
return "Float"
case itemDatetime:
return "DateTime"
case itemTableStart:
return "TableStart"
case itemTableEnd:
return "TableEnd"
case itemKeyStart:
return "KeyStart"
case itemArray:
return "Array"
case itemArrayEnd:
return "ArrayEnd"
case itemCommentStart:
return "CommentStart"
}
panic(fmt.Sprintf("BUG: Unknown type '%d'.", int(itype)))
}
func (item item) String() string {
return fmt.Sprintf("(%s, %s)", item.typ.String(), item.val)
}

592
vendor/github.com/BurntSushi/toml/parse.go generated vendored Normal file
View File

@ -0,0 +1,592 @@
package toml
import (
"fmt"
"strconv"
"strings"
"time"
"unicode"
"unicode/utf8"
)
type parser struct {
mapping map[string]interface{}
types map[string]tomlType
lx *lexer
// A list of keys in the order that they appear in the TOML data.
ordered []Key
// the full key for the current hash in scope
context Key
// the base key name for everything except hashes
currentKey string
// rough approximation of line number
approxLine int
// A map of 'key.group.names' to whether they were created implicitly.
implicits map[string]bool
}
type parseError string
func (pe parseError) Error() string {
return string(pe)
}
func parse(data string) (p *parser, err error) {
defer func() {
if r := recover(); r != nil {
var ok bool
if err, ok = r.(parseError); ok {
return
}
panic(r)
}
}()
p = &parser{
mapping: make(map[string]interface{}),
types: make(map[string]tomlType),
lx: lex(data),
ordered: make([]Key, 0),
implicits: make(map[string]bool),
}
for {
item := p.next()
if item.typ == itemEOF {
break
}
p.topLevel(item)
}
return p, nil
}
func (p *parser) panicf(format string, v ...interface{}) {
msg := fmt.Sprintf("Near line %d (last key parsed '%s'): %s",
p.approxLine, p.current(), fmt.Sprintf(format, v...))
panic(parseError(msg))
}
func (p *parser) next() item {
it := p.lx.nextItem()
if it.typ == itemError {
p.panicf("%s", it.val)
}
return it
}
func (p *parser) bug(format string, v ...interface{}) {
panic(fmt.Sprintf("BUG: "+format+"\n\n", v...))
}
func (p *parser) expect(typ itemType) item {
it := p.next()
p.assertEqual(typ, it.typ)
return it
}
func (p *parser) assertEqual(expected, got itemType) {
if expected != got {
p.bug("Expected '%s' but got '%s'.", expected, got)
}
}
func (p *parser) topLevel(item item) {
switch item.typ {
case itemCommentStart:
p.approxLine = item.line
p.expect(itemText)
case itemTableStart:
kg := p.next()
p.approxLine = kg.line
var key Key
for ; kg.typ != itemTableEnd && kg.typ != itemEOF; kg = p.next() {
key = append(key, p.keyString(kg))
}
p.assertEqual(itemTableEnd, kg.typ)
p.establishContext(key, false)
p.setType("", tomlHash)
p.ordered = append(p.ordered, key)
case itemArrayTableStart:
kg := p.next()
p.approxLine = kg.line
var key Key
for ; kg.typ != itemArrayTableEnd && kg.typ != itemEOF; kg = p.next() {
key = append(key, p.keyString(kg))
}
p.assertEqual(itemArrayTableEnd, kg.typ)
p.establishContext(key, true)
p.setType("", tomlArrayHash)
p.ordered = append(p.ordered, key)
case itemKeyStart:
kname := p.next()
p.approxLine = kname.line
p.currentKey = p.keyString(kname)
val, typ := p.value(p.next())
p.setValue(p.currentKey, val)
p.setType(p.currentKey, typ)
p.ordered = append(p.ordered, p.context.add(p.currentKey))
p.currentKey = ""
default:
p.bug("Unexpected type at top level: %s", item.typ)
}
}
// Gets a string for a key (or part of a key in a table name).
func (p *parser) keyString(it item) string {
switch it.typ {
case itemText:
return it.val
case itemString, itemMultilineString,
itemRawString, itemRawMultilineString:
s, _ := p.value(it)
return s.(string)
default:
p.bug("Unexpected key type: %s", it.typ)
panic("unreachable")
}
}
// value translates an expected value from the lexer into a Go value wrapped
// as an empty interface.
func (p *parser) value(it item) (interface{}, tomlType) {
switch it.typ {
case itemString:
return p.replaceEscapes(it.val), p.typeOfPrimitive(it)
case itemMultilineString:
trimmed := stripFirstNewline(stripEscapedWhitespace(it.val))
return p.replaceEscapes(trimmed), p.typeOfPrimitive(it)
case itemRawString:
return it.val, p.typeOfPrimitive(it)
case itemRawMultilineString:
return stripFirstNewline(it.val), p.typeOfPrimitive(it)
case itemBool:
switch it.val {
case "true":
return true, p.typeOfPrimitive(it)
case "false":
return false, p.typeOfPrimitive(it)
}
p.bug("Expected boolean value, but got '%s'.", it.val)
case itemInteger:
if !numUnderscoresOK(it.val) {
p.panicf("Invalid integer %q: underscores must be surrounded by digits",
it.val)
}
val := strings.Replace(it.val, "_", "", -1)
num, err := strconv.ParseInt(val, 10, 64)
if err != nil {
// Distinguish integer values. Normally, it'd be a bug if the lexer
// provides an invalid integer, but it's possible that the number is
// out of range of valid values (which the lexer cannot determine).
// So mark the former as a bug but the latter as a legitimate user
// error.
if e, ok := err.(*strconv.NumError); ok &&
e.Err == strconv.ErrRange {
p.panicf("Integer '%s' is out of the range of 64-bit "+
"signed integers.", it.val)
} else {
p.bug("Expected integer value, but got '%s'.", it.val)
}
}
return num, p.typeOfPrimitive(it)
case itemFloat:
parts := strings.FieldsFunc(it.val, func(r rune) bool {
switch r {
case '.', 'e', 'E':
return true
}
return false
})
for _, part := range parts {
if !numUnderscoresOK(part) {
p.panicf("Invalid float %q: underscores must be "+
"surrounded by digits", it.val)
}
}
if !numPeriodsOK(it.val) {
// As a special case, numbers like '123.' or '1.e2',
// which are valid as far as Go/strconv are concerned,
// must be rejected because TOML says that a fractional
// part consists of '.' followed by 1+ digits.
p.panicf("Invalid float %q: '.' must be followed "+
"by one or more digits", it.val)
}
val := strings.Replace(it.val, "_", "", -1)
num, err := strconv.ParseFloat(val, 64)
if err != nil {
if e, ok := err.(*strconv.NumError); ok &&
e.Err == strconv.ErrRange {
p.panicf("Float '%s' is out of the range of 64-bit "+
"IEEE-754 floating-point numbers.", it.val)
} else {
p.panicf("Invalid float value: %q", it.val)
}
}
return num, p.typeOfPrimitive(it)
case itemDatetime:
var t time.Time
var ok bool
var err error
for _, format := range []string{
"2006-01-02T15:04:05Z07:00",
"2006-01-02T15:04:05",
"2006-01-02",
} {
t, err = time.ParseInLocation(format, it.val, time.Local)
if err == nil {
ok = true
break
}
}
if !ok {
p.panicf("Invalid TOML Datetime: %q.", it.val)
}
return t, p.typeOfPrimitive(it)
case itemArray:
array := make([]interface{}, 0)
types := make([]tomlType, 0)
for it = p.next(); it.typ != itemArrayEnd; it = p.next() {
if it.typ == itemCommentStart {
p.expect(itemText)
continue
}
val, typ := p.value(it)
array = append(array, val)
types = append(types, typ)
}
return array, p.typeOfArray(types)
case itemInlineTableStart:
var (
hash = make(map[string]interface{})
outerContext = p.context
outerKey = p.currentKey
)
p.context = append(p.context, p.currentKey)
p.currentKey = ""
for it := p.next(); it.typ != itemInlineTableEnd; it = p.next() {
if it.typ != itemKeyStart {
p.bug("Expected key start but instead found %q, around line %d",
it.val, p.approxLine)
}
if it.typ == itemCommentStart {
p.expect(itemText)
continue
}
// retrieve key
k := p.next()
p.approxLine = k.line
kname := p.keyString(k)
// retrieve value
p.currentKey = kname
val, typ := p.value(p.next())
// make sure we keep metadata up to date
p.setType(kname, typ)
p.ordered = append(p.ordered, p.context.add(p.currentKey))
hash[kname] = val
}
p.context = outerContext
p.currentKey = outerKey
return hash, tomlHash
}
p.bug("Unexpected value type: %s", it.typ)
panic("unreachable")
}
// numUnderscoresOK checks whether each underscore in s is surrounded by
// characters that are not underscores.
func numUnderscoresOK(s string) bool {
accept := false
for _, r := range s {
if r == '_' {
if !accept {
return false
}
accept = false
continue
}
accept = true
}
return accept
}
// numPeriodsOK checks whether every period in s is followed by a digit.
func numPeriodsOK(s string) bool {
period := false
for _, r := range s {
if period && !isDigit(r) {
return false
}
period = r == '.'
}
return !period
}
// establishContext sets the current context of the parser,
// where the context is either a hash or an array of hashes. Which one is
// set depends on the value of the `array` parameter.
//
// Establishing the context also makes sure that the key isn't a duplicate, and
// will create implicit hashes automatically.
func (p *parser) establishContext(key Key, array bool) {
var ok bool
// Always start at the top level and drill down for our context.
hashContext := p.mapping
keyContext := make(Key, 0)
// We only need implicit hashes for key[0:-1]
for _, k := range key[0 : len(key)-1] {
_, ok = hashContext[k]
keyContext = append(keyContext, k)
// No key? Make an implicit hash and move on.
if !ok {
p.addImplicit(keyContext)
hashContext[k] = make(map[string]interface{})
}
// If the hash context is actually an array of tables, then set
// the hash context to the last element in that array.
//
// Otherwise, it better be a table, since this MUST be a key group (by
// virtue of it not being the last element in a key).
switch t := hashContext[k].(type) {
case []map[string]interface{}:
hashContext = t[len(t)-1]
case map[string]interface{}:
hashContext = t
default:
p.panicf("Key '%s' was already created as a hash.", keyContext)
}
}
p.context = keyContext
if array {
// If this is the first element for this array, then allocate a new
// list of tables for it.
k := key[len(key)-1]
if _, ok := hashContext[k]; !ok {
hashContext[k] = make([]map[string]interface{}, 0, 5)
}
// Add a new table. But make sure the key hasn't already been used
// for something else.
if hash, ok := hashContext[k].([]map[string]interface{}); ok {
hashContext[k] = append(hash, make(map[string]interface{}))
} else {
p.panicf("Key '%s' was already created and cannot be used as "+
"an array.", keyContext)
}
} else {
p.setValue(key[len(key)-1], make(map[string]interface{}))
}
p.context = append(p.context, key[len(key)-1])
}
// setValue sets the given key to the given value in the current context.
// It will make sure that the key hasn't already been defined, account for
// implicit key groups.
func (p *parser) setValue(key string, value interface{}) {
var tmpHash interface{}
var ok bool
hash := p.mapping
keyContext := make(Key, 0)
for _, k := range p.context {
keyContext = append(keyContext, k)
if tmpHash, ok = hash[k]; !ok {
p.bug("Context for key '%s' has not been established.", keyContext)
}
switch t := tmpHash.(type) {
case []map[string]interface{}:
// The context is a table of hashes. Pick the most recent table
// defined as the current hash.
hash = t[len(t)-1]
case map[string]interface{}:
hash = t
default:
p.bug("Expected hash to have type 'map[string]interface{}', but "+
"it has '%T' instead.", tmpHash)
}
}
keyContext = append(keyContext, key)
if _, ok := hash[key]; ok {
// Typically, if the given key has already been set, then we have
// to raise an error since duplicate keys are disallowed. However,
// it's possible that a key was previously defined implicitly. In this
// case, it is allowed to be redefined concretely. (See the
// `tests/valid/implicit-and-explicit-after.toml` test in `toml-test`.)
//
// But we have to make sure to stop marking it as an implicit. (So that
// another redefinition provokes an error.)
//
// Note that since it has already been defined (as a hash), we don't
// want to overwrite it. So our business is done.
if p.isImplicit(keyContext) {
p.removeImplicit(keyContext)
return
}
// Otherwise, we have a concrete key trying to override a previous
// key, which is *always* wrong.
p.panicf("Key '%s' has already been defined.", keyContext)
}
hash[key] = value
}
// setType sets the type of a particular value at a given key.
// It should be called immediately AFTER setValue.
//
// Note that if `key` is empty, then the type given will be applied to the
// current context (which is either a table or an array of tables).
func (p *parser) setType(key string, typ tomlType) {
keyContext := make(Key, 0, len(p.context)+1)
for _, k := range p.context {
keyContext = append(keyContext, k)
}
if len(key) > 0 { // allow type setting for hashes
keyContext = append(keyContext, key)
}
p.types[keyContext.String()] = typ
}
// addImplicit sets the given Key as having been created implicitly.
func (p *parser) addImplicit(key Key) {
p.implicits[key.String()] = true
}
// removeImplicit stops tagging the given key as having been implicitly
// created.
func (p *parser) removeImplicit(key Key) {
p.implicits[key.String()] = false
}
// isImplicit returns true if the key group pointed to by the key was created
// implicitly.
func (p *parser) isImplicit(key Key) bool {
return p.implicits[key.String()]
}
// current returns the full key name of the current context.
func (p *parser) current() string {
if len(p.currentKey) == 0 {
return p.context.String()
}
if len(p.context) == 0 {
return p.currentKey
}
return fmt.Sprintf("%s.%s", p.context, p.currentKey)
}
func stripFirstNewline(s string) string {
if len(s) == 0 || s[0] != '\n' {
return s
}
return s[1:]
}
func stripEscapedWhitespace(s string) string {
esc := strings.Split(s, "\\\n")
if len(esc) > 1 {
for i := 1; i < len(esc); i++ {
esc[i] = strings.TrimLeftFunc(esc[i], unicode.IsSpace)
}
}
return strings.Join(esc, "")
}
func (p *parser) replaceEscapes(str string) string {
var replaced []rune
s := []byte(str)
r := 0
for r < len(s) {
if s[r] != '\\' {
c, size := utf8.DecodeRune(s[r:])
r += size
replaced = append(replaced, c)
continue
}
r += 1
if r >= len(s) {
p.bug("Escape sequence at end of string.")
return ""
}
switch s[r] {
default:
p.bug("Expected valid escape code after \\, but got %q.", s[r])
return ""
case 'b':
replaced = append(replaced, rune(0x0008))
r += 1
case 't':
replaced = append(replaced, rune(0x0009))
r += 1
case 'n':
replaced = append(replaced, rune(0x000A))
r += 1
case 'f':
replaced = append(replaced, rune(0x000C))
r += 1
case 'r':
replaced = append(replaced, rune(0x000D))
r += 1
case '"':
replaced = append(replaced, rune(0x0022))
r += 1
case '\\':
replaced = append(replaced, rune(0x005C))
r += 1
case 'u':
// At this point, we know we have a Unicode escape of the form
// `uXXXX` at [r, r+5). (Because the lexer guarantees this
// for us.)
escaped := p.asciiEscapeToUnicode(s[r+1 : r+5])
replaced = append(replaced, escaped)
r += 5
case 'U':
// At this point, we know we have a Unicode escape of the form
// `uXXXX` at [r, r+9). (Because the lexer guarantees this
// for us.)
escaped := p.asciiEscapeToUnicode(s[r+1 : r+9])
replaced = append(replaced, escaped)
r += 9
}
}
return string(replaced)
}
func (p *parser) asciiEscapeToUnicode(bs []byte) rune {
s := string(bs)
hex, err := strconv.ParseUint(strings.ToLower(s), 16, 32)
if err != nil {
p.bug("Could not parse '%s' as a hexadecimal number, but the "+
"lexer claims it's OK: %s", s, err)
}
if !utf8.ValidRune(rune(hex)) {
p.panicf("Escaped character '\\u%s' is not valid UTF-8.", s)
}
return rune(hex)
}
func isStringType(ty itemType) bool {
return ty == itemString || ty == itemMultilineString ||
ty == itemRawString || ty == itemRawMultilineString
}

91
vendor/github.com/BurntSushi/toml/type_check.go generated vendored Normal file
View File

@ -0,0 +1,91 @@
package toml
// tomlType represents any Go type that corresponds to a TOML type.
// While the first draft of the TOML spec has a simplistic type system that
// probably doesn't need this level of sophistication, we seem to be militating
// toward adding real composite types.
type tomlType interface {
typeString() string
}
// typeEqual accepts any two types and returns true if they are equal.
func typeEqual(t1, t2 tomlType) bool {
if t1 == nil || t2 == nil {
return false
}
return t1.typeString() == t2.typeString()
}
func typeIsHash(t tomlType) bool {
return typeEqual(t, tomlHash) || typeEqual(t, tomlArrayHash)
}
type tomlBaseType string
func (btype tomlBaseType) typeString() string {
return string(btype)
}
func (btype tomlBaseType) String() string {
return btype.typeString()
}
var (
tomlInteger tomlBaseType = "Integer"
tomlFloat tomlBaseType = "Float"
tomlDatetime tomlBaseType = "Datetime"
tomlString tomlBaseType = "String"
tomlBool tomlBaseType = "Bool"
tomlArray tomlBaseType = "Array"
tomlHash tomlBaseType = "Hash"
tomlArrayHash tomlBaseType = "ArrayHash"
)
// typeOfPrimitive returns a tomlType of any primitive value in TOML.
// Primitive values are: Integer, Float, Datetime, String and Bool.
//
// Passing a lexer item other than the following will cause a BUG message
// to occur: itemString, itemBool, itemInteger, itemFloat, itemDatetime.
func (p *parser) typeOfPrimitive(lexItem item) tomlType {
switch lexItem.typ {
case itemInteger:
return tomlInteger
case itemFloat:
return tomlFloat
case itemDatetime:
return tomlDatetime
case itemString:
return tomlString
case itemMultilineString:
return tomlString
case itemRawString:
return tomlString
case itemRawMultilineString:
return tomlString
case itemBool:
return tomlBool
}
p.bug("Cannot infer primitive type of lex item '%s'.", lexItem)
panic("unreachable")
}
// typeOfArray returns a tomlType for an array given a list of types of its
// values.
//
// In the current spec, if an array is homogeneous, then its type is always
// "Array". If the array is not homogeneous, an error is generated.
func (p *parser) typeOfArray(types []tomlType) tomlType {
// Empty arrays are cool.
if len(types) == 0 {
return tomlArray
}
theType := types[0]
for _, t := range types[1:] {
if !typeEqual(theType, t) {
p.panicf("Array contains values of type '%s' and '%s', but "+
"arrays must be homogeneous.", theType, t)
}
}
return tomlArray
}

242
vendor/github.com/BurntSushi/toml/type_fields.go generated vendored Normal file
View File

@ -0,0 +1,242 @@
package toml
// Struct field handling is adapted from code in encoding/json:
//
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the Go distribution.
import (
"reflect"
"sort"
"sync"
)
// A field represents a single field found in a struct.
type field struct {
name string // the name of the field (`toml` tag included)
tag bool // whether field has a `toml` tag
index []int // represents the depth of an anonymous field
typ reflect.Type // the type of the field
}
// byName sorts field by name, breaking ties with depth,
// then breaking ties with "name came from toml tag", then
// breaking ties with index sequence.
type byName []field
func (x byName) Len() int { return len(x) }
func (x byName) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
func (x byName) Less(i, j int) bool {
if x[i].name != x[j].name {
return x[i].name < x[j].name
}
if len(x[i].index) != len(x[j].index) {
return len(x[i].index) < len(x[j].index)
}
if x[i].tag != x[j].tag {
return x[i].tag
}
return byIndex(x).Less(i, j)
}
// byIndex sorts field by index sequence.
type byIndex []field
func (x byIndex) Len() int { return len(x) }
func (x byIndex) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
func (x byIndex) Less(i, j int) bool {
for k, xik := range x[i].index {
if k >= len(x[j].index) {
return false
}
if xik != x[j].index[k] {
return xik < x[j].index[k]
}
}
return len(x[i].index) < len(x[j].index)
}
// typeFields returns a list of fields that TOML should recognize for the given
// type. The algorithm is breadth-first search over the set of structs to
// include - the top struct and then any reachable anonymous structs.
func typeFields(t reflect.Type) []field {
// Anonymous fields to explore at the current level and the next.
current := []field{}
next := []field{{typ: t}}
// Count of queued names for current level and the next.
count := map[reflect.Type]int{}
nextCount := map[reflect.Type]int{}
// Types already visited at an earlier level.
visited := map[reflect.Type]bool{}
// Fields found.
var fields []field
for len(next) > 0 {
current, next = next, current[:0]
count, nextCount = nextCount, map[reflect.Type]int{}
for _, f := range current {
if visited[f.typ] {
continue
}
visited[f.typ] = true
// Scan f.typ for fields to include.
for i := 0; i < f.typ.NumField(); i++ {
sf := f.typ.Field(i)
if sf.PkgPath != "" && !sf.Anonymous { // unexported
continue
}
opts := getOptions(sf.Tag)
if opts.skip {
continue
}
index := make([]int, len(f.index)+1)
copy(index, f.index)
index[len(f.index)] = i
ft := sf.Type
if ft.Name() == "" && ft.Kind() == reflect.Ptr {
// Follow pointer.
ft = ft.Elem()
}
// Record found field and index sequence.
if opts.name != "" || !sf.Anonymous || ft.Kind() != reflect.Struct {
tagged := opts.name != ""
name := opts.name
if name == "" {
name = sf.Name
}
fields = append(fields, field{name, tagged, index, ft})
if count[f.typ] > 1 {
// If there were multiple instances, add a second,
// so that the annihilation code will see a duplicate.
// It only cares about the distinction between 1 or 2,
// so don't bother generating any more copies.
fields = append(fields, fields[len(fields)-1])
}
continue
}
// Record new anonymous struct to explore in next round.
nextCount[ft]++
if nextCount[ft] == 1 {
f := field{name: ft.Name(), index: index, typ: ft}
next = append(next, f)
}
}
}
}
sort.Sort(byName(fields))
// Delete all fields that are hidden by the Go rules for embedded fields,
// except that fields with TOML tags are promoted.
// The fields are sorted in primary order of name, secondary order
// of field index length. Loop over names; for each name, delete
// hidden fields by choosing the one dominant field that survives.
out := fields[:0]
for advance, i := 0, 0; i < len(fields); i += advance {
// One iteration per name.
// Find the sequence of fields with the name of this first field.
fi := fields[i]
name := fi.name
for advance = 1; i+advance < len(fields); advance++ {
fj := fields[i+advance]
if fj.name != name {
break
}
}
if advance == 1 { // Only one field with this name
out = append(out, fi)
continue
}
dominant, ok := dominantField(fields[i : i+advance])
if ok {
out = append(out, dominant)
}
}
fields = out
sort.Sort(byIndex(fields))
return fields
}
// dominantField looks through the fields, all of which are known to
// have the same name, to find the single field that dominates the
// others using Go's embedding rules, modified by the presence of
// TOML tags. If there are multiple top-level fields, the boolean
// will be false: This condition is an error in Go and we skip all
// the fields.
func dominantField(fields []field) (field, bool) {
// The fields are sorted in increasing index-length order. The winner
// must therefore be one with the shortest index length. Drop all
// longer entries, which is easy: just truncate the slice.
length := len(fields[0].index)
tagged := -1 // Index of first tagged field.
for i, f := range fields {
if len(f.index) > length {
fields = fields[:i]
break
}
if f.tag {
if tagged >= 0 {
// Multiple tagged fields at the same level: conflict.
// Return no field.
return field{}, false
}
tagged = i
}
}
if tagged >= 0 {
return fields[tagged], true
}
// All remaining fields have the same length. If there's more than one,
// we have a conflict (two fields named "X" at the same level) and we
// return no field.
if len(fields) > 1 {
return field{}, false
}
return fields[0], true
}
var fieldCache struct {
sync.RWMutex
m map[reflect.Type][]field
}
// cachedTypeFields is like typeFields but uses a cache to avoid repeated work.
func cachedTypeFields(t reflect.Type) []field {
fieldCache.RLock()
f := fieldCache.m[t]
fieldCache.RUnlock()
if f != nil {
return f
}
// Compute fields without lock.
// Might duplicate effort but won't hold other computations back.
f = typeFields(t)
if f == nil {
f = []field{}
}
fieldCache.Lock()
if fieldCache.m == nil {
fieldCache.m = map[reflect.Type][]field{}
}
fieldCache.m[t] = f
fieldCache.Unlock()
return f
}

View File

@ -1,5 +1,6 @@
Copyright (c) 2011-2013, 'pq' Contributors
Portions Copyright (C) 2011 Blake Mizerany
The MIT License
Copyright (c) 2015 Ariel Mashraki
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

94
vendor/github.com/a8m/mark/cmd/mark/main.go generated vendored Normal file
View File

@ -0,0 +1,94 @@
// mark command line tool. available at https://github.com/a8m/mark
package main
import (
"bufio"
"flag"
"fmt"
"io"
"os"
"github.com/a8m/mark"
)
var (
input = flag.String("i", "", "")
output = flag.String("o", "", "")
smarty = flag.Bool("smartypants", false, "")
fractions = flag.Bool("fractions", false, "")
)
var usage = `Usage: mark [options...] <input>
Options:
-i Specify file input, otherwise use last argument as input file.
If no input file is specified, read from stdin.
-o Specify file output. If none is specified, write to stdout.
-smartypants Use "smart" typograhic punctuation for things like
quotes and dashes.
-fractions Traslate fraction like to suitable HTML elements
`
func main() {
flag.Usage = func() {
fmt.Fprint(os.Stderr, fmt.Sprintf(usage))
}
flag.Parse()
// read
var reader *bufio.Reader
if *input != "" {
file, err := os.Open(*input)
if err != nil {
usageAndExit(fmt.Sprintf("Error to open file input: %s.", *input))
}
defer file.Close()
reader = bufio.NewReader(file)
} else {
stat, err := os.Stdin.Stat()
if err != nil || (stat.Mode()&os.ModeCharDevice) != 0 {
usageAndExit("")
}
reader = bufio.NewReader(os.Stdin)
}
// collect data
var data string
for {
line, err := reader.ReadString('\n')
if err != nil {
if err == io.EOF {
break
}
usageAndExit("failed to reading input.")
}
data += line
}
// write
var (
err error
file = os.Stdout
)
if *output != "" {
if file, err = os.Create(*output); err != nil {
usageAndExit("error to create the wanted output file.")
}
}
// mark rendering
opts := mark.DefaultOptions()
opts.Smartypants = *smarty
opts.Fractions = *fractions
m := mark.New(data, opts)
if _, err := file.WriteString(m.Render()); err != nil {
usageAndExit(fmt.Sprintf("error writing output to: %s.", file.Name()))
}
}
func usageAndExit(msg string) {
if msg != "" {
fmt.Fprintf(os.Stderr, msg)
fmt.Fprintf(os.Stderr, "\n\n")
}
flag.Usage()
fmt.Fprintf(os.Stderr, "\n")
os.Exit(1)
}

92
vendor/github.com/a8m/mark/grammar.go generated vendored Normal file
View File

@ -0,0 +1,92 @@
package mark
import (
"fmt"
"regexp"
)
// Block Grammar
var (
reHr = regexp.MustCompile(`^(?:(?:\* *){3,}|(?:_ *){3,}|(?:- *){3,}) *(?:\n+|$)`)
reHeading = regexp.MustCompile(`^ *(#{1,6})(?: +#*| +([^\n]*?)|)(?: +#*|) *(?:\n|$)`)
reLHeading = regexp.MustCompile(`^([^\n]+?) *\n {0,3}(=|-){1,} *(?:\n+|$)`)
reBlockQuote = regexp.MustCompile(`^ *>[^\n]*(\n[^\n]+)*\n*`)
reDefLink = regexp.MustCompile(`(?s)^ *\[([^\]]+)\]: *\n? *<?([^\s>]+)>?(?: *\n? *["'(](.+?)['")])? *(?:\n+|$)`)
reSpaceGen = func(i int) *regexp.Regexp {
return regexp.MustCompile(fmt.Sprintf(`(?m)^ {1,%d}`, i))
}
)
var reList = struct {
item, marker, loose *regexp.Regexp
scanLine, scanNewLine func(src string) string
}{
regexp.MustCompile(`^( *)(?:[*+-]|\d{1,9}\.) (.*)(?:\n|)`),
regexp.MustCompile(`^ *([*+-]|\d+\.) +`),
regexp.MustCompile(`(?m)\n\n(.*)`),
regexp.MustCompile(`^(.*)(?:\n|)`).FindString,
regexp.MustCompile(`^\n{1,}`).FindString,
}
var reCodeBlock = struct {
*regexp.Regexp
trim func(src, repl string) string
}{
regexp.MustCompile(`^( {4}[^\n]+(?: *\n)*)+`),
regexp.MustCompile("(?m)^( {0,4})").ReplaceAllLiteralString,
}
var reGfmCode = struct {
*regexp.Regexp
endGen func(end string, i int) *regexp.Regexp
}{
regexp.MustCompile("^( {0,3})([`~]{3,}) *(\\S*)?(?:.*)"),
func(end string, i int) *regexp.Regexp {
return regexp.MustCompile(fmt.Sprintf(`(?s)(.*?)(?:((?m)^ {0,3}%s{%d,} *$)|$)`, end, i))
},
}
var reTable = struct {
item, itemLp *regexp.Regexp
split func(s string, n int) []string
trim func(src, repl string) string
}{
regexp.MustCompile(`^ *(\S.*\|.*)\n *([-:]+ *\|[-| :]*)\n((?:.*\|.*(?:\n|$))*)\n*`),
regexp.MustCompile(`(^ *\|.+)\n( *\| *[-:]+[-| :]*)\n((?: *\|.*(?:\n|$))*)\n*`),
regexp.MustCompile(` *\| *`).Split,
regexp.MustCompile(`^ *\| *| *\| *$`).ReplaceAllString,
}
var reHTML = struct {
CDATA_OPEN, CDATA_CLOSE string
item, comment, tag, span *regexp.Regexp
endTagGen func(tag string) *regexp.Regexp
}{
`![CDATA[`,
"?\\]\\]",
regexp.MustCompile(`^<(\w+|!\[CDATA\[)(?:"[^"]*"|'[^']*'|[^'">])*?>`),
regexp.MustCompile(`(?sm)<!--.*?-->`),
regexp.MustCompile(`^<!--.*?-->|^<\/?\w+(?:"[^"]*"|'[^']*'|[^'">])*?>`),
// TODO: Add all span-tags and move to config.
regexp.MustCompile(`^(a|em|strong|small|s|q|data|time|code|sub|sup|i|b|u|span|br|del|img)$`),
func(tag string) *regexp.Regexp {
return regexp.MustCompile(fmt.Sprintf(`(?s)(.+?)<\/%s> *`, tag))
},
}
// Inline Grammar
var (
reBr = regexp.MustCompile(`^(?: {2,}|\\)\n`)
reLinkText = `(?:\[[^\]]*\]|[^\[\]]|\])*`
reLinkHref = `\s*<?(.*?)>?(?:\s+['"\(](.*?)['"\)])?\s*`
reGfmLink = regexp.MustCompile(`^(https?:\/\/[^\s<]+[^<.,:;"')\]\s])`)
reLink = regexp.MustCompile(fmt.Sprintf(`(?s)^!?\[(%s)\]\(%s\)`, reLinkText, reLinkHref))
reAutoLink = regexp.MustCompile(`^<([^ >]+(@|:\/)[^ >]+)>`)
reRefLink = regexp.MustCompile(`^!?\[((?:\[[^\]]*\]|[^\[\]]|\])*)\](?:\s*\[([^\]]*)\])?`)
reImage = regexp.MustCompile(fmt.Sprintf(`(?s)^!?\[(%s)\]\(%s\)`, reLinkText, reLinkHref))
reCode = regexp.MustCompile("(?s)^`{1,2}\\s*(.*?[^`])\\s*`{1,2}")
reStrike = regexp.MustCompile(`(?s)^~{2}(.+?)~{2}`)
reEmphasise = `(?s)^_{%[1]d}(\S.*?_*)_{%[1]d}|^\*{%[1]d}(\S.*?\**)\*{%[1]d}`
reItalic = regexp.MustCompile(fmt.Sprintf(reEmphasise, 1))
reStrong = regexp.MustCompile(fmt.Sprintf(reEmphasise, 2))
)

568
vendor/github.com/a8m/mark/lexer.go generated vendored Normal file
View File

@ -0,0 +1,568 @@
package mark
import (
"regexp"
"strings"
"unicode/utf8"
)
// type position
type Pos int
// itemType identifies the type of lex items.
type itemType int
// Item represent a token or text string returned from the scanner
type item struct {
typ itemType // The type of this item.
pos Pos // The starting position, in bytes, of this item in the input string.
val string // The value of this item.
}
const eof = -1 // Zero value so closed channel delivers EOF
const (
itemError itemType = iota // Error occurred; value is text of error
itemEOF
itemNewLine
itemHTML
itemHeading
itemLHeading
itemBlockQuote
itemList
itemListItem
itemLooseItem
itemCodeBlock
itemGfmCodeBlock
itemHr
itemTable
itemLpTable
itemTableRow
itemTableCell
itemStrong
itemItalic
itemStrike
itemCode
itemLink
itemDefLink
itemRefLink
itemAutoLink
itemGfmLink
itemImage
itemRefImage
itemText
itemBr
itemPipe
itemIndent
)
// stateFn represents the state of the scanner as a function that returns the next state.
type stateFn func(*lexer) stateFn
// Lexer interface, used to composed it inside the parser
type Lexer interface {
nextItem() item
}
// lexer holds the state of the scanner.
type lexer struct {
input string // the string being scanned
state stateFn // the next lexing function to enter
pos Pos // current position in the input
start Pos // start position of this item
width Pos // width of last rune read from input
lastPos Pos // position of most recent item returned by nextItem
items chan item // channel of scanned items
}
// lex creates a new lexer for the input string.
func lex(input string) *lexer {
l := &lexer{
input: input,
items: make(chan item),
}
go l.run()
return l
}
// lexInline create a new lexer for one phase lexing(inline blocks).
func lexInline(input string) *lexer {
l := &lexer{
input: input,
items: make(chan item),
}
go l.lexInline()
return l
}
// run runs the state machine for the lexer.
func (l *lexer) run() {
for l.state = lexAny; l.state != nil; {
l.state = l.state(l)
}
close(l.items)
}
// next return the next rune in the input
func (l *lexer) next() rune {
if int(l.pos) >= len(l.input) {
l.width = 0
return eof
}
r, w := utf8.DecodeRuneInString(l.input[l.pos:])
l.width = Pos(w)
l.pos += l.width
return r
}
// lexAny scanner is kind of forwarder, it get the current char in the text
// and forward it to the appropriate scanner based on some conditions.
func lexAny(l *lexer) stateFn {
switch r := l.peek(); r {
case '*', '-', '_':
return lexHr
case '+', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9':
return lexList
case '<':
return lexHTML
case '>':
return lexBlockQuote
case '[':
return lexDefLink
case '#':
return lexHeading
case '`', '~':
return lexGfmCode
case ' ':
if reCodeBlock.MatchString(l.input[l.pos:]) {
return lexCode
} else if reGfmCode.MatchString(l.input[l.pos:]) {
return lexGfmCode
}
// Keep moving forward until we get all the indentation size
for ; r == l.peek(); r = l.next() {
}
l.emit(itemIndent)
return lexAny
case '|':
if m := reTable.itemLp.MatchString(l.input[l.pos:]); m {
l.emit(itemLpTable)
return lexTable
}
fallthrough
default:
if m := reTable.item.MatchString(l.input[l.pos:]); m {
l.emit(itemTable)
return lexTable
}
return lexText
}
}
// lexHeading test if the current text position is an heading item.
// is so, it will emit an item and return back to lenAny function
// else, lex it as a simple text value
func lexHeading(l *lexer) stateFn {
if m := reHeading.FindString(l.input[l.pos:]); m != "" {
l.pos += Pos(len(m))
l.emit(itemHeading)
return lexAny
}
return lexText
}
// lexHr test if the current text position is an horizontal rules item.
// is so, it will emit an horizontal rule item and return back to lenAny function
// else, forward it to lexList function
func lexHr(l *lexer) stateFn {
if match := reHr.FindString(l.input[l.pos:]); match != "" {
l.pos += Pos(len(match))
l.emit(itemHr)
return lexAny
}
return lexList
}
// lexGfmCode test if the current text position is start of GFM code-block item.
// if so, it will generate regexp based on the fence type[`~] and it length.
// it scan until the end, and then emit the code-block item and return back to the
// lenAny forwarder.
// else, lex it as a simple inline text.
func lexGfmCode(l *lexer) stateFn {
if match := reGfmCode.FindStringSubmatch(l.input[l.pos:]); len(match) != 0 {
l.pos += Pos(len(match[0]))
fence := match[2]
// Generate Regexp based on fence type[`~] and length
reGfmEnd := reGfmCode.endGen(fence[0:1], len(fence))
infoContainer := reGfmEnd.FindStringSubmatch(l.input[l.pos:])
l.pos += Pos(len(infoContainer[0]))
infoString := infoContainer[1]
// Remove leading and trailing spaces
if indent := len(match[1]); indent > 0 {
reSpace := reSpaceGen(indent)
infoString = reSpace.ReplaceAllString(infoString, "")
}
l.emit(itemGfmCodeBlock, match[0]+infoString)
return lexAny
}
return lexText
}
// lexCode scans code block.
func lexCode(l *lexer) stateFn {
match := reCodeBlock.FindString(l.input[l.pos:])
l.pos += Pos(len(match))
l.emit(itemCodeBlock)
return lexAny
}
// lexText scans until end-of-line(\n)
func lexText(l *lexer) stateFn {
// Drain text before emitting
emit := func(item itemType, pos Pos) {
if l.pos > l.start {
l.emit(itemText)
}
l.pos += pos
l.emit(item)
}
Loop:
for {
switch r := l.peek(); r {
case eof:
emit(itemEOF, Pos(0))
break Loop
case '\n':
// CM 4.4: An indented code block cannot interrupt a paragraph.
if l.pos > l.start && strings.HasPrefix(l.input[l.pos+1:], " ") {
l.next()
continue
}
emit(itemNewLine, l.width)
break Loop
default:
// Test for Setext-style headers
if m := reLHeading.FindString(l.input[l.pos:]); m != "" {
emit(itemLHeading, Pos(len(m)))
break Loop
}
l.next()
}
}
return lexAny
}
// backup steps back one rune. Can only be called once per call of next.
func (l *lexer) backup() {
l.pos -= l.width
}
// peek returns but does not consume the next rune in the input.
func (l *lexer) peek() rune {
r := l.next()
l.backup()
return r
}
// emit passes an item back to the client.
func (l *lexer) emit(t itemType, s ...string) {
if len(s) == 0 {
s = append(s, l.input[l.start:l.pos])
}
l.items <- item{t, l.start, s[0]}
l.start = l.pos
}
// lexItem return the next item token, called by the parser.
func (l *lexer) nextItem() item {
item := <-l.items
l.lastPos = l.pos
return item
}
// One phase lexing(inline reason)
func (l *lexer) lexInline() {
escape := regexp.MustCompile("^\\\\([\\`*{}\\[\\]()#+\\-.!_>~|])")
// Drain text before emitting
emit := func(item itemType, pos int) {
if l.pos > l.start {
l.emit(itemText)
}
l.pos += Pos(pos)
l.emit(item)
}
Loop:
for {
switch r := l.peek(); r {
case eof:
if l.pos > l.start {
l.emit(itemText)
}
break Loop
// backslash escaping
case '\\':
if m := escape.FindStringSubmatch(l.input[l.pos:]); len(m) != 0 {
if l.pos > l.start {
l.emit(itemText)
}
l.pos += Pos(len(m[0]))
l.emit(itemText, m[1])
break
}
fallthrough
case ' ':
if m := reBr.FindString(l.input[l.pos:]); m != "" {
// pos - length of new-line
emit(itemBr, len(m))
break
}
l.next()
case '_', '*', '~', '`':
input := l.input[l.pos:]
// Strong
if m := reStrong.FindString(input); m != "" {
emit(itemStrong, len(m))
break
}
// Italic
if m := reItalic.FindString(input); m != "" {
emit(itemItalic, len(m))
break
}
// Strike
if m := reStrike.FindString(input); m != "" {
emit(itemStrike, len(m))
break
}
// InlineCode
if m := reCode.FindString(input); m != "" {
emit(itemCode, len(m))
break
}
l.next()
// itemLink, itemImage, itemRefLink, itemRefImage
case '[', '!':
input := l.input[l.pos:]
if m := reLink.FindString(input); m != "" {
pos := len(m)
if r == '[' {
emit(itemLink, pos)
} else {
emit(itemImage, pos)
}
break
}
if m := reRefLink.FindString(input); m != "" {
pos := len(m)
if r == '[' {
emit(itemRefLink, pos)
} else {
emit(itemRefImage, pos)
}
break
}
l.next()
// itemAutoLink, htmlBlock
case '<':
if m := reAutoLink.FindString(l.input[l.pos:]); m != "" {
emit(itemAutoLink, len(m))
break
}
if match, res := l.matchHTML(l.input[l.pos:]); match {
emit(itemHTML, len(res))
break
}
l.next()
default:
if m := reGfmLink.FindString(l.input[l.pos:]); m != "" {
emit(itemGfmLink, len(m))
break
}
l.next()
}
}
close(l.items)
}
// lexHTML.
func lexHTML(l *lexer) stateFn {
if match, res := l.matchHTML(l.input[l.pos:]); match {
l.pos += Pos(len(res))
l.emit(itemHTML)
return lexAny
}
return lexText
}
// Test if the given input is match the HTML pattern(blocks only)
func (l *lexer) matchHTML(input string) (bool, string) {
if m := reHTML.comment.FindString(input); m != "" {
return true, m
}
if m := reHTML.item.FindStringSubmatch(input); len(m) != 0 {
el, name := m[0], m[1]
// if name is a span... is a text
if reHTML.span.MatchString(name) {
return false, ""
}
// if it's a self-closed html element, but not a itemAutoLink
if strings.HasSuffix(el, "/>") && !reAutoLink.MatchString(el) {
return true, el
}
if name == reHTML.CDATA_OPEN {
name = reHTML.CDATA_CLOSE
}
reEndTag := reHTML.endTagGen(name)
if m := reEndTag.FindString(input); m != "" {
return true, m
}
}
return false, ""
}
// lexDefLink scans link definition
func lexDefLink(l *lexer) stateFn {
if m := reDefLink.FindString(l.input[l.pos:]); m != "" {
l.pos += Pos(len(m))
l.emit(itemDefLink)
return lexAny
}
return lexText
}
// lexList scans ordered and unordered lists.
func lexList(l *lexer) stateFn {
match, items := l.matchList(l.input[l.pos:])
if !match {
return lexText
}
var space int
var typ itemType
for i, item := range items {
// Emit itemList on the first loop
if i == 0 {
l.emit(itemList, reList.marker.FindStringSubmatch(item)[1])
}
// Initialize each loop
typ = itemListItem
space = len(item)
l.pos += Pos(space)
item = reList.marker.ReplaceAllString(item, "")
// Indented
if strings.Contains(item, "\n ") {
space -= len(item)
reSpace := reSpaceGen(space)
item = reSpace.ReplaceAllString(item, "")
}
// If current is loose
for _, l := range reList.loose.FindAllString(item, -1) {
if len(strings.TrimSpace(l)) > 0 || i != len(items)-1 {
typ = itemLooseItem
break
}
}
// or previous
if typ != itemLooseItem && i > 0 && strings.HasSuffix(items[i-1], "\n\n") {
typ = itemLooseItem
}
l.emit(typ, strings.TrimSpace(item))
}
return lexAny
}
func (l *lexer) matchList(input string) (bool, []string) {
var res []string
reItem := reList.item
if !reItem.MatchString(input) {
return false, res
}
// First item
m := reItem.FindStringSubmatch(input)
item, depth := m[0], len(m[1])
input = input[len(item):]
// Loop over the input
for len(input) > 0 {
// Count new-lines('\n')
if m := reList.scanNewLine(input); m != "" {
item += m
input = input[len(m):]
if len(m) >= 2 || !reItem.MatchString(input) && !strings.HasPrefix(input, " ") {
break
}
}
// DefLink or hr
if reDefLink.MatchString(input) || reHr.MatchString(input) {
break
}
// It's list in the same depth
if m := reItem.FindStringSubmatch(input); len(m) > 0 && len(m[1]) == depth {
if item != "" {
res = append(res, item)
}
item = m[0]
input = input[len(item):]
} else {
m := reList.scanLine(input)
item += m
input = input[len(m):]
}
}
// Drain res
if item != "" {
res = append(res, item)
}
return true, res
}
// Test if the given input match blockquote
func (l *lexer) matchBlockQuote(input string) (bool, string) {
match := reBlockQuote.FindString(input)
if match == "" {
return false, match
}
lines := strings.Split(match, "\n")
for i, line := range lines {
// if line is a link-definition or horizontal role, we cut the match until this point
if reDefLink.MatchString(line) || reHr.MatchString(line) {
match = strings.Join(lines[0:i], "\n")
break
}
}
return true, match
}
// lexBlockQuote
func lexBlockQuote(l *lexer) stateFn {
if match, res := l.matchBlockQuote(l.input[l.pos:]); match {
l.pos += Pos(len(res))
l.emit(itemBlockQuote)
return lexAny
}
return lexText
}
// lexTable
func lexTable(l *lexer) stateFn {
re := reTable.item
if l.peek() == '|' {
re = reTable.itemLp
}
table := re.FindStringSubmatch(l.input[l.pos:])
l.pos += Pos(len(table[0]))
l.start = l.pos
// Ignore the first match, and flat all rows(by splitting \n)
rows := append(table[1:3], strings.Split(table[3], "\n")...)
for _, row := range rows {
if row == "" {
continue
}
l.emit(itemTableRow)
rawCells := reTable.trim(row, "")
cells := reTable.split(rawCells, -1)
// Emit cells in the current row
for _, cell := range cells {
l.emit(itemTableCell, cell)
}
}
return lexAny
}

60
vendor/github.com/a8m/mark/mark.go generated vendored Normal file
View File

@ -0,0 +1,60 @@
package mark
import "strings"
// Mark
type Mark struct {
*parse
Input string
}
// Mark options used to configure your Mark object
// set `Smartypants` and `Fractions` to true to enable
// smartypants and smartfractions rendering.
type Options struct {
Gfm bool
Tables bool
Smartypants bool
Fractions bool
}
// DefaultOptions return an options struct with default configuration
// it's means that only Gfm, and Tables set to true.
func DefaultOptions() *Options {
return &Options{
Gfm: true,
Tables: true,
}
}
// New return a new Mark
func New(input string, opts *Options) *Mark {
// Preprocessing
input = strings.Replace(input, "\t", " ", -1)
if opts == nil {
opts = DefaultOptions()
}
return &Mark{
Input: input,
parse: newParse(input, opts),
}
}
// parse and render input
func (m *Mark) Render() string {
m.parse.parse()
m.render()
return m.output
}
// AddRenderFn let you pass NodeType, and RenderFn function
// and override the default Node rendering
func (m *Mark) AddRenderFn(typ NodeType, fn RenderFn) {
m.renderFn[typ] = fn
}
// Staic render function
func Render(input string) string {
m := New(input, nil)
return m.Render()
}

614
vendor/github.com/a8m/mark/node.go generated vendored Normal file
View File

@ -0,0 +1,614 @@
package mark
import (
"fmt"
"regexp"
"strconv"
"strings"
)
// A Node is an element in the parse tree.
type Node interface {
Type() NodeType
Render() string
}
// NodeType identifies the type of a parse tree node.
type NodeType int
// Type returns itself and provides an easy default implementation
// for embedding in a Node. Embedded in all non-trivial Nodes.
func (t NodeType) Type() NodeType {
return t
}
// Render function, used for overriding default rendering.
type RenderFn func(Node) string
const (
NodeText NodeType = iota // A plain text
NodeParagraph // A Paragraph
NodeEmphasis // An emphasis(strong, em, ...)
NodeHeading // A heading (h1, h2, ...)
NodeBr // A link break
NodeHr // A horizontal rule
NodeImage // An image
NodeRefImage // A image reference
NodeList // A list of ListItems
NodeListItem // A list item node
NodeLink // A link(href)
NodeRefLink // A link reference
NodeDefLink // A link definition
NodeTable // A table of NodeRows
NodeRow // A row of NodeCells
NodeCell // A table-cell(td)
NodeCode // A code block(wrapped with pre)
NodeBlockQuote // A blockquote
NodeHTML // An inline HTML
NodeCheckbox // A checkbox
)
// ParagraphNode hold simple paragraph node contains text
// that may be emphasis.
type ParagraphNode struct {
NodeType
Pos
Nodes []Node
}
// Render returns the html representation of ParagraphNode
func (n *ParagraphNode) Render() (s string) {
for _, node := range n.Nodes {
s += node.Render()
}
return wrap("p", s)
}
func (p *parse) newParagraph(pos Pos) *ParagraphNode {
return &ParagraphNode{NodeType: NodeParagraph, Pos: pos}
}
// TextNode holds plain text.
type TextNode struct {
NodeType
Pos
Text string
}
// Render returns the string representation of TexNode
func (n *TextNode) Render() string {
return n.Text
}
func (p *parse) newText(pos Pos, text string) *TextNode {
return &TextNode{NodeType: NodeText, Pos: pos, Text: p.text(text)}
}
// HTMLNode holds the raw html source.
type HTMLNode struct {
NodeType
Pos
Src string
}
// Render returns the src of the HTMLNode
func (n *HTMLNode) Render() string {
return n.Src
}
func (p *parse) newHTML(pos Pos, src string) *HTMLNode {
return &HTMLNode{NodeType: NodeHTML, Pos: pos, Src: src}
}
// HrNode represents horizontal rule
type HrNode struct {
NodeType
Pos
}
// Render returns the html representation of hr.
func (n *HrNode) Render() string {
return "<hr>"
}
func (p *parse) newHr(pos Pos) *HrNode {
return &HrNode{NodeType: NodeHr, Pos: pos}
}
// BrNode represents a link-break element.
type BrNode struct {
NodeType
Pos
}
// Render returns the html representation of line-break.
func (n *BrNode) Render() string {
return "<br>"
}
func (p *parse) newBr(pos Pos) *BrNode {
return &BrNode{NodeType: NodeBr, Pos: pos}
}
// EmphasisNode holds plain-text wrapped with style.
// (strong, em, del, code)
type EmphasisNode struct {
NodeType
Pos
Style itemType
Nodes []Node
}
// Tag return the tagName based on the Style field.
func (n *EmphasisNode) Tag() (s string) {
switch n.Style {
case itemStrong:
s = "strong"
case itemItalic:
s = "em"
case itemStrike:
s = "del"
case itemCode:
s = "code"
}
return
}
// Return the html representation of emphasis text.
func (n *EmphasisNode) Render() string {
var s string
for _, node := range n.Nodes {
s += node.Render()
}
return wrap(n.Tag(), s)
}
func (p *parse) newEmphasis(pos Pos, style itemType) *EmphasisNode {
return &EmphasisNode{NodeType: NodeEmphasis, Pos: pos, Style: style}
}
// HeadingNode holds heaing element with specific level(1-6).
type HeadingNode struct {
NodeType
Pos
Level int
Text string
Nodes []Node
}
// Render returns the html representation based on heading level.
func (n *HeadingNode) Render() (s string) {
for _, node := range n.Nodes {
s += node.Render()
}
re := regexp.MustCompile(`[^\w]+`)
id := re.ReplaceAllString(n.Text, "-")
// ToLowerCase
id = strings.ToLower(id)
return fmt.Sprintf("<%[1]s id=\"%s\">%s</%[1]s>", "h"+strconv.Itoa(n.Level), id, s)
}
func (p *parse) newHeading(pos Pos, level int, text string) *HeadingNode {
return &HeadingNode{NodeType: NodeHeading, Pos: pos, Level: level, Text: p.text(text)}
}
// Code holds CodeBlock node with specific lang field.
type CodeNode struct {
NodeType
Pos
Lang, Text string
}
// Return the html representation of codeBlock
func (n *CodeNode) Render() string {
var attr string
if n.Lang != "" {
attr = fmt.Sprintf(" class=\"lang-%s\"", n.Lang)
}
code := fmt.Sprintf("<%[1]s%s>%s</%[1]s>", "code", attr, n.Text)
return wrap("pre", code)
}
func (p *parse) newCode(pos Pos, lang, text string) *CodeNode {
// DRY: see `escape()` below
text = strings.NewReplacer("<", "&lt;", ">", "&gt;", "\"", "&quot;", "&", "&amp;").Replace(text)
return &CodeNode{NodeType: NodeCode, Pos: pos, Lang: lang, Text: text}
}
// Link holds a tag with optional title
type LinkNode struct {
NodeType
Pos
Title, Href string
Nodes []Node
}
// Return the html representation of link node
func (n *LinkNode) Render() (s string) {
for _, node := range n.Nodes {
s += node.Render()
}
attrs := fmt.Sprintf("href=\"%s\"", n.Href)
if n.Title != "" {
attrs += fmt.Sprintf(" title=\"%s\"", n.Title)
}
return fmt.Sprintf("<a %s>%s</a>", attrs, s)
}
func (p *parse) newLink(pos Pos, title, href string, nodes ...Node) *LinkNode {
return &LinkNode{NodeType: NodeLink, Pos: pos, Title: p.text(title), Href: p.text(href), Nodes: nodes}
}
// RefLink holds link with refrence to link definition
type RefNode struct {
NodeType
Pos
tr *parse
Text, Ref, Raw string
Nodes []Node
}
// rendering based type
func (n *RefNode) Render() string {
var node Node
ref := strings.ToLower(n.Ref)
if l, ok := n.tr.links[ref]; ok {
if n.Type() == NodeRefLink {
node = n.tr.newLink(n.Pos, l.Title, l.Href, n.Nodes...)
} else {
node = n.tr.newImage(n.Pos, l.Title, l.Href, n.Text)
}
} else {
node = n.tr.newText(n.Pos, n.Raw)
}
return node.Render()
}
// newRefLink create new RefLink that suitable for link
func (p *parse) newRefLink(typ itemType, pos Pos, raw, ref string, text []Node) *RefNode {
return &RefNode{NodeType: NodeRefLink, Pos: pos, tr: p.root(), Raw: raw, Ref: ref, Nodes: text}
}
// newRefImage create new RefLink that suitable for image
func (p *parse) newRefImage(typ itemType, pos Pos, raw, ref, text string) *RefNode {
return &RefNode{NodeType: NodeRefImage, Pos: pos, tr: p.root(), Raw: raw, Ref: ref, Text: text}
}
// DefLinkNode refresent single reference to link-definition
type DefLinkNode struct {
NodeType
Pos
Name, Href, Title string
}
// Deflink have no representation(Transparent node)
func (n *DefLinkNode) Render() string {
return ""
}
func (p *parse) newDefLink(pos Pos, name, href, title string) *DefLinkNode {
return &DefLinkNode{NodeType: NodeLink, Pos: pos, Name: name, Href: href, Title: title}
}
// ImageNode represents an image element with optional alt and title attributes.
type ImageNode struct {
NodeType
Pos
Title, Src, Alt string
}
// Render returns the html representation on image node
func (n *ImageNode) Render() string {
attrs := fmt.Sprintf("src=\"%s\" alt=\"%s\"", n.Src, n.Alt)
if n.Title != "" {
attrs += fmt.Sprintf(" title=\"%s\"", n.Title)
}
return fmt.Sprintf("<img %s>", attrs)
}
func (p *parse) newImage(pos Pos, title, src, alt string) *ImageNode {
return &ImageNode{NodeType: NodeImage, Pos: pos, Title: p.text(title), Src: p.text(src), Alt: p.text(alt)}
}
// ListNode holds list items nodes in ordered or unordered states.
type ListNode struct {
NodeType
Pos
Ordered bool
Items []*ListItemNode
}
func (n *ListNode) append(item *ListItemNode) {
n.Items = append(n.Items, item)
}
// Render returns the html representation of orderd(ol) or unordered(ul) list.
func (n *ListNode) Render() (s string) {
tag := "ul"
if n.Ordered {
tag = "ol"
}
for _, item := range n.Items {
s += "\n" + item.Render()
}
s += "\n"
return wrap(tag, s)
}
func (p *parse) newList(pos Pos, ordered bool) *ListNode {
return &ListNode{NodeType: NodeList, Pos: pos, Ordered: ordered}
}
// ListItem represents single item in ListNode that may contains nested nodes.
type ListItemNode struct {
NodeType
Pos
Nodes []Node
}
func (l *ListItemNode) append(n Node) {
l.Nodes = append(l.Nodes, n)
}
// Render returns the html representation of list-item
func (l *ListItemNode) Render() (s string) {
for _, node := range l.Nodes {
s += node.Render()
}
return wrap("li", s)
}
func (p *parse) newListItem(pos Pos) *ListItemNode {
return &ListItemNode{NodeType: NodeListItem, Pos: pos}
}
// TableNode represents table element contains head and body
type TableNode struct {
NodeType
Pos
Rows []*RowNode
}
func (n *TableNode) append(row *RowNode) {
n.Rows = append(n.Rows, row)
}
// Render returns the html representation of a table
func (n *TableNode) Render() string {
var s string
for i, row := range n.Rows {
s += "\n"
switch i {
case 0:
s += wrap("thead", "\n"+row.Render()+"\n")
case 1:
s += "<tbody>\n"
fallthrough
default:
s += row.Render()
}
}
s += "\n</tbody>\n"
return wrap("table", s)
}
func (p *parse) newTable(pos Pos) *TableNode {
return &TableNode{NodeType: NodeTable, Pos: pos}
}
// RowNode represnt tr that holds list of cell-nodes
type RowNode struct {
NodeType
Pos
Cells []*CellNode
}
func (r *RowNode) append(cell *CellNode) {
r.Cells = append(r.Cells, cell)
}
// Render returns the html representation of table-row
func (r *RowNode) Render() string {
var s string
for _, cell := range r.Cells {
s += "\n" + cell.Render()
}
s += "\n"
return wrap("tr", s)
}
func (p *parse) newRow(pos Pos) *RowNode {
return &RowNode{NodeType: NodeRow, Pos: pos}
}
// AlignType identifies the aligment-type of specfic cell.
type AlignType int
// Align returns itself and provides an easy default implementation
// for embedding in a Node.
func (t AlignType) Align() AlignType {
return t
}
// Alignment
const (
None AlignType = iota
Right
Left
Center
)
// Cell types
const (
Header = iota
Data
)
// CellNode represents table-data/cell that holds simple text(may be emphasis)
// Note: the text in <th> elements are bold and centered by default.
type CellNode struct {
NodeType
Pos
AlignType
Kind int
Nodes []Node
}
// Render returns the html reprenestation of table-cell
func (c *CellNode) Render() string {
var s string
tag := "td"
if c.Kind == Header {
tag = "th"
}
for _, node := range c.Nodes {
s += node.Render()
}
return fmt.Sprintf("<%[1]s%s>%s</%[1]s>", tag, c.Style(), s)
}
// Style return the cell-style based on alignment field
func (c *CellNode) Style() string {
s := " style=\"text-align:"
switch c.Align() {
case Right:
s += "right\""
case Left:
s += "left\""
case Center:
s += "center\""
default:
s = ""
}
return s
}
func (p *parse) newCell(pos Pos, kind int, align AlignType) *CellNode {
return &CellNode{NodeType: NodeCell, Pos: pos, Kind: kind, AlignType: align}
}
// BlockQuote represents block-quote tag.
type BlockQuoteNode struct {
NodeType
Pos
Nodes []Node
}
// Render returns the html representation of BlockQuote
func (n *BlockQuoteNode) Render() string {
var s string
for _, node := range n.Nodes {
s += node.Render()
}
return wrap("blockquote", s)
}
func (p *parse) newBlockQuote(pos Pos) *BlockQuoteNode {
return &BlockQuoteNode{NodeType: NodeBlockQuote, Pos: pos}
}
// CheckboxNode represents checked and unchecked checkbox tag.
// Used in task lists.
type CheckboxNode struct {
NodeType
Pos
Checked bool
}
// Render returns the html representation of checked and unchecked CheckBox.
func (n *CheckboxNode) Render() string {
s := "<input type=\"checkbox\""
if n.Checked {
s += " checked"
}
return s + ">"
}
func (p *parse) newCheckbox(pos Pos, checked bool) *CheckboxNode {
return &CheckboxNode{NodeType: NodeCheckbox, Pos: pos, Checked: checked}
}
// Wrap text with specific tag.
func wrap(tag, body string) string {
return fmt.Sprintf("<%[1]s>%s</%[1]s>", tag, body)
}
// Group all text configuration in one place(escaping, smartypants, etc..)
func (p *parse) text(input string) string {
opts := p.root().options
if opts.Smartypants {
input = smartypants(input)
}
if opts.Fractions {
input = smartyfractions(input)
}
return escape(input)
}
// Helper escaper
func escape(str string) (cpy string) {
emp := regexp.MustCompile(`&\w+;`)
for i := 0; i < len(str); i++ {
switch s := str[i]; s {
case '>':
cpy += "&gt;"
case '"':
cpy += "&quot;"
case '\'':
cpy += "&#39;"
case '<':
if res := reHTML.tag.FindString(str[i:]); res != "" {
cpy += res
i += len(res) - 1
} else {
cpy += "&lt;"
}
case '&':
if res := emp.FindString(str[i:]); res != "" {
cpy += res
i += len(res) - 1
} else {
cpy += "&amp;"
}
default:
cpy += str[i : i+1]
}
}
return
}
// Smartypants transformation helper, translate from marked.js
func smartypants(text string) string {
// em-dashes, en-dashes, ellipses
re := strings.NewReplacer("---", "\u2014", "--", "\u2013", "...", "\u2026")
text = re.Replace(text)
// opening singles
text = regexp.MustCompile("(^|[-\u2014/(\\[{\"\\s])'").ReplaceAllString(text, "$1\u2018")
// closing singles & apostrophes
text = strings.Replace(text, "'", "\u2019", -1)
// opening doubles
text = regexp.MustCompile("(^|[-\u2014/(\\[{\u2018\\s])\"").ReplaceAllString(text, "$1\u201c")
// closing doubles
text = strings.Replace(text, "\"", "\u201d", -1)
return text
}
// Smartyfractions transformation helper.
func smartyfractions(text string) string {
re := regexp.MustCompile(`(\d+)(/\d+)(/\d+|)`)
return re.ReplaceAllStringFunc(text, func(str string) string {
var match []string
// If it's date like
if match = re.FindStringSubmatch(str); match[3] != "" {
return str
}
switch n := match[1] + match[2]; n {
case "1/2", "1/3", "2/3", "1/4", "3/4", "1/5", "2/5", "3/5", "4/5",
"1/6", "5/6", "1/7", "1/8", "3/8", "5/8", "7/8":
return fmt.Sprintf("&frac%s;", strings.Replace(n, "/", "", 1))
default:
return fmt.Sprintf("<sup>%s</sup>&frasl;<sub>%s</sub>",
match[1], strings.Replace(match[2], "/", "", 1))
}
})
}

436
vendor/github.com/a8m/mark/parser.go generated vendored Normal file
View File

@ -0,0 +1,436 @@
package mark
import (
"regexp"
"strings"
"unicode"
"unicode/utf8"
)
// parse holds the state of the parser.
type parse struct {
Nodes []Node
lex Lexer
options *Options
tr *parse
output string
peekCount int
token [3]item // three-token lookahead for parser
links map[string]*DefLinkNode // Deflink parsing, used RefLinks
renderFn map[NodeType]RenderFn // Custom overridden fns
}
// Return new parser
func newParse(input string, opts *Options) *parse {
return &parse{
lex: lex(input),
options: opts,
links: make(map[string]*DefLinkNode),
renderFn: make(map[NodeType]RenderFn),
}
}
// parse convert the raw text to Nodeparse.
func (p *parse) parse() {
Loop:
for {
var n Node
switch t := p.peek(); t.typ {
case itemEOF, itemError:
break Loop
case itemNewLine:
p.next()
case itemHr:
n = p.newHr(p.next().pos)
case itemHTML:
t = p.next()
n = p.newHTML(t.pos, t.val)
case itemDefLink:
n = p.parseDefLink()
case itemHeading, itemLHeading:
n = p.parseHeading()
case itemCodeBlock, itemGfmCodeBlock:
n = p.parseCodeBlock()
case itemList:
n = p.parseList()
case itemTable, itemLpTable:
n = p.parseTable()
case itemBlockQuote:
n = p.parseBlockQuote()
case itemIndent:
space := p.next()
// If it isn't followed by itemText
if p.peek().typ != itemText {
continue
}
p.backup2(space)
fallthrough
// itemText
default:
tmp := p.newParagraph(t.pos)
tmp.Nodes = p.parseText(p.next().val + p.scanLines())
n = tmp
}
if n != nil {
p.append(n)
}
}
}
// Root getter
func (p *parse) root() *parse {
if p.tr == nil {
return p
}
return p.tr.root()
}
// Render parse nodes to the wanted output
func (p *parse) render() {
var output string
for i, node := range p.Nodes {
// If there's a custom render function, use it instead.
if fn, ok := p.renderFn[node.Type()]; ok {
output = fn(node)
} else {
output = node.Render()
}
p.output += output
if output != "" && i != len(p.Nodes)-1 {
p.output += "\n"
}
}
}
// append new node to nodes-list
func (p *parse) append(n Node) {
p.Nodes = append(p.Nodes, n)
}
// next returns the next token
func (p *parse) next() item {
if p.peekCount > 0 {
p.peekCount--
} else {
p.token[0] = p.lex.nextItem()
}
return p.token[p.peekCount]
}
// peek returns but does not consume the next token.
func (p *parse) peek() item {
if p.peekCount > 0 {
return p.token[p.peekCount-1]
}
p.peekCount = 1
p.token[0] = p.lex.nextItem()
return p.token[0]
}
// backup backs the input stream tp one token
func (p *parse) backup() {
p.peekCount++
}
// backup2 backs the input stream up two tokens.
// The zeroth token is already there.
func (p *parse) backup2(t1 item) {
p.token[1] = t1
p.peekCount = 2
}
// parseText
func (p *parse) parseText(input string) (nodes []Node) {
// Trim whitespaces that not a line-break
input = regexp.MustCompile(`(?m)^ +| +(\n|$)`).ReplaceAllStringFunc(input, func(s string) string {
if reBr.MatchString(s) {
return s
}
return strings.Replace(s, " ", "", -1)
})
l := lexInline(input)
for token := range l.items {
var node Node
switch token.typ {
case itemBr:
node = p.newBr(token.pos)
case itemStrong, itemItalic, itemStrike, itemCode:
node = p.parseEmphasis(token.typ, token.pos, token.val)
case itemLink, itemAutoLink, itemGfmLink:
var title, href string
var text []Node
if token.typ == itemLink {
match := reLink.FindStringSubmatch(token.val)
text = p.parseText(match[1])
href, title = match[2], match[3]
} else {
var match []string
if token.typ == itemGfmLink {
match = reGfmLink.FindStringSubmatch(token.val)
} else {
match = reAutoLink.FindStringSubmatch(token.val)
}
href = match[1]
text = append(text, p.newText(token.pos, match[1]))
}
node = p.newLink(token.pos, title, href, text...)
case itemImage:
match := reImage.FindStringSubmatch(token.val)
node = p.newImage(token.pos, match[3], match[2], match[1])
case itemRefLink, itemRefImage:
match := reRefLink.FindStringSubmatch(token.val)
text, ref := match[1], match[2]
if ref == "" {
ref = text
}
if token.typ == itemRefLink {
node = p.newRefLink(token.typ, token.pos, token.val, ref, p.parseText(text))
} else {
node = p.newRefImage(token.typ, token.pos, token.val, ref, text)
}
case itemHTML:
node = p.newHTML(token.pos, token.val)
default:
node = p.newText(token.pos, token.val)
}
nodes = append(nodes, node)
}
return nodes
}
// parse inline emphasis
func (p *parse) parseEmphasis(typ itemType, pos Pos, val string) *EmphasisNode {
var re *regexp.Regexp
switch typ {
case itemStrike:
re = reStrike
case itemStrong:
re = reStrong
case itemCode:
re = reCode
case itemItalic:
re = reItalic
}
node := p.newEmphasis(pos, typ)
match := re.FindStringSubmatch(val)
text := match[len(match)-1]
if text == "" {
text = match[1]
}
node.Nodes = p.parseText(text)
return node
}
// parse heading block
func (p *parse) parseHeading() (node *HeadingNode) {
token := p.next()
level := 1
var text string
if token.typ == itemHeading {
match := reHeading.FindStringSubmatch(token.val)
level, text = len(match[1]), match[2]
} else {
match := reLHeading.FindStringSubmatch(token.val)
// using equal signs for first-level, and dashes for second-level.
text = match[1]
if match[2] == "-" {
level = 2
}
}
node = p.newHeading(token.pos, level, text)
node.Nodes = p.parseText(text)
return
}
func (p *parse) parseDefLink() *DefLinkNode {
token := p.next()
match := reDefLink.FindStringSubmatch(token.val)
name := strings.ToLower(match[1])
// name(lowercase), href, title
n := p.newDefLink(token.pos, name, match[2], match[3])
// store in links
links := p.root().links
if _, ok := links[name]; !ok {
links[name] = n
}
return n
}
// parse codeBlock
func (p *parse) parseCodeBlock() *CodeNode {
var lang, text string
token := p.next()
if token.typ == itemGfmCodeBlock {
codeStart := reGfmCode.FindStringSubmatch(token.val)
lang = codeStart[3]
text = token.val[len(codeStart[0]):]
} else {
text = reCodeBlock.trim(token.val, "")
}
return p.newCode(token.pos, lang, text)
}
func (p *parse) parseBlockQuote() (n *BlockQuoteNode) {
token := p.next()
// replacer
re := regexp.MustCompile(`(?m)^ *> ?`)
raw := re.ReplaceAllString(token.val, "")
// TODO(a8m): doesn't work right now with defLink(inside the blockQuote)
tr := &parse{lex: lex(raw), tr: p}
tr.parse()
n = p.newBlockQuote(token.pos)
n.Nodes = tr.Nodes
return
}
// parse list
func (p *parse) parseList() *ListNode {
token := p.next()
list := p.newList(token.pos, isDigit(token.val))
Loop:
for {
switch token = p.peek(); token.typ {
case itemLooseItem, itemListItem:
list.append(p.parseListItem())
default:
break Loop
}
}
return list
}
// parse listItem
func (p *parse) parseListItem() *ListItemNode {
token := p.next()
item := p.newListItem(token.pos)
token.val = strings.TrimSpace(token.val)
if p.isTaskItem(token.val) {
item.Nodes = p.parseTaskItem(token)
return item
}
tr := &parse{lex: lex(token.val), tr: p}
tr.parse()
for _, node := range tr.Nodes {
// wrap with paragraph only when it's a loose item
if n, ok := node.(*ParagraphNode); ok && token.typ == itemListItem {
item.Nodes = append(item.Nodes, n.Nodes...)
} else {
item.append(node)
}
}
return item
}
// parseTaskItem parses list item as a task item.
func (p *parse) parseTaskItem(token item) []Node {
checkbox := p.newCheckbox(token.pos, token.val[1] == 'x')
token.val = strings.TrimSpace(token.val[3:])
return append([]Node{checkbox}, p.parseText(token.val)...)
}
// isTaskItem tests if the given string is list task item.
func (p *parse) isTaskItem(s string) bool {
if len(s) < 5 || s[0] != '[' || (s[1] != 'x' && s[1] != ' ') || s[2] != ']' {
return false
}
return "" != strings.TrimSpace(s[3:])
}
// parse table
func (p *parse) parseTable() *TableNode {
table := p.newTable(p.next().pos)
// Align [ None, Left, Right, ... ]
// Header [ Cells: [ ... ] ]
// Data: [ Rows: [ Cells: [ ... ] ] ]
rows := struct {
Align []AlignType
Header []item
Cells [][]item
}{}
Loop:
for i := 0; ; {
switch token := p.next(); token.typ {
case itemTableRow:
i++
if i > 2 {
rows.Cells = append(rows.Cells, []item{})
}
case itemTableCell:
// Header
if i == 1 {
rows.Header = append(rows.Header, token)
// Alignment
} else if i == 2 {
rows.Align = append(rows.Align, parseAlign(token.val))
// Data
} else {
pos := i - 3
rows.Cells[pos] = append(rows.Cells[pos], token)
}
default:
p.backup()
break Loop
}
}
// Tranform to nodes
table.append(p.parseCells(Header, rows.Header, rows.Align))
// Table body
for _, row := range rows.Cells {
table.append(p.parseCells(Data, row, rows.Align))
}
return table
}
// parse cells and return new row
func (p *parse) parseCells(kind int, items []item, align []AlignType) *RowNode {
var row *RowNode
for i, item := range items {
if i == 0 {
row = p.newRow(item.pos)
}
cell := p.newCell(item.pos, kind, align[i])
cell.Nodes = p.parseText(item.val)
row.append(cell)
}
return row
}
// Used to consume lines(itemText) for a continues paragraphs
func (p *parse) scanLines() (s string) {
for {
tkn := p.next()
if tkn.typ == itemText || tkn.typ == itemIndent {
s += tkn.val
} else if tkn.typ == itemNewLine {
if t := p.peek().typ; t != itemText && t != itemIndent {
p.backup2(tkn)
break
}
s += tkn.val
} else {
p.backup()
break
}
}
return
}
// get align-string and return the align type of it
func parseAlign(s string) (typ AlignType) {
sfx, pfx := strings.HasSuffix(s, ":"), strings.HasPrefix(s, ":")
switch {
case sfx && pfx:
typ = Center
case sfx:
typ = Right
case pfx:
typ = Left
}
return
}
// test if given string is digit
func isDigit(s string) bool {
r, _ := utf8.DecodeRuneInString(s)
return unicode.IsDigit(r)
}

20
vendor/github.com/beorn7/perks/quantile/LICENSE generated vendored Normal file
View File

@ -0,0 +1,20 @@
Copyright (C) 2013 Blake Mizerany
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

292
vendor/github.com/beorn7/perks/quantile/stream.go generated vendored Normal file
View File

@ -0,0 +1,292 @@
// Package quantile computes approximate quantiles over an unbounded data
// stream within low memory and CPU bounds.
//
// A small amount of accuracy is traded to achieve the above properties.
//
// Multiple streams can be merged before calling Query to generate a single set
// of results. This is meaningful when the streams represent the same type of
// data. See Merge and Samples.
//
// For more detailed information about the algorithm used, see:
//
// Effective Computation of Biased Quantiles over Data Streams
//
// http://www.cs.rutgers.edu/~muthu/bquant.pdf
package quantile
import (
"math"
"sort"
)
// Sample holds an observed value and meta information for compression. JSON
// tags have been added for convenience.
type Sample struct {
Value float64 `json:",string"`
Width float64 `json:",string"`
Delta float64 `json:",string"`
}
// Samples represents a slice of samples. It implements sort.Interface.
type Samples []Sample
func (a Samples) Len() int { return len(a) }
func (a Samples) Less(i, j int) bool { return a[i].Value < a[j].Value }
func (a Samples) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
type invariant func(s *stream, r float64) float64
// NewLowBiased returns an initialized Stream for low-biased quantiles
// (e.g. 0.01, 0.1, 0.5) where the needed quantiles are not known a priori, but
// error guarantees can still be given even for the lower ranks of the data
// distribution.
//
// The provided epsilon is a relative error, i.e. the true quantile of a value
// returned by a query is guaranteed to be within (1±Epsilon)*Quantile.
//
// See http://www.cs.rutgers.edu/~muthu/bquant.pdf for time, space, and error
// properties.
func NewLowBiased(epsilon float64) *Stream {
ƒ := func(s *stream, r float64) float64 {
return 2 * epsilon * r
}
return newStream(ƒ)
}
// NewHighBiased returns an initialized Stream for high-biased quantiles
// (e.g. 0.01, 0.1, 0.5) where the needed quantiles are not known a priori, but
// error guarantees can still be given even for the higher ranks of the data
// distribution.
//
// The provided epsilon is a relative error, i.e. the true quantile of a value
// returned by a query is guaranteed to be within 1-(1±Epsilon)*(1-Quantile).
//
// See http://www.cs.rutgers.edu/~muthu/bquant.pdf for time, space, and error
// properties.
func NewHighBiased(epsilon float64) *Stream {
ƒ := func(s *stream, r float64) float64 {
return 2 * epsilon * (s.n - r)
}
return newStream(ƒ)
}
// NewTargeted returns an initialized Stream concerned with a particular set of
// quantile values that are supplied a priori. Knowing these a priori reduces
// space and computation time. The targets map maps the desired quantiles to
// their absolute errors, i.e. the true quantile of a value returned by a query
// is guaranteed to be within (Quantile±Epsilon).
//
// See http://www.cs.rutgers.edu/~muthu/bquant.pdf for time, space, and error properties.
func NewTargeted(targets map[float64]float64) *Stream {
ƒ := func(s *stream, r float64) float64 {
var m = math.MaxFloat64
var f float64
for quantile, epsilon := range targets {
if quantile*s.n <= r {
f = (2 * epsilon * r) / quantile
} else {
f = (2 * epsilon * (s.n - r)) / (1 - quantile)
}
if f < m {
m = f
}
}
return m
}
return newStream(ƒ)
}
// Stream computes quantiles for a stream of float64s. It is not thread-safe by
// design. Take care when using across multiple goroutines.
type Stream struct {
*stream
b Samples
sorted bool
}
func newStream(ƒ invariant) *Stream {
x := &stream{ƒ: ƒ}
return &Stream{x, make(Samples, 0, 500), true}
}
// Insert inserts v into the stream.
func (s *Stream) Insert(v float64) {
s.insert(Sample{Value: v, Width: 1})
}
func (s *Stream) insert(sample Sample) {
s.b = append(s.b, sample)
s.sorted = false
if len(s.b) == cap(s.b) {
s.flush()
}
}
// Query returns the computed qth percentiles value. If s was created with
// NewTargeted, and q is not in the set of quantiles provided a priori, Query
// will return an unspecified result.
func (s *Stream) Query(q float64) float64 {
if !s.flushed() {
// Fast path when there hasn't been enough data for a flush;
// this also yields better accuracy for small sets of data.
l := len(s.b)
if l == 0 {
return 0
}
i := int(math.Ceil(float64(l) * q))
if i > 0 {
i -= 1
}
s.maybeSort()
return s.b[i].Value
}
s.flush()
return s.stream.query(q)
}
// Merge merges samples into the underlying streams samples. This is handy when
// merging multiple streams from separate threads, database shards, etc.
//
// ATTENTION: This method is broken and does not yield correct results. The
// underlying algorithm is not capable of merging streams correctly.
func (s *Stream) Merge(samples Samples) {
sort.Sort(samples)
s.stream.merge(samples)
}
// Reset reinitializes and clears the list reusing the samples buffer memory.
func (s *Stream) Reset() {
s.stream.reset()
s.b = s.b[:0]
}
// Samples returns stream samples held by s.
func (s *Stream) Samples() Samples {
if !s.flushed() {
return s.b
}
s.flush()
return s.stream.samples()
}
// Count returns the total number of samples observed in the stream
// since initialization.
func (s *Stream) Count() int {
return len(s.b) + s.stream.count()
}
func (s *Stream) flush() {
s.maybeSort()
s.stream.merge(s.b)
s.b = s.b[:0]
}
func (s *Stream) maybeSort() {
if !s.sorted {
s.sorted = true
sort.Sort(s.b)
}
}
func (s *Stream) flushed() bool {
return len(s.stream.l) > 0
}
type stream struct {
n float64
l []Sample
ƒ invariant
}
func (s *stream) reset() {
s.l = s.l[:0]
s.n = 0
}
func (s *stream) insert(v float64) {
s.merge(Samples{{v, 1, 0}})
}
func (s *stream) merge(samples Samples) {
// TODO(beorn7): This tries to merge not only individual samples, but
// whole summaries. The paper doesn't mention merging summaries at
// all. Unittests show that the merging is inaccurate. Find out how to
// do merges properly.
var r float64
i := 0
for _, sample := range samples {
for ; i < len(s.l); i++ {
c := s.l[i]
if c.Value > sample.Value {
// Insert at position i.
s.l = append(s.l, Sample{})
copy(s.l[i+1:], s.l[i:])
s.l[i] = Sample{
sample.Value,
sample.Width,
math.Max(sample.Delta, math.Floor(s.ƒ(s, r))-1),
// TODO(beorn7): How to calculate delta correctly?
}
i++
goto inserted
}
r += c.Width
}
s.l = append(s.l, Sample{sample.Value, sample.Width, 0})
i++
inserted:
s.n += sample.Width
r += sample.Width
}
s.compress()
}
func (s *stream) count() int {
return int(s.n)
}
func (s *stream) query(q float64) float64 {
t := math.Ceil(q * s.n)
t += math.Ceil(s.ƒ(s, t) / 2)
p := s.l[0]
var r float64
for _, c := range s.l[1:] {
r += p.Width
if r+c.Width+c.Delta > t {
return p.Value
}
p = c
}
return p.Value
}
func (s *stream) compress() {
if len(s.l) < 2 {
return
}
x := s.l[len(s.l)-1]
xi := len(s.l) - 1
r := s.n - 1 - x.Width
for i := len(s.l) - 2; i >= 0; i-- {
c := s.l[i]
if c.Width+x.Width+x.Delta <= s.ƒ(s, r) {
x.Width += c.Width
s.l[xi] = x
// Remove element at i.
copy(s.l[i:], s.l[i+1:])
s.l = s.l[:len(s.l)-1]
xi -= 1
} else {
x = c
xi = i
}
r -= c.Width
}
}
func (s *stream) samples() Samples {
samples := make(Samples, len(s.l))
copy(samples, s.l)
return samples
}

12
vendor/github.com/cheggaaa/pb/LICENSE generated vendored Normal file
View File

@ -0,0 +1,12 @@
Copyright (c) 2012-2015, Sergey Cherepanov
All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
* Neither the name of the author nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

118
vendor/github.com/cheggaaa/pb/format.go generated vendored Normal file
View File

@ -0,0 +1,118 @@
package pb
import (
"fmt"
"time"
)
type Units int
const (
// U_NO are default units, they represent a simple value and are not formatted at all.
U_NO Units = iota
// U_BYTES units are formatted in a human readable way (B, KiB, MiB, ...)
U_BYTES
// U_BYTES_DEC units are like U_BYTES, but base 10 (B, KB, MB, ...)
U_BYTES_DEC
// U_DURATION units are formatted in a human readable way (3h14m15s)
U_DURATION
)
const (
KiB = 1024
MiB = 1048576
GiB = 1073741824
TiB = 1099511627776
KB = 1e3
MB = 1e6
GB = 1e9
TB = 1e12
)
func Format(i int64) *formatter {
return &formatter{n: i}
}
type formatter struct {
n int64
unit Units
width int
perSec bool
}
func (f *formatter) To(unit Units) *formatter {
f.unit = unit
return f
}
func (f *formatter) Width(width int) *formatter {
f.width = width
return f
}
func (f *formatter) PerSec() *formatter {
f.perSec = true
return f
}
func (f *formatter) String() (out string) {
switch f.unit {
case U_BYTES:
out = formatBytes(f.n)
case U_BYTES_DEC:
out = formatBytesDec(f.n)
case U_DURATION:
out = formatDuration(f.n)
default:
out = fmt.Sprintf(fmt.Sprintf("%%%dd", f.width), f.n)
}
if f.perSec {
out += "/s"
}
return
}
// Convert bytes to human readable string. Like 2 MiB, 64.2 KiB, 52 B
func formatBytes(i int64) (result string) {
switch {
case i >= TiB:
result = fmt.Sprintf("%.02f TiB", float64(i)/TiB)
case i >= GiB:
result = fmt.Sprintf("%.02f GiB", float64(i)/GiB)
case i >= MiB:
result = fmt.Sprintf("%.02f MiB", float64(i)/MiB)
case i >= KiB:
result = fmt.Sprintf("%.02f KiB", float64(i)/KiB)
default:
result = fmt.Sprintf("%d B", i)
}
return
}
// Convert bytes to base-10 human readable string. Like 2 MB, 64.2 KB, 52 B
func formatBytesDec(i int64) (result string) {
switch {
case i >= TB:
result = fmt.Sprintf("%.02f TB", float64(i)/TB)
case i >= GB:
result = fmt.Sprintf("%.02f GB", float64(i)/GB)
case i >= MB:
result = fmt.Sprintf("%.02f MB", float64(i)/MB)
case i >= KB:
result = fmt.Sprintf("%.02f KB", float64(i)/KB)
default:
result = fmt.Sprintf("%d B", i)
}
return
}
func formatDuration(n int64) (result string) {
d := time.Duration(n)
if d > time.Hour*24 {
result = fmt.Sprintf("%dd", d/24/time.Hour)
d -= (d / time.Hour / 24) * (time.Hour * 24)
}
result = fmt.Sprintf("%s%v", result, d)
return
}

469
vendor/github.com/cheggaaa/pb/pb.go generated vendored Normal file
View File

@ -0,0 +1,469 @@
// Simple console progress bars
package pb
import (
"fmt"
"io"
"math"
"strings"
"sync"
"sync/atomic"
"time"
"unicode/utf8"
)
// Current version
const Version = "1.0.19"
const (
// Default refresh rate - 200ms
DEFAULT_REFRESH_RATE = time.Millisecond * 200
FORMAT = "[=>-]"
)
// DEPRECATED
// variables for backward compatibility, from now do not work
// use pb.Format and pb.SetRefreshRate
var (
DefaultRefreshRate = DEFAULT_REFRESH_RATE
BarStart, BarEnd, Empty, Current, CurrentN string
)
// Create new progress bar object
func New(total int) *ProgressBar {
return New64(int64(total))
}
// Create new progress bar object using int64 as total
func New64(total int64) *ProgressBar {
pb := &ProgressBar{
Total: total,
RefreshRate: DEFAULT_REFRESH_RATE,
ShowPercent: true,
ShowCounters: true,
ShowBar: true,
ShowTimeLeft: true,
ShowFinalTime: true,
Units: U_NO,
ManualUpdate: false,
finish: make(chan struct{}),
}
return pb.Format(FORMAT)
}
// Create new object and start
func StartNew(total int) *ProgressBar {
return New(total).Start()
}
// Callback for custom output
// For example:
// bar.Callback = func(s string) {
// mySuperPrint(s)
// }
//
type Callback func(out string)
type ProgressBar struct {
current int64 // current must be first member of struct (https://code.google.com/p/go/issues/detail?id=5278)
previous int64
Total int64
RefreshRate time.Duration
ShowPercent, ShowCounters bool
ShowSpeed, ShowTimeLeft, ShowBar bool
ShowFinalTime bool
Output io.Writer
Callback Callback
NotPrint bool
Units Units
Width int
ForceWidth bool
ManualUpdate bool
AutoStat bool
// Default width for the time box.
UnitsWidth int
TimeBoxWidth int
finishOnce sync.Once //Guards isFinish
finish chan struct{}
isFinish bool
startTime time.Time
startValue int64
changeTime time.Time
prefix, postfix string
mu sync.Mutex
lastPrint string
BarStart string
BarEnd string
Empty string
Current string
CurrentN string
AlwaysUpdate bool
}
// Start print
func (pb *ProgressBar) Start() *ProgressBar {
pb.startTime = time.Now()
pb.startValue = atomic.LoadInt64(&pb.current)
if pb.Total == 0 {
pb.ShowTimeLeft = false
pb.ShowPercent = false
pb.AutoStat = false
}
if !pb.ManualUpdate {
pb.Update() // Initial printing of the bar before running the bar refresher.
go pb.refresher()
}
return pb
}
// Increment current value
func (pb *ProgressBar) Increment() int {
return pb.Add(1)
}
// Get current value
func (pb *ProgressBar) Get() int64 {
c := atomic.LoadInt64(&pb.current)
return c
}
// Set current value
func (pb *ProgressBar) Set(current int) *ProgressBar {
return pb.Set64(int64(current))
}
// Set64 sets the current value as int64
func (pb *ProgressBar) Set64(current int64) *ProgressBar {
atomic.StoreInt64(&pb.current, current)
return pb
}
// Add to current value
func (pb *ProgressBar) Add(add int) int {
return int(pb.Add64(int64(add)))
}
func (pb *ProgressBar) Add64(add int64) int64 {
return atomic.AddInt64(&pb.current, add)
}
// Set prefix string
func (pb *ProgressBar) Prefix(prefix string) *ProgressBar {
pb.prefix = prefix
return pb
}
// Set postfix string
func (pb *ProgressBar) Postfix(postfix string) *ProgressBar {
pb.postfix = postfix
return pb
}
// Set custom format for bar
// Example: bar.Format("[=>_]")
// Example: bar.Format("[\x00=\x00>\x00-\x00]") // \x00 is the delimiter
func (pb *ProgressBar) Format(format string) *ProgressBar {
var formatEntries []string
if utf8.RuneCountInString(format) == 5 {
formatEntries = strings.Split(format, "")
} else {
formatEntries = strings.Split(format, "\x00")
}
if len(formatEntries) == 5 {
pb.BarStart = formatEntries[0]
pb.BarEnd = formatEntries[4]
pb.Empty = formatEntries[3]
pb.Current = formatEntries[1]
pb.CurrentN = formatEntries[2]
}
return pb
}
// Set bar refresh rate
func (pb *ProgressBar) SetRefreshRate(rate time.Duration) *ProgressBar {
pb.RefreshRate = rate
return pb
}
// Set units
// bar.SetUnits(U_NO) - by default
// bar.SetUnits(U_BYTES) - for Mb, Kb, etc
func (pb *ProgressBar) SetUnits(units Units) *ProgressBar {
pb.Units = units
return pb
}
// Set max width, if width is bigger than terminal width, will be ignored
func (pb *ProgressBar) SetMaxWidth(width int) *ProgressBar {
pb.Width = width
pb.ForceWidth = false
return pb
}
// Set bar width
func (pb *ProgressBar) SetWidth(width int) *ProgressBar {
pb.Width = width
pb.ForceWidth = true
return pb
}
// End print
func (pb *ProgressBar) Finish() {
//Protect multiple calls
pb.finishOnce.Do(func() {
close(pb.finish)
pb.write(atomic.LoadInt64(&pb.current))
pb.mu.Lock()
defer pb.mu.Unlock()
switch {
case pb.Output != nil:
fmt.Fprintln(pb.Output)
case !pb.NotPrint:
fmt.Println()
}
pb.isFinish = true
})
}
// IsFinished return boolean
func (pb *ProgressBar) IsFinished() bool {
pb.mu.Lock()
defer pb.mu.Unlock()
return pb.isFinish
}
// End print and write string 'str'
func (pb *ProgressBar) FinishPrint(str string) {
pb.Finish()
if pb.Output != nil {
fmt.Fprintln(pb.Output, str)
} else {
fmt.Println(str)
}
}
// implement io.Writer
func (pb *ProgressBar) Write(p []byte) (n int, err error) {
n = len(p)
pb.Add(n)
return
}
// implement io.Reader
func (pb *ProgressBar) Read(p []byte) (n int, err error) {
n = len(p)
pb.Add(n)
return
}
// Create new proxy reader over bar
// Takes io.Reader or io.ReadCloser
func (pb *ProgressBar) NewProxyReader(r io.Reader) *Reader {
return &Reader{r, pb}
}
func (pb *ProgressBar) write(current int64) {
width := pb.GetWidth()
var percentBox, countersBox, timeLeftBox, speedBox, barBox, end, out string
// percents
if pb.ShowPercent {
var percent float64
if pb.Total > 0 {
percent = float64(current) / (float64(pb.Total) / float64(100))
} else {
percent = float64(current) / float64(100)
}
percentBox = fmt.Sprintf(" %6.02f%%", percent)
}
// counters
if pb.ShowCounters {
current := Format(current).To(pb.Units).Width(pb.UnitsWidth)
if pb.Total > 0 {
total := Format(pb.Total).To(pb.Units).Width(pb.UnitsWidth)
countersBox = fmt.Sprintf(" %s / %s ", current, total)
} else {
countersBox = fmt.Sprintf(" %s / ? ", current)
}
}
// time left
pb.mu.Lock()
currentFromStart := current - pb.startValue
fromStart := time.Now().Sub(pb.startTime)
lastChangeTime := pb.changeTime
fromChange := lastChangeTime.Sub(pb.startTime)
pb.mu.Unlock()
select {
case <-pb.finish:
if pb.ShowFinalTime {
var left time.Duration
left = (fromStart / time.Second) * time.Second
timeLeftBox = fmt.Sprintf(" %s", left.String())
}
default:
if pb.ShowTimeLeft && currentFromStart > 0 {
perEntry := fromChange / time.Duration(currentFromStart)
var left time.Duration
if pb.Total > 0 {
left = time.Duration(pb.Total-currentFromStart) * perEntry
left -= time.Since(lastChangeTime)
left = (left / time.Second) * time.Second
} else {
left = time.Duration(currentFromStart) * perEntry
left = (left / time.Second) * time.Second
}
if left > 0 {
timeLeft := Format(int64(left)).To(U_DURATION).String()
timeLeftBox = fmt.Sprintf(" %s", timeLeft)
}
}
}
if len(timeLeftBox) < pb.TimeBoxWidth {
timeLeftBox = fmt.Sprintf("%s%s", strings.Repeat(" ", pb.TimeBoxWidth-len(timeLeftBox)), timeLeftBox)
}
// speed
if pb.ShowSpeed && currentFromStart > 0 {
fromStart := time.Now().Sub(pb.startTime)
speed := float64(currentFromStart) / (float64(fromStart) / float64(time.Second))
speedBox = " " + Format(int64(speed)).To(pb.Units).Width(pb.UnitsWidth).PerSec().String()
}
barWidth := escapeAwareRuneCountInString(countersBox + pb.BarStart + pb.BarEnd + percentBox + timeLeftBox + speedBox + pb.prefix + pb.postfix)
// bar
if pb.ShowBar {
size := width - barWidth
if size > 0 {
if pb.Total > 0 {
curSize := int(math.Ceil((float64(current) / float64(pb.Total)) * float64(size)))
emptySize := size - curSize
barBox = pb.BarStart
if emptySize < 0 {
emptySize = 0
}
if curSize > size {
curSize = size
}
cursorLen := escapeAwareRuneCountInString(pb.Current)
if emptySize <= 0 {
barBox += strings.Repeat(pb.Current, curSize/cursorLen)
} else if curSize > 0 {
cursorEndLen := escapeAwareRuneCountInString(pb.CurrentN)
cursorRepetitions := (curSize - cursorEndLen) / cursorLen
barBox += strings.Repeat(pb.Current, cursorRepetitions)
barBox += pb.CurrentN
}
emptyLen := escapeAwareRuneCountInString(pb.Empty)
barBox += strings.Repeat(pb.Empty, emptySize/emptyLen)
barBox += pb.BarEnd
} else {
pos := size - int(current)%int(size)
barBox = pb.BarStart
if pos-1 > 0 {
barBox += strings.Repeat(pb.Empty, pos-1)
}
barBox += pb.Current
if size-pos-1 > 0 {
barBox += strings.Repeat(pb.Empty, size-pos-1)
}
barBox += pb.BarEnd
}
}
}
// check len
out = pb.prefix + countersBox + barBox + percentBox + speedBox + timeLeftBox + pb.postfix
if cl := escapeAwareRuneCountInString(out); cl < width {
end = strings.Repeat(" ", width-cl)
}
// and print!
pb.mu.Lock()
pb.lastPrint = out + end
isFinish := pb.isFinish
pb.mu.Unlock()
switch {
case isFinish:
return
case pb.Output != nil:
fmt.Fprint(pb.Output, "\r"+out+end)
case pb.Callback != nil:
pb.Callback(out + end)
case !pb.NotPrint:
fmt.Print("\r" + out + end)
}
}
// GetTerminalWidth - returns terminal width for all platforms.
func GetTerminalWidth() (int, error) {
return terminalWidth()
}
func (pb *ProgressBar) GetWidth() int {
if pb.ForceWidth {
return pb.Width
}
width := pb.Width
termWidth, _ := terminalWidth()
if width == 0 || termWidth <= width {
width = termWidth
}
return width
}
// Write the current state of the progressbar
func (pb *ProgressBar) Update() {
c := atomic.LoadInt64(&pb.current)
p := atomic.LoadInt64(&pb.previous)
if p != c {
pb.mu.Lock()
pb.changeTime = time.Now()
pb.mu.Unlock()
atomic.StoreInt64(&pb.previous, c)
}
pb.write(c)
if pb.AutoStat {
if c == 0 {
pb.startTime = time.Now()
pb.startValue = 0
} else if c >= pb.Total && pb.isFinish != true {
pb.Finish()
}
}
}
// String return the last bar print
func (pb *ProgressBar) String() string {
pb.mu.Lock()
defer pb.mu.Unlock()
return pb.lastPrint
}
// Internal loop for refreshing the progressbar
func (pb *ProgressBar) refresher() {
for {
select {
case <-pb.finish:
return
case <-time.After(pb.RefreshRate):
pb.Update()
}
}
}

11
vendor/github.com/cheggaaa/pb/pb_appengine.go generated vendored Normal file
View File

@ -0,0 +1,11 @@
// +build appengine
package pb
import "errors"
// terminalWidth returns width of the terminal, which is not supported
// and should always failed on appengine classic which is a sandboxed PaaS.
func terminalWidth() (int, error) {
return 0, errors.New("Not supported")
}

141
vendor/github.com/cheggaaa/pb/pb_win.go generated vendored Normal file
View File

@ -0,0 +1,141 @@
// +build windows
package pb
import (
"errors"
"fmt"
"os"
"sync"
"syscall"
"unsafe"
)
var tty = os.Stdin
var (
kernel32 = syscall.NewLazyDLL("kernel32.dll")
// GetConsoleScreenBufferInfo retrieves information about the
// specified console screen buffer.
// http://msdn.microsoft.com/en-us/library/windows/desktop/ms683171(v=vs.85).aspx
procGetConsoleScreenBufferInfo = kernel32.NewProc("GetConsoleScreenBufferInfo")
// GetConsoleMode retrieves the current input mode of a console's
// input buffer or the current output mode of a console screen buffer.
// https://msdn.microsoft.com/en-us/library/windows/desktop/ms683167(v=vs.85).aspx
getConsoleMode = kernel32.NewProc("GetConsoleMode")
// SetConsoleMode sets the input mode of a console's input buffer
// or the output mode of a console screen buffer.
// https://msdn.microsoft.com/en-us/library/windows/desktop/ms686033(v=vs.85).aspx
setConsoleMode = kernel32.NewProc("SetConsoleMode")
// SetConsoleCursorPosition sets the cursor position in the
// specified console screen buffer.
// https://msdn.microsoft.com/en-us/library/windows/desktop/ms686025(v=vs.85).aspx
setConsoleCursorPosition = kernel32.NewProc("SetConsoleCursorPosition")
)
type (
// Defines the coordinates of the upper left and lower right corners
// of a rectangle.
// See
// http://msdn.microsoft.com/en-us/library/windows/desktop/ms686311(v=vs.85).aspx
smallRect struct {
Left, Top, Right, Bottom int16
}
// Defines the coordinates of a character cell in a console screen
// buffer. The origin of the coordinate system (0,0) is at the top, left cell
// of the buffer.
// See
// http://msdn.microsoft.com/en-us/library/windows/desktop/ms682119(v=vs.85).aspx
coordinates struct {
X, Y int16
}
word int16
// Contains information about a console screen buffer.
// http://msdn.microsoft.com/en-us/library/windows/desktop/ms682093(v=vs.85).aspx
consoleScreenBufferInfo struct {
dwSize coordinates
dwCursorPosition coordinates
wAttributes word
srWindow smallRect
dwMaximumWindowSize coordinates
}
)
// terminalWidth returns width of the terminal.
func terminalWidth() (width int, err error) {
var info consoleScreenBufferInfo
_, _, e := syscall.Syscall(procGetConsoleScreenBufferInfo.Addr(), 2, uintptr(syscall.Stdout), uintptr(unsafe.Pointer(&info)), 0)
if e != 0 {
return 0, error(e)
}
return int(info.dwSize.X) - 1, nil
}
func getCursorPos() (pos coordinates, err error) {
var info consoleScreenBufferInfo
_, _, e := syscall.Syscall(procGetConsoleScreenBufferInfo.Addr(), 2, uintptr(syscall.Stdout), uintptr(unsafe.Pointer(&info)), 0)
if e != 0 {
return info.dwCursorPosition, error(e)
}
return info.dwCursorPosition, nil
}
func setCursorPos(pos coordinates) error {
_, _, e := syscall.Syscall(setConsoleCursorPosition.Addr(), 2, uintptr(syscall.Stdout), uintptr(uint32(uint16(pos.Y))<<16|uint32(uint16(pos.X))), 0)
if e != 0 {
return error(e)
}
return nil
}
var ErrPoolWasStarted = errors.New("Bar pool was started")
var echoLocked bool
var echoLockMutex sync.Mutex
var oldState word
func lockEcho() (quit chan int, err error) {
echoLockMutex.Lock()
defer echoLockMutex.Unlock()
if echoLocked {
err = ErrPoolWasStarted
return
}
echoLocked = true
if _, _, e := syscall.Syscall(getConsoleMode.Addr(), 2, uintptr(syscall.Stdout), uintptr(unsafe.Pointer(&oldState)), 0); e != 0 {
err = fmt.Errorf("Can't get terminal settings: %v", e)
return
}
newState := oldState
const ENABLE_ECHO_INPUT = 0x0004
const ENABLE_LINE_INPUT = 0x0002
newState = newState & (^(ENABLE_LINE_INPUT | ENABLE_ECHO_INPUT))
if _, _, e := syscall.Syscall(setConsoleMode.Addr(), 2, uintptr(syscall.Stdout), uintptr(newState), 0); e != 0 {
err = fmt.Errorf("Can't set terminal settings: %v", e)
return
}
return
}
func unlockEcho() (err error) {
echoLockMutex.Lock()
defer echoLockMutex.Unlock()
if !echoLocked {
return
}
echoLocked = false
if _, _, e := syscall.Syscall(setConsoleMode.Addr(), 2, uintptr(syscall.Stdout), uintptr(oldState), 0); e != 0 {
err = fmt.Errorf("Can't set terminal settings")
}
return
}

108
vendor/github.com/cheggaaa/pb/pb_x.go generated vendored Normal file
View File

@ -0,0 +1,108 @@
// +build linux darwin freebsd netbsd openbsd solaris dragonfly
// +build !appengine
package pb
import (
"errors"
"fmt"
"os"
"os/signal"
"sync"
"syscall"
"golang.org/x/sys/unix"
)
var ErrPoolWasStarted = errors.New("Bar pool was started")
var (
echoLockMutex sync.Mutex
origTermStatePtr *unix.Termios
tty *os.File
)
func init() {
echoLockMutex.Lock()
defer echoLockMutex.Unlock()
var err error
tty, err = os.Open("/dev/tty")
if err != nil {
tty = os.Stdin
}
}
// terminalWidth returns width of the terminal.
func terminalWidth() (int, error) {
echoLockMutex.Lock()
defer echoLockMutex.Unlock()
fd := int(tty.Fd())
ws, err := unix.IoctlGetWinsize(fd, unix.TIOCGWINSZ)
if err != nil {
return 0, err
}
return int(ws.Col), nil
}
func lockEcho() (quit chan int, err error) {
echoLockMutex.Lock()
defer echoLockMutex.Unlock()
if origTermStatePtr != nil {
return quit, ErrPoolWasStarted
}
fd := int(tty.Fd())
oldTermStatePtr, err := unix.IoctlGetTermios(fd, ioctlReadTermios)
if err != nil {
return nil, fmt.Errorf("Can't get terminal settings: %v", err)
}
oldTermios := *oldTermStatePtr
newTermios := oldTermios
newTermios.Lflag &^= syscall.ECHO
newTermios.Lflag |= syscall.ICANON | syscall.ISIG
newTermios.Iflag |= syscall.ICRNL
if err := unix.IoctlSetTermios(fd, ioctlWriteTermios, &newTermios); err != nil {
return nil, fmt.Errorf("Can't set terminal settings: %v", err)
}
quit = make(chan int, 1)
go catchTerminate(quit)
return
}
func unlockEcho() error {
echoLockMutex.Lock()
defer echoLockMutex.Unlock()
if origTermStatePtr == nil {
return nil
}
fd := int(tty.Fd())
if err := unix.IoctlSetTermios(fd, ioctlWriteTermios, origTermStatePtr); err != nil {
return fmt.Errorf("Can't set terminal settings: %v", err)
}
origTermStatePtr = nil
return nil
}
// listen exit signals and restore terminal state
func catchTerminate(quit chan int) {
sig := make(chan os.Signal, 1)
signal.Notify(sig, os.Interrupt, syscall.SIGQUIT, syscall.SIGTERM, syscall.SIGKILL)
defer signal.Stop(sig)
select {
case <-quit:
unlockEcho()
case <-sig:
unlockEcho()
}
}

82
vendor/github.com/cheggaaa/pb/pool.go generated vendored Normal file
View File

@ -0,0 +1,82 @@
// +build linux darwin freebsd netbsd openbsd solaris dragonfly windows
package pb
import (
"io"
"sync"
"time"
)
// Create and start new pool with given bars
// You need call pool.Stop() after work
func StartPool(pbs ...*ProgressBar) (pool *Pool, err error) {
pool = new(Pool)
if err = pool.start(); err != nil {
return
}
pool.Add(pbs...)
return
}
type Pool struct {
Output io.Writer
RefreshRate time.Duration
bars []*ProgressBar
lastBarsCount int
quit chan int
m sync.Mutex
finishOnce sync.Once
}
// Add progress bars.
func (p *Pool) Add(pbs ...*ProgressBar) {
p.m.Lock()
defer p.m.Unlock()
for _, bar := range pbs {
bar.ManualUpdate = true
bar.NotPrint = true
bar.Start()
p.bars = append(p.bars, bar)
}
}
func (p *Pool) start() (err error) {
p.RefreshRate = DefaultRefreshRate
quit, err := lockEcho()
if err != nil {
return
}
p.quit = make(chan int)
go p.writer(quit)
return
}
func (p *Pool) writer(finish chan int) {
var first = true
for {
select {
case <-time.After(p.RefreshRate):
if p.print(first) {
p.print(false)
finish <- 1
return
}
first = false
case <-p.quit:
finish <- 1
return
}
}
}
// Restore terminal state and close pool
func (p *Pool) Stop() error {
// Wait until one final refresh has passed.
time.Sleep(p.RefreshRate)
p.finishOnce.Do(func() {
close(p.quit)
})
return unlockEcho()
}

45
vendor/github.com/cheggaaa/pb/pool_win.go generated vendored Normal file
View File

@ -0,0 +1,45 @@
// +build windows
package pb
import (
"fmt"
"log"
)
func (p *Pool) print(first bool) bool {
p.m.Lock()
defer p.m.Unlock()
var out string
if !first {
coords, err := getCursorPos()
if err != nil {
log.Panic(err)
}
coords.Y -= int16(p.lastBarsCount)
if coords.Y < 0 {
coords.Y = 0
}
coords.X = 0
err = setCursorPos(coords)
if err != nil {
log.Panic(err)
}
}
isFinished := true
for _, bar := range p.bars {
if !bar.IsFinished() {
isFinished = false
}
bar.Update()
out += fmt.Sprintf("\r%s\n", bar.String())
}
if p.Output != nil {
fmt.Fprint(p.Output, out)
} else {
fmt.Print(out)
}
p.lastBarsCount = len(p.bars)
return isFinished
}

29
vendor/github.com/cheggaaa/pb/pool_x.go generated vendored Normal file
View File

@ -0,0 +1,29 @@
// +build linux darwin freebsd netbsd openbsd solaris dragonfly
package pb
import "fmt"
func (p *Pool) print(first bool) bool {
p.m.Lock()
defer p.m.Unlock()
var out string
if !first {
out = fmt.Sprintf("\033[%dA", p.lastBarsCount)
}
isFinished := true
for _, bar := range p.bars {
if !bar.IsFinished() {
isFinished = false
}
bar.Update()
out += fmt.Sprintf("\r%s\n", bar.String())
}
if p.Output != nil {
fmt.Fprint(p.Output, out)
} else {
fmt.Print(out)
}
p.lastBarsCount = len(p.bars)
return isFinished
}

25
vendor/github.com/cheggaaa/pb/reader.go generated vendored Normal file
View File

@ -0,0 +1,25 @@
package pb
import (
"io"
)
// It's proxy reader, implement io.Reader
type Reader struct {
io.Reader
bar *ProgressBar
}
func (r *Reader) Read(p []byte) (n int, err error) {
n, err = r.Reader.Read(p)
r.bar.Add(n)
return
}
// Close the reader when it implements io.Closer
func (r *Reader) Close() (err error) {
if closer, ok := r.Reader.(io.Closer); ok {
return closer.Close()
}
return
}

17
vendor/github.com/cheggaaa/pb/runecount.go generated vendored Normal file
View File

@ -0,0 +1,17 @@
package pb
import (
"github.com/mattn/go-runewidth"
"regexp"
)
// Finds the control character sequences (like colors)
var ctrlFinder = regexp.MustCompile("\x1b\x5b[0-9]+\x6d")
func escapeAwareRuneCountInString(s string) int {
n := runewidth.StringWidth(s)
for _, sm := range ctrlFinder.FindAllString(s, -1) {
n -= runewidth.StringWidth(sm)
}
return n
}

9
vendor/github.com/cheggaaa/pb/termios_bsd.go generated vendored Normal file
View File

@ -0,0 +1,9 @@
// +build darwin freebsd netbsd openbsd dragonfly
// +build !appengine
package pb
import "syscall"
const ioctlReadTermios = syscall.TIOCGETA
const ioctlWriteTermios = syscall.TIOCSETA

13
vendor/github.com/cheggaaa/pb/termios_sysv.go generated vendored Normal file
View File

@ -0,0 +1,13 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build linux solaris
// +build !appengine
package pb
import "golang.org/x/sys/unix"
const ioctlReadTermios = unix.TCGETS
const ioctlWriteTermios = unix.TCSETS

909
vendor/github.com/cznic/b/btree.go generated vendored
View File

@ -1,909 +0,0 @@
// Copyright 2014 The b Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package b
import (
"fmt"
"io"
"sync"
)
const (
kx = 32 //TODO benchmark tune this number if using custom key/value type(s).
kd = 32 //TODO benchmark tune this number if using custom key/value type(s).
)
func init() {
if kd < 1 {
panic(fmt.Errorf("kd %d: out of range", kd))
}
if kx < 2 {
panic(fmt.Errorf("kx %d: out of range", kx))
}
}
var (
btDPool = sync.Pool{New: func() interface{} { return &d{} }}
btEPool = btEpool{sync.Pool{New: func() interface{} { return &Enumerator{} }}}
btTPool = btTpool{sync.Pool{New: func() interface{} { return &Tree{} }}}
btXPool = sync.Pool{New: func() interface{} { return &x{} }}
)
type btTpool struct{ sync.Pool }
func (p *btTpool) get(cmp Cmp) *Tree {
x := p.Get().(*Tree)
x.cmp = cmp
return x
}
type btEpool struct{ sync.Pool }
func (p *btEpool) get(err error, hit bool, i int, k interface{} /*K*/, q *d, t *Tree, ver int64) *Enumerator {
x := p.Get().(*Enumerator)
x.err, x.hit, x.i, x.k, x.q, x.t, x.ver = err, hit, i, k, q, t, ver
return x
}
type (
// Cmp compares a and b. Return value is:
//
// < 0 if a < b
// 0 if a == b
// > 0 if a > b
//
Cmp func(a, b interface{} /*K*/) int
d struct { // data page
c int
d [2*kd + 1]de
n *d
p *d
}
de struct { // d element
k interface{} /*K*/
v interface{} /*V*/
}
// Enumerator captures the state of enumerating a tree. It is returned
// from the Seek* methods. The enumerator is aware of any mutations
// made to the tree in the process of enumerating it and automatically
// resumes the enumeration at the proper key, if possible.
//
// However, once an Enumerator returns io.EOF to signal "no more
// items", it does no more attempt to "resync" on tree mutation(s). In
// other words, io.EOF from an Enumerator is "sticky" (idempotent).
Enumerator struct {
err error
hit bool
i int
k interface{} /*K*/
q *d
t *Tree
ver int64
}
// Tree is a B+tree.
Tree struct {
c int
cmp Cmp
first *d
last *d
r interface{}
ver int64
}
xe struct { // x element
ch interface{}
k interface{} /*K*/
}
x struct { // index page
c int
x [2*kx + 2]xe
}
)
var ( // R/O zero values
zd d
zde de
ze Enumerator
zk interface{} /*K*/
zt Tree
zx x
zxe xe
)
func clr(q interface{}) {
switch x := q.(type) {
case *x:
for i := 0; i <= x.c; i++ { // Ch0 Sep0 ... Chn-1 Sepn-1 Chn
clr(x.x[i].ch)
}
*x = zx
btXPool.Put(x)
case *d:
*x = zd
btDPool.Put(x)
}
}
// -------------------------------------------------------------------------- x
func newX(ch0 interface{}) *x {
r := btXPool.Get().(*x)
r.x[0].ch = ch0
return r
}
func (q *x) extract(i int) {
q.c--
if i < q.c {
copy(q.x[i:], q.x[i+1:q.c+1])
q.x[q.c].ch = q.x[q.c+1].ch
q.x[q.c].k = zk // GC
q.x[q.c+1] = zxe // GC
}
}
func (q *x) insert(i int, k interface{} /*K*/, ch interface{}) *x {
c := q.c
if i < c {
q.x[c+1].ch = q.x[c].ch
copy(q.x[i+2:], q.x[i+1:c])
q.x[i+1].k = q.x[i].k
}
c++
q.c = c
q.x[i].k = k
q.x[i+1].ch = ch
return q
}
func (q *x) siblings(i int) (l, r *d) {
if i >= 0 {
if i > 0 {
l = q.x[i-1].ch.(*d)
}
if i < q.c {
r = q.x[i+1].ch.(*d)
}
}
return
}
// -------------------------------------------------------------------------- d
func (l *d) mvL(r *d, c int) {
copy(l.d[l.c:], r.d[:c])
copy(r.d[:], r.d[c:r.c])
l.c += c
r.c -= c
}
func (l *d) mvR(r *d, c int) {
copy(r.d[c:], r.d[:r.c])
copy(r.d[:c], l.d[l.c-c:])
r.c += c
l.c -= c
}
// ----------------------------------------------------------------------- Tree
// TreeNew returns a newly created, empty Tree. The compare function is used
// for key collation.
func TreeNew(cmp Cmp) *Tree {
return btTPool.get(cmp)
}
// Clear removes all K/V pairs from the tree.
func (t *Tree) Clear() {
if t.r == nil {
return
}
clr(t.r)
t.c, t.first, t.last, t.r = 0, nil, nil, nil
t.ver++
}
// Close performs Clear and recycles t to a pool for possible later reuse. No
// references to t should exist or such references must not be used afterwards.
func (t *Tree) Close() {
t.Clear()
*t = zt
btTPool.Put(t)
}
func (t *Tree) cat(p *x, q, r *d, pi int) {
t.ver++
q.mvL(r, r.c)
if r.n != nil {
r.n.p = q
} else {
t.last = q
}
q.n = r.n
*r = zd
btDPool.Put(r)
if p.c > 1 {
p.extract(pi)
p.x[pi].ch = q
return
}
switch x := t.r.(type) {
case *x:
*x = zx
btXPool.Put(x)
case *d:
*x = zd
btDPool.Put(x)
}
t.r = q
}
func (t *Tree) catX(p, q, r *x, pi int) {
t.ver++
q.x[q.c].k = p.x[pi].k
copy(q.x[q.c+1:], r.x[:r.c])
q.c += r.c + 1
q.x[q.c].ch = r.x[r.c].ch
*r = zx
btXPool.Put(r)
if p.c > 1 {
p.c--
pc := p.c
if pi < pc {
p.x[pi].k = p.x[pi+1].k
copy(p.x[pi+1:], p.x[pi+2:pc+1])
p.x[pc].ch = p.x[pc+1].ch
p.x[pc].k = zk // GC
p.x[pc+1].ch = nil // GC
}
return
}
switch x := t.r.(type) {
case *x:
*x = zx
btXPool.Put(x)
case *d:
*x = zd
btDPool.Put(x)
}
t.r = q
}
// Delete removes the k's KV pair, if it exists, in which case Delete returns
// true.
func (t *Tree) Delete(k interface{} /*K*/) (ok bool) {
pi := -1
var p *x
q := t.r
if q == nil {
return false
}
for {
var i int
i, ok = t.find(q, k)
if ok {
switch x := q.(type) {
case *x:
if x.c < kx && q != t.r {
x, i = t.underflowX(p, x, pi, i)
}
pi = i + 1
p = x
q = x.x[pi].ch
continue
case *d:
t.extract(x, i)
if x.c >= kd {
return true
}
if q != t.r {
t.underflow(p, x, pi)
} else if t.c == 0 {
t.Clear()
}
return true
}
}
switch x := q.(type) {
case *x:
if x.c < kx && q != t.r {
x, i = t.underflowX(p, x, pi, i)
}
pi = i
p = x
q = x.x[i].ch
case *d:
return false
}
}
}
func (t *Tree) extract(q *d, i int) { // (r interface{} /*V*/) {
t.ver++
//r = q.d[i].v // prepared for Extract
q.c--
if i < q.c {
copy(q.d[i:], q.d[i+1:q.c+1])
}
q.d[q.c] = zde // GC
t.c--
return
}
func (t *Tree) find(q interface{}, k interface{} /*K*/) (i int, ok bool) {
var mk interface{} /*K*/
l := 0
switch x := q.(type) {
case *x:
h := x.c - 1
for l <= h {
m := (l + h) >> 1
mk = x.x[m].k
switch cmp := t.cmp(k, mk); {
case cmp > 0:
l = m + 1
case cmp == 0:
return m, true
default:
h = m - 1
}
}
case *d:
h := x.c - 1
for l <= h {
m := (l + h) >> 1
mk = x.d[m].k
switch cmp := t.cmp(k, mk); {
case cmp > 0:
l = m + 1
case cmp == 0:
return m, true
default:
h = m - 1
}
}
}
return l, false
}
// First returns the first item of the tree in the key collating order, or
// (zero-value, zero-value) if the tree is empty.
func (t *Tree) First() (k interface{} /*K*/, v interface{} /*V*/) {
if q := t.first; q != nil {
q := &q.d[0]
k, v = q.k, q.v
}
return
}
// Get returns the value associated with k and true if it exists. Otherwise Get
// returns (zero-value, false).
func (t *Tree) Get(k interface{} /*K*/) (v interface{} /*V*/, ok bool) {
q := t.r
if q == nil {
return
}
for {
var i int
if i, ok = t.find(q, k); ok {
switch x := q.(type) {
case *x:
q = x.x[i+1].ch
continue
case *d:
return x.d[i].v, true
}
}
switch x := q.(type) {
case *x:
q = x.x[i].ch
default:
return
}
}
}
func (t *Tree) insert(q *d, i int, k interface{} /*K*/, v interface{} /*V*/) *d {
t.ver++
c := q.c
if i < c {
copy(q.d[i+1:], q.d[i:c])
}
c++
q.c = c
q.d[i].k, q.d[i].v = k, v
t.c++
return q
}
// Last returns the last item of the tree in the key collating order, or
// (zero-value, zero-value) if the tree is empty.
func (t *Tree) Last() (k interface{} /*K*/, v interface{} /*V*/) {
if q := t.last; q != nil {
q := &q.d[q.c-1]
k, v = q.k, q.v
}
return
}
// Len returns the number of items in the tree.
func (t *Tree) Len() int {
return t.c
}
func (t *Tree) overflow(p *x, q *d, pi, i int, k interface{} /*K*/, v interface{} /*V*/) {
t.ver++
l, r := p.siblings(pi)
if l != nil && l.c < 2*kd && i != 0 {
l.mvL(q, 1)
t.insert(q, i-1, k, v)
p.x[pi-1].k = q.d[0].k
return
}
if r != nil && r.c < 2*kd {
if i < 2*kd {
q.mvR(r, 1)
t.insert(q, i, k, v)
p.x[pi].k = r.d[0].k
return
}
t.insert(r, 0, k, v)
p.x[pi].k = k
return
}
t.split(p, q, pi, i, k, v)
}
// Seek returns an Enumerator positioned on an item such that k >= item's key.
// ok reports if k == item.key The Enumerator's position is possibly after the
// last item in the tree.
func (t *Tree) Seek(k interface{} /*K*/) (e *Enumerator, ok bool) {
q := t.r
if q == nil {
e = btEPool.get(nil, false, 0, k, nil, t, t.ver)
return
}
for {
var i int
if i, ok = t.find(q, k); ok {
switch x := q.(type) {
case *x:
q = x.x[i+1].ch
continue
case *d:
return btEPool.get(nil, ok, i, k, x, t, t.ver), true
}
}
switch x := q.(type) {
case *x:
q = x.x[i].ch
case *d:
return btEPool.get(nil, ok, i, k, x, t, t.ver), false
}
}
}
// SeekFirst returns an enumerator positioned on the first KV pair in the tree,
// if any. For an empty tree, err == io.EOF is returned and e will be nil.
func (t *Tree) SeekFirst() (e *Enumerator, err error) {
q := t.first
if q == nil {
return nil, io.EOF
}
return btEPool.get(nil, true, 0, q.d[0].k, q, t, t.ver), nil
}
// SeekLast returns an enumerator positioned on the last KV pair in the tree,
// if any. For an empty tree, err == io.EOF is returned and e will be nil.
func (t *Tree) SeekLast() (e *Enumerator, err error) {
q := t.last
if q == nil {
return nil, io.EOF
}
return btEPool.get(nil, true, q.c-1, q.d[q.c-1].k, q, t, t.ver), nil
}
// Set sets the value associated with k.
func (t *Tree) Set(k interface{} /*K*/, v interface{} /*V*/) {
//dbg("--- PRE Set(%v, %v)\n%s", k, v, t.dump())
//defer func() {
// dbg("--- POST\n%s\n====\n", t.dump())
//}()
pi := -1
var p *x
q := t.r
if q == nil {
z := t.insert(btDPool.Get().(*d), 0, k, v)
t.r, t.first, t.last = z, z, z
return
}
for {
i, ok := t.find(q, k)
if ok {
switch x := q.(type) {
case *x:
i++
if x.c > 2*kx {
x, i = t.splitX(p, x, pi, i)
}
pi = i
p = x
q = x.x[i].ch
continue
case *d:
x.d[i].v = v
}
return
}
switch x := q.(type) {
case *x:
if x.c > 2*kx {
x, i = t.splitX(p, x, pi, i)
}
pi = i
p = x
q = x.x[i].ch
case *d:
switch {
case x.c < 2*kd:
t.insert(x, i, k, v)
default:
t.overflow(p, x, pi, i, k, v)
}
return
}
}
}
// Put combines Get and Set in a more efficient way where the tree is walked
// only once. The upd(ater) receives (old-value, true) if a KV pair for k
// exists or (zero-value, false) otherwise. It can then return a (new-value,
// true) to create or overwrite the existing value in the KV pair, or
// (whatever, false) if it decides not to create or not to update the value of
// the KV pair.
//
// tree.Set(k, v) call conceptually equals calling
//
// tree.Put(k, func(interface{} /*K*/, bool){ return v, true })
//
// modulo the differing return values.
func (t *Tree) Put(k interface{} /*K*/, upd func(oldV interface{} /*V*/, exists bool) (newV interface{} /*V*/, write bool)) (oldV interface{} /*V*/, written bool) {
pi := -1
var p *x
q := t.r
var newV interface{} /*V*/
if q == nil {
// new KV pair in empty tree
newV, written = upd(newV, false)
if !written {
return
}
z := t.insert(btDPool.Get().(*d), 0, k, newV)
t.r, t.first, t.last = z, z, z
return
}
for {
i, ok := t.find(q, k)
if ok {
switch x := q.(type) {
case *x:
i++
if x.c > 2*kx {
x, i = t.splitX(p, x, pi, i)
}
pi = i
p = x
q = x.x[i].ch
continue
case *d:
oldV = x.d[i].v
newV, written = upd(oldV, true)
if !written {
return
}
x.d[i].v = newV
}
return
}
switch x := q.(type) {
case *x:
if x.c > 2*kx {
x, i = t.splitX(p, x, pi, i)
}
pi = i
p = x
q = x.x[i].ch
case *d: // new KV pair
newV, written = upd(newV, false)
if !written {
return
}
switch {
case x.c < 2*kd:
t.insert(x, i, k, newV)
default:
t.overflow(p, x, pi, i, k, newV)
}
return
}
}
}
func (t *Tree) split(p *x, q *d, pi, i int, k interface{} /*K*/, v interface{} /*V*/) {
t.ver++
r := btDPool.Get().(*d)
if q.n != nil {
r.n = q.n
r.n.p = r
} else {
t.last = r
}
q.n = r
r.p = q
copy(r.d[:], q.d[kd:2*kd])
for i := range q.d[kd:] {
q.d[kd+i] = zde
}
q.c = kd
r.c = kd
var done bool
if i > kd {
done = true
t.insert(r, i-kd, k, v)
}
if pi >= 0 {
p.insert(pi, r.d[0].k, r)
} else {
t.r = newX(q).insert(0, r.d[0].k, r)
}
if done {
return
}
t.insert(q, i, k, v)
}
func (t *Tree) splitX(p *x, q *x, pi int, i int) (*x, int) {
t.ver++
r := btXPool.Get().(*x)
copy(r.x[:], q.x[kx+1:])
q.c = kx
r.c = kx
if pi >= 0 {
p.insert(pi, q.x[kx].k, r)
} else {
t.r = newX(q).insert(0, q.x[kx].k, r)
}
q.x[kx].k = zk
for i := range q.x[kx+1:] {
q.x[kx+i+1] = zxe
}
if i > kx {
q = r
i -= kx + 1
}
return q, i
}
func (t *Tree) underflow(p *x, q *d, pi int) {
t.ver++
l, r := p.siblings(pi)
if l != nil && l.c+q.c >= 2*kd {
l.mvR(q, 1)
p.x[pi-1].k = q.d[0].k
return
}
if r != nil && q.c+r.c >= 2*kd {
q.mvL(r, 1)
p.x[pi].k = r.d[0].k
r.d[r.c] = zde // GC
return
}
if l != nil {
t.cat(p, l, q, pi-1)
return
}
t.cat(p, q, r, pi)
}
func (t *Tree) underflowX(p *x, q *x, pi int, i int) (*x, int) {
t.ver++
var l, r *x
if pi >= 0 {
if pi > 0 {
l = p.x[pi-1].ch.(*x)
}
if pi < p.c {
r = p.x[pi+1].ch.(*x)
}
}
if l != nil && l.c > kx {
q.x[q.c+1].ch = q.x[q.c].ch
copy(q.x[1:], q.x[:q.c])
q.x[0].ch = l.x[l.c].ch
q.x[0].k = p.x[pi-1].k
q.c++
i++
l.c--
p.x[pi-1].k = l.x[l.c].k
return q, i
}
if r != nil && r.c > kx {
q.x[q.c].k = p.x[pi].k
q.c++
q.x[q.c].ch = r.x[0].ch
p.x[pi].k = r.x[0].k
copy(r.x[:], r.x[1:r.c])
r.c--
rc := r.c
r.x[rc].ch = r.x[rc+1].ch
r.x[rc].k = zk
r.x[rc+1].ch = nil
return q, i
}
if l != nil {
i += l.c + 1
t.catX(p, l, q, pi-1)
q = l
return q, i
}
t.catX(p, q, r, pi)
return q, i
}
// ----------------------------------------------------------------- Enumerator
// Close recycles e to a pool for possible later reuse. No references to e
// should exist or such references must not be used afterwards.
func (e *Enumerator) Close() {
*e = ze
btEPool.Put(e)
}
// Next returns the currently enumerated item, if it exists and moves to the
// next item in the key collation order. If there is no item to return, err ==
// io.EOF is returned.
func (e *Enumerator) Next() (k interface{} /*K*/, v interface{} /*V*/, err error) {
if err = e.err; err != nil {
return
}
if e.ver != e.t.ver {
f, _ := e.t.Seek(e.k)
*e = *f
f.Close()
}
if e.q == nil {
e.err, err = io.EOF, io.EOF
return
}
if e.i >= e.q.c {
if err = e.next(); err != nil {
return
}
}
i := e.q.d[e.i]
k, v = i.k, i.v
e.k, e.hit = k, true
e.next()
return
}
func (e *Enumerator) next() error {
if e.q == nil {
e.err = io.EOF
return io.EOF
}
switch {
case e.i < e.q.c-1:
e.i++
default:
if e.q, e.i = e.q.n, 0; e.q == nil {
e.err = io.EOF
}
}
return e.err
}
// Prev returns the currently enumerated item, if it exists and moves to the
// previous item in the key collation order. If there is no item to return, err
// == io.EOF is returned.
func (e *Enumerator) Prev() (k interface{} /*K*/, v interface{} /*V*/, err error) {
if err = e.err; err != nil {
return
}
if e.ver != e.t.ver {
f, _ := e.t.Seek(e.k)
*e = *f
f.Close()
}
if e.q == nil {
e.err, err = io.EOF, io.EOF
return
}
if !e.hit {
// move to previous because Seek overshoots if there's no hit
if err = e.prev(); err != nil {
return
}
}
if e.i >= e.q.c {
if err = e.prev(); err != nil {
return
}
}
i := e.q.d[e.i]
k, v = i.k, i.v
e.k, e.hit = k, true
e.prev()
return
}
func (e *Enumerator) prev() error {
if e.q == nil {
e.err = io.EOF
return io.EOF
}
switch {
case e.i > 0:
e.i--
default:
if e.q = e.q.p; e.q == nil {
e.err = io.EOF
break
}
e.i = e.q.c - 1
}
return e.err
}

73
vendor/github.com/cznic/b/doc.go generated vendored
View File

@ -1,73 +0,0 @@
// Copyright 2014 The b Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package b implements the B+tree flavor of a BTree.
//
// Changelog
//
// 2016-07-16: Update benchmark results to newer Go version. Add a note on
// concurrency.
//
// 2014-06-26: Lower GC presure by recycling things.
//
// 2014-04-18: Added new method Put.
//
// Concurrency considerations
//
// Tree.{Clear,Delete,Put,Set} mutate the tree. One can use eg. a
// sync.Mutex.Lock/Unlock (or sync.RWMutex.Lock/Unlock) to wrap those calls if
// they are to be invoked concurrently.
//
// Tree.{First,Get,Last,Len,Seek,SeekFirst,SekLast} read but do not mutate the
// tree. One can use eg. a sync.RWMutex.RLock/RUnlock to wrap those calls if
// they are to be invoked concurrently with any of the tree mutating methods.
//
// Enumerator.{Next,Prev} mutate the enumerator and read but not mutate the
// tree. One can use eg. a sync.RWMutex.RLock/RUnlock to wrap those calls if
// they are to be invoked concurrently with any of the tree mutating methods. A
// separate mutex for the enumerator, or the whole tree in a simplified
// variant, is necessary if the enumerator's Next/Prev methods per se are to
// be invoked concurrently.
//
// Generic types
//
// Keys and their associated values are interface{} typed, similar to all of
// the containers in the standard library.
//
// Semiautomatic production of a type specific variant of this package is
// supported via
//
// $ make generic
//
// This command will write to stdout a version of the btree.go file where every
// key type occurrence is replaced by the word 'KEY' and every value type
// occurrence is replaced by the word 'VALUE'. Then you have to replace these
// tokens with your desired type(s), using any technique you're comfortable
// with.
//
// This is how, for example, 'example/int.go' was created:
//
// $ mkdir example
// $ make generic | sed -e 's/KEY/int/g' -e 's/VALUE/int/g' > example/int.go
//
// No other changes to int.go are necessary, it compiles just fine.
//
// Running the benchmarks for 1000 keys on a machine with Intel i5-4670 CPU @
// 3.4GHz, Go 1.7rc1.
//
// $ go test -bench 1e3 example/all_test.go example/int.go
// BenchmarkSetSeq1e3-4 20000 78265 ns/op
// BenchmarkGetSeq1e3-4 20000 67980 ns/op
// BenchmarkSetRnd1e3-4 10000 172720 ns/op
// BenchmarkGetRnd1e3-4 20000 89539 ns/op
// BenchmarkDelSeq1e3-4 20000 87863 ns/op
// BenchmarkDelRnd1e3-4 10000 130891 ns/op
// BenchmarkSeekSeq1e3-4 10000 100118 ns/op
// BenchmarkSeekRnd1e3-4 10000 121684 ns/op
// BenchmarkNext1e3-4 200000 6330 ns/op
// BenchmarkPrev1e3-4 200000 9066 ns/op
// PASS
// ok command-line-arguments 42.531s
// $
package b

View File

@ -1,910 +0,0 @@
// Copyright 2014 The b Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package b
import (
"fmt"
"io"
"sync"
)
const (
kx = 32 //TODO benchmark tune this number if using custom key/value type(s).
kd = 32 //TODO benchmark tune this number if using custom key/value type(s).
)
func init() {
if kd < 1 {
panic(fmt.Errorf("kd %d: out of range", kd))
}
if kx < 2 {
panic(fmt.Errorf("kx %d: out of range", kx))
}
}
var (
btDPool = sync.Pool{New: func() interface{} { return &d{} }}
btEPool = btEpool{sync.Pool{New: func() interface{} { return &Enumerator{} }}}
btTPool = btTpool{sync.Pool{New: func() interface{} { return &Tree{} }}}
btXPool = sync.Pool{New: func() interface{} { return &x{} }}
)
type btTpool struct{ sync.Pool }
func (p *btTpool) get(cmp Cmp) *Tree {
x := p.Get().(*Tree)
x.cmp = cmp
return x
}
type btEpool struct{ sync.Pool }
func (p *btEpool) get(err error, hit bool, i int, k int, q *d, t *Tree, ver int64) *Enumerator {
x := p.Get().(*Enumerator)
x.err, x.hit, x.i, x.k, x.q, x.t, x.ver = err, hit, i, k, q, t, ver
return x
}
type (
// Cmp compares a and b. Return value is:
//
// < 0 if a < b
// 0 if a == b
// > 0 if a > b
//
Cmp func(a, b int) int
d struct { // data page
c int
d [2*kd + 1]de
n *d
p *d
}
de struct { // d element
k int
v int
}
// Enumerator captures the state of enumerating a tree. It is returned
// from the Seek* methods. The enumerator is aware of any mutations
// made to the tree in the process of enumerating it and automatically
// resumes the enumeration at the proper key, if possible.
//
// However, once an Enumerator returns io.EOF to signal "no more
// items", it does no more attempt to "resync" on tree mutation(s). In
// other words, io.EOF from an Enumerator is "sticky" (idempotent).
Enumerator struct {
err error
hit bool
i int
k int
q *d
t *Tree
ver int64
}
// Tree is a B+tree.
Tree struct {
c int
cmp Cmp
first *d
last *d
r interface{}
ver int64
}
xe struct { // x element
ch interface{}
k int
}
x struct { // index page
c int
x [2*kx + 2]xe
}
)
var ( // R/O zero values
zd d
zde de
ze Enumerator
zk int
zt Tree
zx x
zxe xe
)
func clr(q interface{}) {
switch x := q.(type) {
case *x:
for i := 0; i <= x.c; i++ { // Ch0 Sep0 ... Chn-1 Sepn-1 Chn
clr(x.x[i].ch)
}
*x = zx
btXPool.Put(x)
case *d:
*x = zd
btDPool.Put(x)
}
}
// -------------------------------------------------------------------------- x
func newX(ch0 interface{}) *x {
r := btXPool.Get().(*x)
r.x[0].ch = ch0
return r
}
func (q *x) extract(i int) {
q.c--
if i < q.c {
copy(q.x[i:], q.x[i+1:q.c+1])
q.x[q.c].ch = q.x[q.c+1].ch
q.x[q.c].k = zk // GC
q.x[q.c+1] = zxe // GC
}
}
func (q *x) insert(i int, k int, ch interface{}) *x {
c := q.c
if i < c {
q.x[c+1].ch = q.x[c].ch
copy(q.x[i+2:], q.x[i+1:c])
q.x[i+1].k = q.x[i].k
}
c++
q.c = c
q.x[i].k = k
q.x[i+1].ch = ch
return q
}
func (q *x) siblings(i int) (l, r *d) {
if i >= 0 {
if i > 0 {
l = q.x[i-1].ch.(*d)
}
if i < q.c {
r = q.x[i+1].ch.(*d)
}
}
return
}
// -------------------------------------------------------------------------- d
func (l *d) mvL(r *d, c int) {
copy(l.d[l.c:], r.d[:c])
copy(r.d[:], r.d[c:r.c])
l.c += c
r.c -= c
}
func (l *d) mvR(r *d, c int) {
copy(r.d[c:], r.d[:r.c])
copy(r.d[:c], l.d[l.c-c:])
r.c += c
l.c -= c
}
// ----------------------------------------------------------------------- Tree
// TreeNew returns a newly created, empty Tree. The compare function is used
// for key collation.
func TreeNew(cmp Cmp) *Tree {
return btTPool.get(cmp)
}
// Clear removes all K/V pairs from the tree.
func (t *Tree) Clear() {
if t.r == nil {
return
}
clr(t.r)
t.c, t.first, t.last, t.r = 0, nil, nil, nil
t.ver++
}
// Close performs Clear and recycles t to a pool for possible later reuse. No
// references to t should exist or such references must not be used afterwards.
func (t *Tree) Close() {
t.Clear()
*t = zt
btTPool.Put(t)
}
func (t *Tree) cat(p *x, q, r *d, pi int) {
t.ver++
q.mvL(r, r.c)
if r.n != nil {
r.n.p = q
} else {
t.last = q
}
q.n = r.n
*r = zd
btDPool.Put(r)
if p.c > 1 {
p.extract(pi)
p.x[pi].ch = q
return
}
switch x := t.r.(type) {
case *x:
*x = zx
btXPool.Put(x)
case *d:
*x = zd
btDPool.Put(x)
}
t.r = q
}
func (t *Tree) catX(p, q, r *x, pi int) {
t.ver++
q.x[q.c].k = p.x[pi].k
copy(q.x[q.c+1:], r.x[:r.c])
q.c += r.c + 1
q.x[q.c].ch = r.x[r.c].ch
*r = zx
btXPool.Put(r)
if p.c > 1 {
p.c--
pc := p.c
if pi < pc {
p.x[pi].k = p.x[pi+1].k
copy(p.x[pi+1:], p.x[pi+2:pc+1])
p.x[pc].ch = p.x[pc+1].ch
p.x[pc].k = zk // GC
p.x[pc+1].ch = nil // GC
}
return
}
switch x := t.r.(type) {
case *x:
*x = zx
btXPool.Put(x)
case *d:
*x = zd
btDPool.Put(x)
}
t.r = q
}
// Delete removes the k's KV pair, if it exists, in which case Delete returns
// true.
func (t *Tree) Delete(k int) (ok bool) {
pi := -1
var p *x
q := t.r
if q == nil {
return false
}
for {
var i int
i, ok = t.find(q, k)
if ok {
switch x := q.(type) {
case *x:
if x.c < kx && q != t.r {
x, i = t.underflowX(p, x, pi, i)
}
pi = i + 1
p = x
q = x.x[pi].ch
ok = false
continue
case *d:
t.extract(x, i)
if x.c >= kd {
return true
}
if q != t.r {
t.underflow(p, x, pi)
} else if t.c == 0 {
t.Clear()
}
return true
}
}
switch x := q.(type) {
case *x:
if x.c < kx && q != t.r {
x, i = t.underflowX(p, x, pi, i)
}
pi = i
p = x
q = x.x[i].ch
case *d:
return false
}
}
}
func (t *Tree) extract(q *d, i int) { // (r int) {
t.ver++
//r = q.d[i].v // prepared for Extract
q.c--
if i < q.c {
copy(q.d[i:], q.d[i+1:q.c+1])
}
q.d[q.c] = zde // GC
t.c--
return
}
func (t *Tree) find(q interface{}, k int) (i int, ok bool) {
var mk int
l := 0
switch x := q.(type) {
case *x:
h := x.c - 1
for l <= h {
m := (l + h) >> 1
mk = x.x[m].k
switch cmp := t.cmp(k, mk); {
case cmp > 0:
l = m + 1
case cmp == 0:
return m, true
default:
h = m - 1
}
}
case *d:
h := x.c - 1
for l <= h {
m := (l + h) >> 1
mk = x.d[m].k
switch cmp := t.cmp(k, mk); {
case cmp > 0:
l = m + 1
case cmp == 0:
return m, true
default:
h = m - 1
}
}
}
return l, false
}
// First returns the first item of the tree in the key collating order, or
// (zero-value, zero-value) if the tree is empty.
func (t *Tree) First() (k int, v int) {
if q := t.first; q != nil {
q := &q.d[0]
k, v = q.k, q.v
}
return
}
// Get returns the value associated with k and true if it exists. Otherwise Get
// returns (zero-value, false).
func (t *Tree) Get(k int) (v int, ok bool) {
q := t.r
if q == nil {
return
}
for {
var i int
if i, ok = t.find(q, k); ok {
switch x := q.(type) {
case *x:
q = x.x[i+1].ch
continue
case *d:
return x.d[i].v, true
}
}
switch x := q.(type) {
case *x:
q = x.x[i].ch
default:
return
}
}
}
func (t *Tree) insert(q *d, i int, k int, v int) *d {
t.ver++
c := q.c
if i < c {
copy(q.d[i+1:], q.d[i:c])
}
c++
q.c = c
q.d[i].k, q.d[i].v = k, v
t.c++
return q
}
// Last returns the last item of the tree in the key collating order, or
// (zero-value, zero-value) if the tree is empty.
func (t *Tree) Last() (k int, v int) {
if q := t.last; q != nil {
q := &q.d[q.c-1]
k, v = q.k, q.v
}
return
}
// Len returns the number of items in the tree.
func (t *Tree) Len() int {
return t.c
}
func (t *Tree) overflow(p *x, q *d, pi, i int, k int, v int) {
t.ver++
l, r := p.siblings(pi)
if l != nil && l.c < 2*kd && i != 0 {
l.mvL(q, 1)
t.insert(q, i-1, k, v)
p.x[pi-1].k = q.d[0].k
return
}
if r != nil && r.c < 2*kd {
if i < 2*kd {
q.mvR(r, 1)
t.insert(q, i, k, v)
p.x[pi].k = r.d[0].k
return
}
t.insert(r, 0, k, v)
p.x[pi].k = k
return
}
t.split(p, q, pi, i, k, v)
}
// Seek returns an Enumerator positioned on an item such that k >= item's key.
// ok reports if k == item.key The Enumerator's position is possibly after the
// last item in the tree.
func (t *Tree) Seek(k int) (e *Enumerator, ok bool) {
q := t.r
if q == nil {
e = btEPool.get(nil, false, 0, k, nil, t, t.ver)
return
}
for {
var i int
if i, ok = t.find(q, k); ok {
switch x := q.(type) {
case *x:
q = x.x[i+1].ch
continue
case *d:
return btEPool.get(nil, ok, i, k, x, t, t.ver), true
}
}
switch x := q.(type) {
case *x:
q = x.x[i].ch
case *d:
return btEPool.get(nil, ok, i, k, x, t, t.ver), false
}
}
}
// SeekFirst returns an enumerator positioned on the first KV pair in the tree,
// if any. For an empty tree, err == io.EOF is returned and e will be nil.
func (t *Tree) SeekFirst() (e *Enumerator, err error) {
q := t.first
if q == nil {
return nil, io.EOF
}
return btEPool.get(nil, true, 0, q.d[0].k, q, t, t.ver), nil
}
// SeekLast returns an enumerator positioned on the last KV pair in the tree,
// if any. For an empty tree, err == io.EOF is returned and e will be nil.
func (t *Tree) SeekLast() (e *Enumerator, err error) {
q := t.last
if q == nil {
return nil, io.EOF
}
return btEPool.get(nil, true, q.c-1, q.d[q.c-1].k, q, t, t.ver), nil
}
// Set sets the value associated with k.
func (t *Tree) Set(k int, v int) {
//dbg("--- PRE Set(%v, %v)\n%s", k, v, t.dump())
//defer func() {
// dbg("--- POST\n%s\n====\n", t.dump())
//}()
pi := -1
var p *x
q := t.r
if q == nil {
z := t.insert(btDPool.Get().(*d), 0, k, v)
t.r, t.first, t.last = z, z, z
return
}
for {
i, ok := t.find(q, k)
if ok {
switch x := q.(type) {
case *x:
i++
if x.c > 2*kx {
x, i = t.splitX(p, x, pi, i)
}
pi = i
p = x
q = x.x[i].ch
continue
case *d:
x.d[i].v = v
}
return
}
switch x := q.(type) {
case *x:
if x.c > 2*kx {
x, i = t.splitX(p, x, pi, i)
}
pi = i
p = x
q = x.x[i].ch
case *d:
switch {
case x.c < 2*kd:
t.insert(x, i, k, v)
default:
t.overflow(p, x, pi, i, k, v)
}
return
}
}
}
// Put combines Get and Set in a more efficient way where the tree is walked
// only once. The upd(ater) receives (old-value, true) if a KV pair for k
// exists or (zero-value, false) otherwise. It can then return a (new-value,
// true) to create or overwrite the existing value in the KV pair, or
// (whatever, false) if it decides not to create or not to update the value of
// the KV pair.
//
// tree.Set(k, v) call conceptually equals calling
//
// tree.Put(k, func(int, bool){ return v, true })
//
// modulo the differing return values.
func (t *Tree) Put(k int, upd func(oldV int, exists bool) (newV int, write bool)) (oldV int, written bool) {
pi := -1
var p *x
q := t.r
var newV int
if q == nil {
// new KV pair in empty tree
newV, written = upd(newV, false)
if !written {
return
}
z := t.insert(btDPool.Get().(*d), 0, k, newV)
t.r, t.first, t.last = z, z, z
return
}
for {
i, ok := t.find(q, k)
if ok {
switch x := q.(type) {
case *x:
i++
if x.c > 2*kx {
x, i = t.splitX(p, x, pi, i)
}
pi = i
p = x
q = x.x[i].ch
continue
case *d:
oldV = x.d[i].v
newV, written = upd(oldV, true)
if !written {
return
}
x.d[i].v = newV
}
return
}
switch x := q.(type) {
case *x:
if x.c > 2*kx {
x, i = t.splitX(p, x, pi, i)
}
pi = i
p = x
q = x.x[i].ch
case *d: // new KV pair
newV, written = upd(newV, false)
if !written {
return
}
switch {
case x.c < 2*kd:
t.insert(x, i, k, newV)
default:
t.overflow(p, x, pi, i, k, newV)
}
return
}
}
}
func (t *Tree) split(p *x, q *d, pi, i int, k int, v int) {
t.ver++
r := btDPool.Get().(*d)
if q.n != nil {
r.n = q.n
r.n.p = r
} else {
t.last = r
}
q.n = r
r.p = q
copy(r.d[:], q.d[kd:2*kd])
for i := range q.d[kd:] {
q.d[kd+i] = zde
}
q.c = kd
r.c = kd
var done bool
if i > kd {
done = true
t.insert(r, i-kd, k, v)
}
if pi >= 0 {
p.insert(pi, r.d[0].k, r)
} else {
t.r = newX(q).insert(0, r.d[0].k, r)
}
if done {
return
}
t.insert(q, i, k, v)
}
func (t *Tree) splitX(p *x, q *x, pi int, i int) (*x, int) {
t.ver++
r := btXPool.Get().(*x)
copy(r.x[:], q.x[kx+1:])
q.c = kx
r.c = kx
if pi >= 0 {
p.insert(pi, q.x[kx].k, r)
} else {
t.r = newX(q).insert(0, q.x[kx].k, r)
}
q.x[kx].k = zk
for i := range q.x[kx+1:] {
q.x[kx+i+1] = zxe
}
if i > kx {
q = r
i -= kx + 1
}
return q, i
}
func (t *Tree) underflow(p *x, q *d, pi int) {
t.ver++
l, r := p.siblings(pi)
if l != nil && l.c+q.c >= 2*kd {
l.mvR(q, 1)
p.x[pi-1].k = q.d[0].k
return
}
if r != nil && q.c+r.c >= 2*kd {
q.mvL(r, 1)
p.x[pi].k = r.d[0].k
r.d[r.c] = zde // GC
return
}
if l != nil {
t.cat(p, l, q, pi-1)
return
}
t.cat(p, q, r, pi)
}
func (t *Tree) underflowX(p *x, q *x, pi int, i int) (*x, int) {
t.ver++
var l, r *x
if pi >= 0 {
if pi > 0 {
l = p.x[pi-1].ch.(*x)
}
if pi < p.c {
r = p.x[pi+1].ch.(*x)
}
}
if l != nil && l.c > kx {
q.x[q.c+1].ch = q.x[q.c].ch
copy(q.x[1:], q.x[:q.c])
q.x[0].ch = l.x[l.c].ch
q.x[0].k = p.x[pi-1].k
q.c++
i++
l.c--
p.x[pi-1].k = l.x[l.c].k
return q, i
}
if r != nil && r.c > kx {
q.x[q.c].k = p.x[pi].k
q.c++
q.x[q.c].ch = r.x[0].ch
p.x[pi].k = r.x[0].k
copy(r.x[:], r.x[1:r.c])
r.c--
rc := r.c
r.x[rc].ch = r.x[rc+1].ch
r.x[rc].k = zk
r.x[rc+1].ch = nil
return q, i
}
if l != nil {
i += l.c + 1
t.catX(p, l, q, pi-1)
q = l
return q, i
}
t.catX(p, q, r, pi)
return q, i
}
// ----------------------------------------------------------------- Enumerator
// Close recycles e to a pool for possible later reuse. No references to e
// should exist or such references must not be used afterwards.
func (e *Enumerator) Close() {
*e = ze
btEPool.Put(e)
}
// Next returns the currently enumerated item, if it exists and moves to the
// next item in the key collation order. If there is no item to return, err ==
// io.EOF is returned.
func (e *Enumerator) Next() (k int, v int, err error) {
if err = e.err; err != nil {
return
}
if e.ver != e.t.ver {
f, _ := e.t.Seek(e.k)
*e = *f
f.Close()
}
if e.q == nil {
e.err, err = io.EOF, io.EOF
return
}
if e.i >= e.q.c {
if err = e.next(); err != nil {
return
}
}
i := e.q.d[e.i]
k, v = i.k, i.v
e.k, e.hit = k, true
e.next()
return
}
func (e *Enumerator) next() error {
if e.q == nil {
e.err = io.EOF
return io.EOF
}
switch {
case e.i < e.q.c-1:
e.i++
default:
if e.q, e.i = e.q.n, 0; e.q == nil {
e.err = io.EOF
}
}
return e.err
}
// Prev returns the currently enumerated item, if it exists and moves to the
// previous item in the key collation order. If there is no item to return, err
// == io.EOF is returned.
func (e *Enumerator) Prev() (k int, v int, err error) {
if err = e.err; err != nil {
return
}
if e.ver != e.t.ver {
f, _ := e.t.Seek(e.k)
*e = *f
f.Close()
}
if e.q == nil {
e.err, err = io.EOF, io.EOF
return
}
if !e.hit {
// move to previous because Seek overshoots if there's no hit
if err = e.prev(); err != nil {
return
}
}
if e.i >= e.q.c {
if err = e.prev(); err != nil {
return
}
}
i := e.q.d[e.i]
k, v = i.k, i.v
e.k, e.hit = k, true
e.prev()
return
}
func (e *Enumerator) prev() error {
if e.q == nil {
e.err = io.EOF
return io.EOF
}
switch {
case e.i > 0:
e.i--
default:
if e.q = e.q.p; e.q == nil {
e.err = io.EOF
break
}
e.i = e.q.c - 1
}
return e.err
}

View File

@ -1,27 +0,0 @@
Copyright (c) 2014 The fileutil Authors. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the names of the authors nor the names of the
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

View File

@ -1,251 +0,0 @@
// Copyright (c) 2011 CZ.NIC z.s.p.o. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// blame: jnml, labs.nic.cz
/*
WIP: Package falloc provides allocation/deallocation of space within a
file/store (WIP, unstable API).
Overall structure:
File == n blocks.
Block == n atoms.
Atom == 16 bytes.
x6..x0 == least significant 7 bytes of a 64 bit integer, highest (7th) byte is
0 and is not stored in the file.
Block first byte
Aka block type tag.
------------------------------------------------------------------------------
0xFF: Free atom (free block of size 1).
+------++---------++---------++------+
| 0 || 1...7 || 8...14 || 15 |
+------++---------++---------++------+
| 0xFF || p6...p0 || n6...n0 || 0xFF |
+------++---------++---------++------+
Link to the previous free block (atom addressed) is p6...p0, next dtto in
n6...n0. Doubly linked lists of "compatible" free blocks allows for free space
reclaiming and merging. "Compatible" == of size at least some K. Heads of all
such lists are organized per K or intervals of Ks elsewhere.
------------------------------------------------------------------------------
0xFE: Free block, size == s6...s0 atoms.
+------++---------++---------++---------++--
| +0 || 1...7 || 8...14 || 15...21 || 22...16*size-1
+------++---------++---------++---------++--
| 0xFE || p6...p0 || n6...n0 || s6...s0 || ...
+------++---------++---------++---------++--
Prev and next links as in the 0xFF first byte case. End of this block - see
"Block last byte": 0xFE bellow. Data between == undefined.
------------------------------------------------------------------------------
0xFD: Relocated block.
+------++---------++-----------++------+
| 0 || 1...7 || 8...14 || 15 |
+------++---------++-----------++------+
| 0xFD || r6...r0 || undefined || 0x00 | // == used block
+------++---------++-----------++------+
Relocation link is r6..r0 == atom address. Relocations MUST NOT chain and MUST
point to a "content" block, i.e. one with the first byte in 0x00...0xFC.
Relocated block allows to permanently assign a handle/file pointer ("atom"
address) to some content and resize the content anytime afterwards w/o having
to update all the possible existing references to the original handle.
------------------------------------------------------------------------------
0xFC: Used long block.
+------++---------++--------------------++---------+---+
| 0 || 1...2 || 3...N+2 || | |
+------++---------++--------------------++---------+---+
| 0xFC || n1...n0 || N bytes of content || padding | Z |
+------++---------++--------------------++---------+---+
This block type is used for content of length in N == 238...61680 bytes. N is
encoded as a 2 byte unsigned integer n1..n0 in network byte order. Values
bellow 238 are reserved, those content lengths are to be carried by the
0x00..0xFB block types.
1. n in 0x00EE...0xF0F0 is used for content under the same rules
as in the 0x01..0xED type.
2. If the last byte of the content is not the last byte of an atom then
the last byte of the block is 0x00.
3. If the last byte of the content IS the last byte of an atom:
3.1 If the last byte of content is in 0x00..0xFD then everything is OK.
3.2 If the last byte of content is 0xFE or 0xFF then the escape
via n > 0xF0F0 MUST be used AND the block's last byte is 0x00 or 0x01,
meaning value 0xFE and 0xFF respectively.
4. n in 0xF0F1...0xFFFF is like the escaped 0xEE..0xFB block.
N == 13 + 16(n - 0xF0F1).
Discussion of the padding and Z fields - see the 0x01..0xED block type.
------------------------------------------------------------------------------
0xEE...0xFB: Used escaped short block.
+---++----------------------++---+
| 0 || 1...N-1 || |
+---++----------------------++---+
| X || N-1 bytes of content || Z |
+---++----------------------++---+
N == 15 + 16(X - 0xEE). Z is the content last byte encoded as follows.
case Z == 0x00: The last byte of content is 0xFE
case Z == 0x01: The last byte of content is 0xFF
------------------------------------------------------------------------------
0x01...0xED: Used short block.
+---++--------------------++---------+---+
| 0 || 1...N || | |
+---++--------------------++---------+---+
| N || N bytes of content || padding | Z |
+---++--------------------++---------+---+
This block type is used for content of length in 1...237 bytes. The value of
the "padding" field, if of non zero length, is undefined.
If the last byte of content is the last byte of an atom (== its file byte
offset & 0xF == 0xF) then such last byte MUST be in 0x00...0xFD.
If the last byte of content is the last byte of an atom AND the last byte of
content is 0xFE or 0xFF then the short escape block type (0xEE...0xFB) MUST be
used.
If the last byte of content is not the last byte of an atom, then the last byte
of such block, i.e. the Z field, which is also a last byte of some atom, MUST
be 0x00 (i.e. the used block marker). Other "tail" values are reserved.
------------------------------------------------------------------------------
0x00: Used empty block.
+------++-----------++------+
| 0 || 1...14 || 15 |
+------++-----------++------+
| 0x00 || undefined || 0x00 | // == used block, other "tail" values reserved.
+------++-----------++------+
All of the rules for 0x01..0xED applies. Depicted only for its different
semantics (e.g. an allocated [existing] string but with length of zero).
==============================================================================
Block last byte
------------------------------------------------------------------------------
0xFF: Free atom. Layout - see "Block first byte": FF.
------------------------------------------------------------------------------
0xFE: Free block, size n atoms. Preceding 7 bytes == size (s6...s0) of the free
block in atoms, network byte order
--++---------++------+
|| -8...-2 || -1 |
--++---------++------+
... || s6...s0 || 0xFE | <- block's last byte
--++---------++------+
Layout at start of this block - see "Block first byte": FE.
------------------------------------------------------------------------------
0x00...0xFD: Used (non free) block.
==============================================================================
Free lists table
The free lists table content is stored in the standard layout of a used block.
A table item is a 7 byte size field followed by a 7 byte atom address field
(both in network byte order), thus every item is 14 contiguous bytes. The
item's address field is pointing to a free block. The size field determines
the minimal size (in atoms) of free blocks on that list.
The free list table is n above items, thus the content has 14n bytes. Note that
the largest block content is 61680 bytes and as there are 14 bytes per table
item, so the table is limited to at most 4405 entries.
Items in the table do not have to be sorted according to their size field values.
No two items can have the same value of the size field.
When freeing blocks, the block MUST be linked into an item list with the
highest possible size field, which is less or equal to the number of atoms in
the new free block.
When freeing a block, the block MUST be first merged with any adjacent free
blocks (thus possibly creating a bigger free block) using information derived
from the adjacent blocks first and last bytes. Such merged free blocks MUST be
removed from their original doubly linked lists. Afterwards the new bigger free
block is put to the free list table in the appropriate item.
Items with address field == 0 are legal. Such item is a placeholder for a empty
list of free blocks of the item's size.
Items with size field == 0 are legal. Such item is a placeholder, used e.g. to
avoid further reallocations/redirecting of the free lists table.
The largest possible allocation request (for content length 61680 bytes) is
0xF10 (3856) atoms. All free blocks of this or bigger size are presumably put
into a single table item with the size 3856. It may be useful to additionally
have a free lists table item which links free blocks of some bigger size (say
1M+) and then use the OS sparse file support (if present) to save the physical
space used by such free blocks.
Smaller (<3856 atoms) free blocks can be organized exactly (every distinct size
has its table item) or the sizes can run using other schema like e.g. "1, 2,
4, 8, ..." (powers of 2) or "1, 2, 3, 5, 8, 13, ..." (the Fibonacci sequence)
or they may be fine tuned to a specific usage pattern.
==============================================================================
Header
The first block of a file (atom address == file offset == 0) is the file header.
The header block has the standard layout of a used short non escaped block.
Special conditions apply: The header block and its content MUST be like this:
+------+---------+---------+------+
| 0 | 1...7 | 8...14 | 15 |
+------+---------+---------+------+
| 0x0F | m6...m0 | f6...f0 | FLTT |
+------+---------+---------+------+
m6..m0 is a "magic" value 0xF1C1A1FE51B1E.
f6...f0 is the atom address of the free lists table (discussed elsewhere).
If f6...f0 == 0x00 the there is no free lists table (yet).
FLTT describes the type of the Free List Table. Currently defined values:
------------------------------------------------------------------------------
FLTT == 0: Free List Table is fixed at atom address 2. It has a fixed size for 3856 entries
for free list of size 1..3855 atoms and the last is for the list of free block >= 3856 atoms.
*/
package falloc
const (
INVALID_HANDLE = Handle(-1)
)

View File

@ -1,130 +0,0 @@
// Copyright (c) 2011 CZ.NIC z.s.p.o. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// blame: jnml, labs.nic.cz
package falloc
import "fmt"
// EBadRequest is an error produced for invalid operation, e.g. for data of more than maximum allowed.
type EBadRequest struct {
Name string
Size int
}
func (e *EBadRequest) Error() string {
return fmt.Sprintf("%s: size %d", e.Name, e.Size)
}
// EClose is a file/store close error.
type EClose struct {
Name string
Err error
}
func (e *EClose) Error() string {
return fmt.Sprintf("%sx: %s", e.Name, e.Err)
}
// ECorrupted is a file/store format error.
type ECorrupted struct {
Name string
Ofs int64
}
func (e *ECorrupted) Error() string {
return fmt.Sprintf("%s: corrupted data @%#x", e.Name, e.Ofs)
}
// ECreate is a file/store create error.
type ECreate struct {
Name string
Err error
}
func (e *ECreate) Error() string {
return fmt.Sprintf("%s: %s", e.Name, e.Err)
}
// EFreeList is a file/store format error.
type EFreeList struct {
Name string
Size int64
Block int64
}
func (e *EFreeList) Error() string {
return fmt.Sprintf("%s: invalid free list item, size %#x, block %#x", e.Name, e.Size, e.Block)
}
// EHandle is an error type reported for invalid Handles.
type EHandle struct {
Name string
Handle Handle
}
func (e EHandle) Error() string {
return fmt.Sprintf("%s: invalid handle %#x", e.Name, e.Handle)
}
// EHeader is a file/store format error.
type EHeader struct {
Name string
Header []byte
Expected []byte
}
func (e *EHeader) Error() string {
return fmt.Sprintf("%s: invalid header, got [% x], expected [% x]", e.Name, e.Header, e.Expected)
}
// ENullHandle is a file/store access error via a null handle.
type ENullHandle string
func (e ENullHandle) Error() string {
return fmt.Sprintf("%s: access via null handle", e)
}
// EOpen is a file/store open error.
type EOpen struct {
Name string
Err error
}
func (e *EOpen) Error() string {
return fmt.Sprintf("%s: %s", e.Name, e.Err)
}
// ERead is a file/store read error.
type ERead struct {
Name string
Ofs int64
Err error
}
func (e *ERead) Error() string {
return fmt.Sprintf("%s, %#x: %s", e.Name, e.Ofs, e.Err)
}
// ESize is a file/store size error.
type ESize struct {
Name string
Size int64
}
func (e *ESize) Error() string {
return fmt.Sprintf("%s: invalid size %#x(%d), size %%16 != 0", e.Name, e.Size, e.Size)
}
// EWrite is a file/store write error.
type EWrite struct {
Name string
Ofs int64
Err error
}
func (e *EWrite) Error() string {
return fmt.Sprintf("%s, %#x: %s", e.Name, e.Ofs, e.Err)
}

View File

@ -1,676 +0,0 @@
// Copyright (c) 2011 CZ.NIC z.s.p.o. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// blame: jnml, labs.nic.cz
/*
This is an mostly (WIP) conforming implementation of the "specs" in docs.go.
The main incompletness is support for only one kind of FTL, though this table kind is still per "specs".
*/
package falloc
import (
"bytes"
"github.com/cznic/fileutil/storage"
"sync"
)
// Handle is a reference to a block in a file/store.
// Handle is an uint56 wrapped in an in64, i.e. the most significant byte must be always zero.
type Handle int64
// Put puts the 7 least significant bytes of h into b. The MSB of h should be zero.
func (h Handle) Put(b []byte) {
for ofs := 6; ofs >= 0; ofs-- {
b[ofs] = byte(h)
h >>= 8
}
}
// Get gets the 7 least significant bytes of h from b. The MSB of h is zeroed.
func (h *Handle) Get(b []byte) {
var x Handle
for ofs := 0; ofs <= 6; ofs++ {
x = x<<8 | Handle(b[ofs])
}
*h = x
}
// File is a file/store with space allocation/deallocation support.
type File struct {
f storage.Accessor
atoms int64 // current file size in atom units
canfree int64 // only blocks >= canfree can be subject to Free()
freetab [3857]int64 // freetab[0] is unused, freetab[1] is size 1 ptr, freetab[2] is size 2 ptr, ...
rwm sync.RWMutex
}
func (f *File) read(b []byte, off int64) {
if n, err := f.f.ReadAt(b, off); n != len(b) {
panic(&ERead{f.f.Name(), off, err})
}
}
func (f *File) write(b []byte, off int64) {
if n, err := f.f.WriteAt(b, off); n != len(b) {
panic(&EWrite{f.f.Name(), off, err})
}
}
var ( // R/O
hdr = []byte{0x0f, 0xf1, 0xc1, 0xa1, 0xfe, 0xa5, 0x1b, 0x1e, 0, 0, 0, 0, 0, 0, 2, 0} // free lists table @2
empty = make([]byte, 16)
zero = []byte{0}
zero7 = make([]byte, 7)
)
// New returns a new File backed by store or an error if any.
// Any existing data in store are discarded.
func New(store storage.Accessor) (f *File, err error) {
f = &File{f: store}
return f, storage.Mutate(store, func() (err error) {
if err = f.f.Truncate(0); err != nil {
return &ECreate{f.f.Name(), err}
}
if _, err = f.Alloc(hdr[1:]); err != nil { //TODO internal panicking versions of the exported fns.
return
}
if _, err = f.Alloc(nil); err != nil { // (empty) root @1
return
}
b := make([]byte, 3856*14)
for i := 1; i <= 3856; i++ {
Handle(i).Put(b[(i-1)*14:])
}
if _, err = f.Alloc(b); err != nil {
return
}
f.canfree = f.atoms
return
})
}
// Open returns a new File backed by store or an error if any.
// Store already has to be in a valid format.
func Open(store storage.Accessor) (f *File, err error) {
defer func() {
if e := recover(); e != nil {
f = nil
err = e.(error)
}
}()
fi, err := store.Stat()
if err != nil {
panic(&EOpen{store.Name(), err})
}
fs := fi.Size()
if fs&0xf != 0 {
panic(&ESize{store.Name(), fi.Size()})
}
f = &File{f: store, atoms: fs >> 4}
b := make([]byte, len(hdr))
f.read(b, 0)
if !bytes.Equal(b, hdr) {
panic(&EHeader{store.Name(), b, append([]byte{}, hdr...)})
}
var atoms int64
b, atoms = f.readUsed(2)
f.canfree = atoms + 2
ofs := 0
var size, p Handle
for ofs < len(b) {
size.Get(b[ofs:])
ofs += 7
p.Get(b[ofs:])
ofs += 7
if sz, pp := int64(size), int64(p); size == 0 || size > 3856 || (pp != 0 && pp < f.canfree) || pp<<4 > fs-16 {
panic(&EFreeList{store.Name(), sz, pp})
}
f.freetab[size] = int64(p)
}
return
}
// Accessor returns the File's underlying Accessor.
func (f *File) Accessor() storage.Accessor {
return f.f
}
// Close closes f and returns an error if any.
func (f *File) Close() (err error) {
return storage.Mutate(f.Accessor(), func() (err error) {
if err = f.f.Close(); err != nil {
err = &EClose{f.f.Name(), err}
}
return
})
}
// Root returns the handle of the DB root (top level directory, ...).
func (f *File) Root() Handle {
return 1
}
func (f *File) readUsed(atom int64) (content []byte, atoms int64) {
b, redirected := make([]byte, 7), false
redir:
ofs := atom << 4
f.read(b[:1], ofs)
switch pre := b[0]; {
default:
panic(&ECorrupted{f.f.Name(), ofs})
case pre == 0x00: // Empty block
case pre >= 1 && pre <= 237: // Short
content = make([]byte, pre)
f.read(content, ofs+1)
case pre >= 0xee && pre <= 0xfb: // Short esc
content = make([]byte, 15+16*(pre-0xee))
f.read(content, ofs+1)
content[len(content)-1] += 0xfe
case pre == 0xfc: // Long
f.read(b[:2], ofs+1)
n := int(b[0])<<8 + int(b[1])
switch {
default:
panic(&ECorrupted{f.f.Name(), ofs + 1})
case n >= 238 && n <= 61680: // Long non esc
content = make([]byte, n)
f.read(content, ofs+3)
case n >= 61681: // Long esc
content = make([]byte, 13+16*(n-0xf0f1))
f.read(content, ofs+3)
content[len(content)-1] += 0xfe
}
case pre == 0xfd: // redir
if redirected {
panic(&ECorrupted{f.f.Name(), ofs})
}
f.read(b[:7], ofs+1)
(*Handle)(&atom).Get(b)
redirected = true
goto redir
}
return content, rq2Atoms(len(content))
}
func (f *File) writeUsed(b []byte, atom int64) {
n := len(b)
switch ofs, atoms, endmark := atom<<4, rq2Atoms(n), true; {
default:
panic("internal error")
case n == 0:
f.write(empty, ofs)
case n <= 237:
if (n+1)&0xf == 0 { // content end == atom end
if v := b[n-1]; v >= 0xfe { // escape
pre := []byte{byte((16*0xee + n - 15) >> 4)}
f.write(pre, ofs)
f.write(b[:n-1], ofs+1)
f.write([]byte{v - 0xfe}, ofs+atoms<<4-1)
return
}
endmark = false
}
// non esacpe
pre := []byte{byte(n)}
f.write(pre, ofs)
f.write(b, ofs+1)
if endmark {
f.write(zero, ofs+atoms<<4-1) // last block byte <- used block
}
case n > 237 && n <= 61680:
if (n+3)&0xf == 0 { // content end == atom end
if v := b[n-1]; v >= 0xfe { // escape
x := (16*0xf0f1 + n - 13) >> 4
pre := []byte{0xFC, byte(x >> 8), byte(x)}
f.write(pre, ofs)
f.write(b[:n-1], ofs+3)
f.write([]byte{v - 0xfe}, ofs+atoms<<4-1)
return
}
endmark = false
}
// non esacpe
pre := []byte{0xfc, byte(n >> 8), byte(n)}
f.write(pre, ofs)
f.write(b, ofs+3)
if endmark {
f.write(zero, ofs+atoms<<4-1) // last block byte <- used block
}
}
}
func rq2Atoms(rqbytes int) (rqatoms int64) {
if rqbytes > 237 {
rqbytes += 2
}
return int64(rqbytes>>4 + 1)
}
func (f *File) extend(b []byte) (handle int64) {
handle = f.atoms
f.writeUsed(b, handle)
f.atoms += rq2Atoms(len(b))
return
}
// Alloc stores b in a newly allocated space and returns its handle and an error if any.
func (f *File) Alloc(b []byte) (handle Handle, err error) {
err = storage.Mutate(f.Accessor(), func() (err error) {
rqAtoms := rq2Atoms(len(b))
if rqAtoms > 3856 {
return &EBadRequest{f.f.Name(), len(b)}
}
for foundsize, foundp := range f.freetab[rqAtoms:] {
if foundp != 0 {
// this works only for the current unique sizes list (except the last item!)
size := int64(foundsize) + rqAtoms
handle = Handle(foundp)
if size == 3856 {
buf := make([]byte, 7)
f.read(buf, int64(handle)<<4+15)
(*Handle)(&size).Get(buf)
}
f.delFree(int64(handle), size)
if rqAtoms < size {
f.addFree(int64(handle)+rqAtoms, size-rqAtoms)
}
f.writeUsed(b, int64(handle))
return
}
}
handle = Handle(f.extend(b))
return
})
return
}
// checkLeft returns the atom size of a free bleck left adjacent to block @atom.
// If that block is not free the returned size is 0.
func (f *File) checkLeft(atom int64) (size int64) {
if atom <= f.canfree {
return
}
b := make([]byte, 7)
fp := atom << 4
f.read(b[:1], fp-1)
switch last := b[0]; {
case last <= 0xfd:
// used block
case last == 0xfe:
f.read(b, fp-8)
(*Handle)(&size).Get(b)
case last == 0xff:
size = 1
}
return
}
// getInfo returns the block @atom type and size.
func (f *File) getInfo(atom int64) (pref byte, size int64) {
b := make([]byte, 7)
fp := atom << 4
f.read(b[:1], fp)
switch pref = b[0]; {
case pref == 0: // Empty used
size = 1
case pref >= 1 && pref <= 237: // Short
size = rq2Atoms(int(pref))
case pref >= 0xee && pref <= 0xfb: // Short esc
size = rq2Atoms(15 + 16*int(pref-0xee))
case pref == 0xfc: // Long
f.read(b[:2], fp+1)
n := int(b[0])<<8 + int(b[1])
switch {
default:
panic(&ECorrupted{f.f.Name(), fp + 1})
case n >= 238 && n <= 61680: // Long non esc
size = rq2Atoms(n)
case n >= 61681: // Long esc
size = rq2Atoms(13 + 16*(n-0xf0f1))
}
case pref == 0xfd: // reloc
size = 1
case pref == 0xfe:
f.read(b, fp+15)
(*Handle)(&size).Get(b)
case pref == 0xff:
size = 1
}
return
}
// getSize returns the atom size of the block @atom and wheter it is free.
func (f *File) getSize(atom int64) (size int64, isFree bool) {
var typ byte
typ, size = f.getInfo(atom)
isFree = typ >= 0xfe
return
}
// checkRight returns the atom size of a free bleck right adjacent to block @atom,atoms.
// If that block is not free the returned size is 0.
func (f *File) checkRight(atom, atoms int64) (size int64) {
if atom+atoms >= f.atoms {
return
}
if sz, free := f.getSize(atom + atoms); free {
size = sz
}
return
}
// delFree removes the atoms@atom free block from the free block list
func (f *File) delFree(atom, atoms int64) {
b := make([]byte, 15)
size := int(atoms)
if n := len(f.freetab); atoms >= int64(n) {
size = n - 1
}
fp := atom << 4
f.read(b[1:], fp+1)
var prev, next Handle
prev.Get(b[1:])
next.Get(b[8:])
switch {
case prev == 0 && next != 0:
next.Put(b)
f.write(b[:7], int64(32+3+7+(size-1)*14))
f.write(zero7, int64(next)<<4+1)
f.freetab[size] = int64(next)
case prev != 0 && next == 0:
f.write(zero7, int64(prev)<<4+8)
case prev != 0 && next != 0:
prev.Put(b)
f.write(b[:7], int64(next)<<4+1)
next.Put(b)
f.write(b[:7], int64(prev)<<4+8)
default: // prev == 0 && next == 0:
f.write(zero7, int64(32+3+7+(size-1)*14))
f.freetab[size] = 0
}
}
// addFree adds atoms@atom to the free block lists and marks it free.
func (f *File) addFree(atom, atoms int64) {
b := make([]byte, 7)
size := int(atoms)
if n := len(f.freetab); atoms >= int64(n) {
size = n - 1
}
head := f.freetab[size]
if head == 0 { // empty list
f.makeFree(0, atom, atoms, 0)
Handle(atom).Put(b)
f.write(b, int64(32+3+7+(size-1)*14))
f.freetab[size] = atom
return
}
Handle(atom).Put(b)
f.write(b, head<<4+1) // head.prev = atom
f.makeFree(0, atom, atoms, head) // atom.next = head
f.write(b, int64(32+3+7+(size-1)*14))
f.freetab[size] = atom
}
// makeFree sets up the content of a free block atoms@atom, fills the prev and next links.
func (f *File) makeFree(prev, atom, atoms, next int64) {
b := make([]byte, 23)
fp := atom << 4
if atoms == 1 {
b[0] = 0xff
Handle(prev).Put(b[1:])
Handle(next).Put(b[8:])
b[15] = 0xff
f.write(b[:16], fp)
return
}
b[0] = 0xfe
Handle(prev).Put(b[1:])
Handle(next).Put(b[8:])
Handle(atoms).Put(b[15:])
f.write(b[:22], fp)
b[22] = 0xfe
f.write(b[15:], fp+atoms<<4-8)
}
// Read reads and return the data associated with handle and an error if any.
// Passing an invalid handle to Read may return invalid data without error.
// It's like getting garbage via passing an invalid pointer to C.memcopy().
func (f *File) Read(handle Handle) (b []byte, err error) {
defer func() {
if e := recover(); e != nil {
b = nil
err = e.(error)
}
}()
switch handle {
case 0:
panic(ENullHandle(f.f.Name()))
case 2:
panic(&EHandle{f.f.Name(), handle})
default:
b, _ = f.readUsed(int64(handle))
}
return
}
// Free frees space associated with handle and returns an error if any. Passing an invalid
// handle to Free or reusing handle afterwards will probably corrupt the database or provide
// invalid data on Read. It's like corrupting memory via passing an invalid pointer to C.free()
// or reusing that pointer.
func (f *File) Free(handle Handle) (err error) {
return storage.Mutate(f.Accessor(), func() (err error) {
atom := int64(handle)
atoms, isFree := f.getSize(atom)
if isFree || atom < f.canfree {
return &EHandle{f.f.Name(), handle}
}
leftFree, rightFree := f.checkLeft(atom), f.checkRight(atom, atoms)
switch {
case leftFree != 0 && rightFree != 0:
f.delFree(atom-leftFree, leftFree)
f.delFree(atom+atoms, rightFree)
f.addFree(atom-leftFree, leftFree+atoms+rightFree)
case leftFree != 0 && rightFree == 0:
f.delFree(atom-leftFree, leftFree)
if atom+atoms == f.atoms { // the left free neighbour and this block together are an empy tail
f.atoms = atom - leftFree
f.f.Truncate(f.atoms << 4)
return
}
f.addFree(atom-leftFree, leftFree+atoms)
case leftFree == 0 && rightFree != 0:
f.delFree(atom+atoms, rightFree)
f.addFree(atom, atoms+rightFree)
default: // leftFree == 0 && rightFree == 0
if atom+atoms < f.atoms { // isolated inner block
f.addFree(atom, atoms)
return
}
f.f.Truncate(atom << 4) // isolated tail block, shrink file
f.atoms = atom
}
return
})
}
// Realloc reallocates space associted with handle to acomodate b, returns the newhandle
// newly associated with b and an error if any. If keepHandle == true then Realloc guarantees
// newhandle == handle even if the new data are larger then the previous content associated
// with handle. If !keepHandle && newhandle != handle then reusing handle will probably corrupt
// the database.
// The above effects are like corrupting memory/data via passing an invalid pointer to C.realloc().
func (f *File) Realloc(handle Handle, b []byte, keepHandle bool) (newhandle Handle, err error) {
err = storage.Mutate(f.Accessor(), func() (err error) {
switch handle {
case 0, 2:
return &EHandle{f.f.Name(), handle}
case 1:
keepHandle = true
}
newhandle = handle
atom, newatoms := int64(handle), rq2Atoms(len(b))
if newatoms > 3856 {
return &EBadRequest{f.f.Name(), len(b)}
}
typ, oldatoms := f.getInfo(atom)
switch {
default:
return &ECorrupted{f.f.Name(), atom << 4}
case typ <= 0xfc: // non relocated used block
switch {
case newatoms == oldatoms: // in place replace
f.writeUsed(b, atom)
case newatoms < oldatoms: // in place shrink
rightFree := f.checkRight(atom, oldatoms)
if rightFree > 0 { // right join
f.delFree(atom+oldatoms, rightFree)
}
f.addFree(atom+newatoms, oldatoms+rightFree-newatoms)
f.writeUsed(b, atom)
case newatoms > oldatoms:
if rightFree := f.checkRight(atom, oldatoms); rightFree > 0 && newatoms <= oldatoms+rightFree {
f.delFree(atom+oldatoms, rightFree)
if newatoms < oldatoms+rightFree {
f.addFree(atom+newatoms, oldatoms+rightFree-newatoms)
}
f.writeUsed(b, atom)
return
}
if !keepHandle {
f.Free(Handle(atom))
newhandle, err = f.Alloc(b)
return
}
// reloc
newatom, e := f.Alloc(b)
if e != nil {
return e
}
buf := make([]byte, 16)
buf[0] = 0xfd
Handle(newatom).Put(buf[1:])
f.Realloc(Handle(atom), buf[1:], true)
f.write(buf[:1], atom<<4)
}
case typ == 0xfd: // reloc
var target Handle
buf := make([]byte, 7)
f.read(buf, atom<<4+1)
target.Get(buf)
switch {
case newatoms == 1:
f.writeUsed(b, atom)
f.Free(target)
default:
if rightFree := f.checkRight(atom, 1); rightFree > 0 && newatoms <= 1+rightFree {
f.delFree(atom+1, rightFree)
if newatoms < 1+rightFree {
f.addFree(atom+newatoms, 1+rightFree-newatoms)
}
f.writeUsed(b, atom)
f.Free(target)
return
}
newtarget, e := f.Realloc(Handle(target), b, false)
if e != nil {
return e
}
if newtarget != target {
Handle(newtarget).Put(buf)
f.write(buf, atom<<4+1)
}
}
}
return
})
return
}
// Lock locks f for writing. If the lock is already locked for reading or writing,
// Lock blocks until the lock is available. To ensure that the lock eventually becomes available,
// a blocked Lock call excludes new readers from acquiring the lock.
func (f *File) Lock() {
f.rwm.Lock()
}
// RLock locks f for reading. If the lock is already locked for writing or there is a writer
// already waiting to release the lock, RLock blocks until the writer has released the lock.
func (f *File) RLock() {
f.rwm.RLock()
}
// Unlock unlocks f for writing. It is a run-time error if f is not locked for writing on entry to Unlock.
//
// As with Mutexes, a locked RWMutex is not associated with a particular goroutine.
// One goroutine may RLock (Lock) f and then arrange for another goroutine to RUnlock (Unlock) it.
func (f *File) Unlock() {
f.rwm.Unlock()
}
// RUnlock undoes a single RLock call; it does not affect other simultaneous readers.
// It is a run-time error if f is not locked for reading on entry to RUnlock.
func (f *File) RUnlock() {
f.rwm.RUnlock()
}
// LockedAlloc wraps Alloc in a Lock/Unlock pair.
func (f *File) LockedAlloc(b []byte) (handle Handle, err error) {
f.Lock()
defer f.Unlock()
return f.Alloc(b)
}
// LockedFree wraps Free in a Lock/Unlock pair.
func (f *File) LockedFree(handle Handle) (err error) {
f.Lock()
defer f.Unlock()
return f.Free(handle)
}
// LockedRead wraps Read in a RLock/RUnlock pair.
func (f *File) LockedRead(handle Handle) (b []byte, err error) {
f.RLock()
defer f.RUnlock()
return f.Read(handle)
}
// LockedRealloc wraps Realloc in a Lock/Unlock pair.
func (f *File) LockedRealloc(handle Handle, b []byte, keepHandle bool) (newhandle Handle, err error) {
f.Lock()
defer f.Unlock()
return f.Realloc(handle, b, keepHandle)
}

View File

@ -1,15 +0,0 @@
// Copyright (c) 2011 CZ.NIC z.s.p.o. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// blame: jnml, labs.nic.cz
package falloc
// Pull test dependencies too.
// Enables easy 'go test X' after 'go get X'
import (
_ "github.com/cznic/fileutil"
_ "github.com/cznic/fileutil/storage"
_ "github.com/cznic/mathutil"
)

View File

@ -1,225 +0,0 @@
// Copyright (c) 2014 The fileutil Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package fileutil collects some file utility functions.
package fileutil
import (
"fmt"
"io"
"os"
"path/filepath"
"runtime"
"strconv"
"sync"
"time"
)
// GoMFile is a concurrent access safe version of MFile.
type GoMFile struct {
mfile *MFile
mutex sync.Mutex
}
// NewGoMFile return a newly created GoMFile.
func NewGoMFile(fname string, flag int, perm os.FileMode, delta_ns int64) (m *GoMFile, err error) {
m = &GoMFile{}
if m.mfile, err = NewMFile(fname, flag, perm, delta_ns); err != nil {
m = nil
}
return
}
func (m *GoMFile) File() (file *os.File, err error) {
m.mutex.Lock()
defer m.mutex.Unlock()
return m.mfile.File()
}
func (m *GoMFile) SetChanged() {
m.mutex.Lock()
defer m.mutex.Unlock()
m.mfile.SetChanged()
}
func (m *GoMFile) SetHandler(h MFileHandler) {
m.mutex.Lock()
defer m.mutex.Unlock()
m.mfile.SetHandler(h)
}
// MFileHandler resolves modifications of File.
// Possible File context is expected to be a part of the handler's closure.
type MFileHandler func(*os.File) error
// MFile represents an os.File with a guard/handler on change/modification.
// Example use case is an app with a configuration file which can be modified at any time
// and have to be reloaded in such event prior to performing something configurable by that
// file. The checks are made only on access to the MFile file by
// File() and a time threshold/hysteresis value can be chosen on creating a new MFile.
type MFile struct {
file *os.File
handler MFileHandler
t0 int64
delta int64
ctime int64
}
// NewMFile returns a newly created MFile or Error if any.
// The fname, flag and perm parameters have the same meaning as in os.Open.
// For meaning of the delta_ns parameter please see the (m *MFile) File() docs.
func NewMFile(fname string, flag int, perm os.FileMode, delta_ns int64) (m *MFile, err error) {
m = &MFile{}
m.t0 = time.Now().UnixNano()
if m.file, err = os.OpenFile(fname, flag, perm); err != nil {
return
}
var fi os.FileInfo
if fi, err = m.file.Stat(); err != nil {
return
}
m.ctime = fi.ModTime().UnixNano()
m.delta = delta_ns
runtime.SetFinalizer(m, func(m *MFile) {
m.file.Close()
})
return
}
// SetChanged forces next File() to unconditionally handle modification of the wrapped os.File.
func (m *MFile) SetChanged() {
m.ctime = -1
}
// SetHandler sets a function to be invoked when modification of MFile is to be processed.
func (m *MFile) SetHandler(h MFileHandler) {
m.handler = h
}
// File returns an os.File from MFile. If time elapsed between the last invocation of this function
// and now is at least delta_ns ns (a parameter of NewMFile) then the file is checked for
// change/modification. For delta_ns == 0 the modification is checked w/o getting os.Time().
// If a change is detected a handler is invoked on the MFile file.
// Any of these steps can produce an Error. If that happens the function returns nil, Error.
func (m *MFile) File() (file *os.File, err error) {
var now int64
mustCheck := m.delta == 0
if !mustCheck {
now = time.Now().UnixNano()
mustCheck = now-m.t0 > m.delta
}
if mustCheck { // check interval reached
var fi os.FileInfo
if fi, err = m.file.Stat(); err != nil {
return
}
if fi.ModTime().UnixNano() != m.ctime { // modification detected
if m.handler == nil {
return nil, fmt.Errorf("no handler set for modified file %q", m.file.Name())
}
if err = m.handler(m.file); err != nil {
return
}
m.ctime = fi.ModTime().UnixNano()
}
m.t0 = now
}
return m.file, nil
}
// Read reads buf from r. It will either fill the full buf or fail.
// It wraps the functionality of an io.Reader which may return less bytes than requested,
// but may block if not all data are ready for the io.Reader.
func Read(r io.Reader, buf []byte) (err error) {
have := 0
remain := len(buf)
got := 0
for remain > 0 {
if got, err = r.Read(buf[have:]); err != nil {
return
}
remain -= got
have += got
}
return
}
// "os" and/or "syscall" extensions
// FadviseAdvice is used by Fadvise.
type FadviseAdvice int
// FAdviseAdvice values.
const (
// $ grep FADV /usr/include/bits/fcntl.h
POSIX_FADV_NORMAL FadviseAdvice = iota // No further special treatment.
POSIX_FADV_RANDOM // Expect random page references.
POSIX_FADV_SEQUENTIAL // Expect sequential page references.
POSIX_FADV_WILLNEED // Will need these pages.
POSIX_FADV_DONTNEED // Don't need these pages.
POSIX_FADV_NOREUSE // Data will be accessed once.
)
// TempFile creates a new temporary file in the directory dir with a name
// ending with suffix, basename starting with prefix, opens the file for
// reading and writing, and returns the resulting *os.File. If dir is the
// empty string, TempFile uses the default directory for temporary files (see
// os.TempDir). Multiple programs calling TempFile simultaneously will not
// choose the same file. The caller can use f.Name() to find the pathname of
// the file. It is the caller's responsibility to remove the file when no
// longer needed.
//
// NOTE: This function differs from ioutil.TempFile.
func TempFile(dir, prefix, suffix string) (f *os.File, err error) {
if dir == "" {
dir = os.TempDir()
}
nconflict := 0
for i := 0; i < 10000; i++ {
name := filepath.Join(dir, prefix+nextInfix()+suffix)
f, err = os.OpenFile(name, os.O_RDWR|os.O_CREATE|os.O_EXCL, 0600)
if os.IsExist(err) {
if nconflict++; nconflict > 10 {
randmu.Lock()
rand = reseed()
randmu.Unlock()
}
continue
}
break
}
return
}
// Random number state.
// We generate random temporary file names so that there's a good
// chance the file doesn't exist yet - keeps the number of tries in
// TempFile to a minimum.
var rand uint32
var randmu sync.Mutex
func reseed() uint32 {
return uint32(time.Now().UnixNano() + int64(os.Getpid()))
}
func nextInfix() string {
randmu.Lock()
r := rand
if r == 0 {
r = reseed()
}
r = r*1664525 + 1013904223 // constants from Numerical Recipes
rand = r
randmu.Unlock()
return strconv.Itoa(int(1e9 + r%1e9))[1:]
}

View File

@ -1,27 +0,0 @@
// Copyright (c) 2014 The fileutil Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package fileutil
import (
"io"
"os"
)
const hasPunchHole = false
// PunchHole deallocates space inside a file in the byte range starting at
// offset and continuing for len bytes. Not supported on ARM.
func PunchHole(f *os.File, off, len int64) error {
return nil
}
// Fadvise predeclares an access pattern for file data. See also 'man 2
// posix_fadvise'. Not supported on ARM.
func Fadvise(f *os.File, off, len int64, advice FadviseAdvice) error {
return nil
}
// IsEOF reports whether err is an EOF condition.
func IsEOF(err error) bool { return err == io.EOF }

View File

@ -1,29 +0,0 @@
// Copyright (c) 2014 The fileutil Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !arm
package fileutil
import (
"io"
"os"
)
const hasPunchHole = false
// PunchHole deallocates space inside a file in the byte range starting at
// offset and continuing for len bytes. Not supported on OSX.
func PunchHole(f *os.File, off, len int64) error {
return nil
}
// Fadvise predeclares an access pattern for file data. See also 'man 2
// posix_fadvise'. Not supported on OSX.
func Fadvise(f *os.File, off, len int64, advice FadviseAdvice) error {
return nil
}
// IsEOF reports whether err is an EOF condition.
func IsEOF(err error) bool { return err == io.EOF }

View File

@ -1,29 +0,0 @@
// Copyright (c) 2014 The fileutil Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !arm
package fileutil
import (
"io"
"os"
)
const hasPunchHole = false
// PunchHole deallocates space inside a file in the byte range starting at
// offset and continuing for len bytes. Unimplemented on FreeBSD.
func PunchHole(f *os.File, off, len int64) error {
return nil
}
// Fadvise predeclares an access pattern for file data. See also 'man 2
// posix_fadvise'. Unimplemented on FreeBSD.
func Fadvise(f *os.File, off, len int64, advice FadviseAdvice) error {
return nil
}
// IsEOF reports whether err is an EOF condition.
func IsEOF(err error) bool { return err == io.EOF }

View File

@ -1,98 +0,0 @@
// Copyright (c) 2014 The fileutil Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !arm
package fileutil
import (
"bytes"
"io"
"io/ioutil"
"os"
"strconv"
"syscall"
)
const hasPunchHole = true
func n(s []byte) byte {
for i, c := range s {
if c < '0' || c > '9' {
s = s[:i]
break
}
}
v, _ := strconv.Atoi(string(s))
return byte(v)
}
func init() {
b, err := ioutil.ReadFile("/proc/sys/kernel/osrelease")
if err != nil {
panic(err)
}
tokens := bytes.Split(b, []byte("."))
if len(tokens) > 3 {
tokens = tokens[:3]
}
switch len(tokens) {
case 3:
// Supported since kernel 2.6.38
if bytes.Compare([]byte{n(tokens[0]), n(tokens[1]), n(tokens[2])}, []byte{2, 6, 38}) < 0 {
puncher = func(*os.File, int64, int64) error { return nil }
}
case 2:
if bytes.Compare([]byte{n(tokens[0]), n(tokens[1])}, []byte{2, 7}) < 0 {
puncher = func(*os.File, int64, int64) error { return nil }
}
default:
puncher = func(*os.File, int64, int64) error { return nil }
}
}
var puncher = func(f *os.File, off, len int64) error {
const (
/*
/usr/include/linux$ grep FL_ falloc.h
*/
_FALLOC_FL_KEEP_SIZE = 0x01 // default is extend size
_FALLOC_FL_PUNCH_HOLE = 0x02 // de-allocates range
)
_, _, errno := syscall.Syscall6(
syscall.SYS_FALLOCATE,
uintptr(f.Fd()),
uintptr(_FALLOC_FL_KEEP_SIZE|_FALLOC_FL_PUNCH_HOLE),
uintptr(off),
uintptr(len),
0, 0)
if errno != 0 {
return os.NewSyscallError("SYS_FALLOCATE", errno)
}
return nil
}
// PunchHole deallocates space inside a file in the byte range starting at
// offset and continuing for len bytes. No-op for kernels < 2.6.38 (or < 2.7).
func PunchHole(f *os.File, off, len int64) error {
return puncher(f, off, len)
}
// Fadvise predeclares an access pattern for file data. See also 'man 2
// posix_fadvise'.
func Fadvise(f *os.File, off, len int64, advice FadviseAdvice) error {
_, _, errno := syscall.Syscall6(
syscall.SYS_FADVISE64,
uintptr(f.Fd()),
uintptr(off),
uintptr(len),
uintptr(advice),
0, 0)
return os.NewSyscallError("SYS_FADVISE64", errno)
}
// IsEOF reports whether err is an EOF condition.
func IsEOF(err error) bool { return err == io.EOF }

View File

@ -1,29 +0,0 @@
// Copyright (c) 2014 The fileutil Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !arm
package fileutil
import (
"io"
"os"
)
const hasPunchHole = false
// PunchHole deallocates space inside a file in the byte range starting at
// offset and continuing for len bytes. Similar to FreeBSD, this is
// unimplemented.
func PunchHole(f *os.File, off, len int64) error {
return nil
}
// Unimplemented on NetBSD.
func Fadvise(f *os.File, off, len int64, advice FadviseAdvice) error {
return nil
}
// IsEOF reports whether err is an EOF condition.
func IsEOF(err error) bool { return err == io.EOF }

View File

@ -1,27 +0,0 @@
// Copyright (c) 2014 The fileutil Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package fileutil
import (
"io"
"os"
)
const hasPunchHole = false
// PunchHole deallocates space inside a file in the byte range starting at
// offset and continuing for len bytes. Similar to FreeBSD, this is
// unimplemented.
func PunchHole(f *os.File, off, len int64) error {
return nil
}
// Unimplemented on OpenBSD.
func Fadvise(f *os.File, off, len int64, advice FadviseAdvice) error {
return nil
}
// IsEOF reports whether err is an EOF condition.
func IsEOF(err error) bool { return err == io.EOF }

View File

@ -1,27 +0,0 @@
// Copyright (c) 2014 The fileutil Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package fileutil
import (
"io"
"os"
)
const hasPunchHole = false
// PunchHole deallocates space inside a file in the byte range starting at
// offset and continuing for len bytes. Unimplemented on Plan 9.
func PunchHole(f *os.File, off, len int64) error {
return nil
}
// Fadvise predeclares an access pattern for file data. See also 'man 2
// posix_fadvise'. Unimplemented on Plan 9.
func Fadvise(f *os.File, off, len int64, advice FadviseAdvice) error {
return nil
}
// IsEOF reports whether err is an EOF condition.
func IsEOF(err error) bool { return err == io.EOF }

View File

@ -1,29 +0,0 @@
// Copyright (c) 2013 jnml. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build go1.3
package fileutil
import (
"io"
"os"
)
const hasPunchHole = false
// PunchHole deallocates space inside a file in the byte range starting at
// offset and continuing for len bytes. Not supported on Solaris.
func PunchHole(f *os.File, off, len int64) error {
return nil
}
// Fadvise predeclares an access pattern for file data. See also 'man 2
// posix_fadvise'. Not supported on Solaris.
func Fadvise(f *os.File, off, len int64, advice FadviseAdvice) error {
return nil
}
// IsEOF reports whether err is an EOF condition.
func IsEOF(err error) bool { return err == io.EOF }

View File

@ -1,185 +0,0 @@
// Copyright (c) 2014 The fileutil Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package fileutil
import (
"io"
"os"
"sync"
"syscall"
"unsafe"
)
const hasPunchHole = true
// PunchHole deallocates space inside a file in the byte range starting at
// offset and continuing for len bytes. Not supported on Windows.
func PunchHole(f *os.File, off, len int64) error {
return puncher(f, off, len)
}
// Fadvise predeclares an access pattern for file data. See also 'man 2
// posix_fadvise'. Not supported on Windows.
func Fadvise(f *os.File, off, len int64, advice FadviseAdvice) error {
return nil
}
// IsEOF reports whether err is an EOF condition.
func IsEOF(err error) bool {
if err == io.EOF {
return true
}
// http://social.technet.microsoft.com/Forums/windowsserver/en-US/1a16311b-c625-46cf-830b-6a26af488435/how-to-solve-error-38-0x26-errorhandleeof-using-fsctlgetretrievalpointers
x, ok := err.(*os.PathError)
return ok && x.Op == "read" && x.Err.(syscall.Errno) == 0x26
}
var (
modkernel32 = syscall.NewLazyDLL("kernel32.dll")
procDeviceIOControl = modkernel32.NewProc("DeviceIoControl")
sparseFilesMu sync.Mutex
sparseFiles map[uintptr]struct{}
)
func init() {
// sparseFiles is an fd set for already "sparsed" files - according to
// msdn.microsoft.com/en-us/library/windows/desktop/aa364225(v=vs.85).aspx
// the file handles are unique per process.
sparseFiles = make(map[uintptr]struct{})
}
// puncHoleWindows punches a hole into the given file starting at offset,
// measuring "size" bytes
// (http://msdn.microsoft.com/en-us/library/windows/desktop/aa364597%28v=vs.85%29.aspx)
func puncher(file *os.File, offset, size int64) error {
if err := ensureFileSparse(file); err != nil {
return err
}
// http://msdn.microsoft.com/en-us/library/windows/desktop/aa364411%28v=vs.85%29.aspx
// typedef struct _FILE_ZERO_DATA_INFORMATION {
// LARGE_INTEGER FileOffset;
// LARGE_INTEGER BeyondFinalZero;
//} FILE_ZERO_DATA_INFORMATION, *PFILE_ZERO_DATA_INFORMATION;
type fileZeroDataInformation struct {
FileOffset, BeyondFinalZero int64
}
lpInBuffer := fileZeroDataInformation{
FileOffset: offset,
BeyondFinalZero: offset + size}
return deviceIOControl(false, file.Fd(), uintptr(unsafe.Pointer(&lpInBuffer)), 16)
}
// // http://msdn.microsoft.com/en-us/library/windows/desktop/cc948908%28v=vs.85%29.aspx
// type fileSetSparseBuffer struct {
// SetSparse bool
// }
func ensureFileSparse(file *os.File) (err error) {
fd := file.Fd()
sparseFilesMu.Lock()
if _, ok := sparseFiles[fd]; ok {
sparseFilesMu.Unlock()
return nil
}
if err = deviceIOControl(true, fd, 0, 0); err == nil {
sparseFiles[fd] = struct{}{}
}
sparseFilesMu.Unlock()
return err
}
func deviceIOControl(setSparse bool, fd, inBuf, inBufLen uintptr) (err error) {
const (
//http://source.winehq.org/source/include/winnt.h#L4605
file_read_data = 1
file_write_data = 2
// METHOD_BUFFERED 0
method_buffered = 0
// FILE_ANY_ACCESS 0
file_any_access = 0
// FILE_DEVICE_FILE_SYSTEM 0x00000009
file_device_file_system = 0x00000009
// FILE_SPECIAL_ACCESS (FILE_ANY_ACCESS)
file_special_access = file_any_access
file_read_access = file_read_data
file_write_access = file_write_data
// http://source.winehq.org/source/include/winioctl.h
// #define CTL_CODE ( DeviceType,
// Function,
// Method,
// Access )
// ((DeviceType) << 16) | ((Access) << 14) | ((Function) << 2) | (Method)
// FSCTL_SET_COMPRESSION CTL_CODE(FILE_DEVICE_FILE_SYSTEM, 16, METHOD_BUFFERED, FILE_READ_DATA | FILE_WRITE_DATA)
fsctl_set_compression = (file_device_file_system << 16) | ((file_read_access | file_write_access) << 14) | (16 << 2) | method_buffered
// FSCTL_SET_SPARSE CTL_CODE(FILE_DEVICE_FILE_SYSTEM, 49, METHOD_BUFFERED, FILE_SPECIAL_ACCESS)
fsctl_set_sparse = (file_device_file_system << 16) | (file_special_access << 14) | (49 << 2) | method_buffered
// FSCTL_SET_ZERO_DATA CTL_CODE(FILE_DEVICE_FILE_SYSTEM, 50, METHOD_BUFFERED, FILE_WRITE_DATA)
fsctl_set_zero_data = (file_device_file_system << 16) | (file_write_data << 14) | (50 << 2) | method_buffered
)
retPtr := uintptr(unsafe.Pointer(&(make([]byte, 8)[0])))
var r1 uintptr
var e1 syscall.Errno
if setSparse {
// BOOL
// WINAPI
// DeviceIoControl( (HANDLE) hDevice, // handle to a file
// FSCTL_SET_SPARSE, // dwIoControlCode
// (PFILE_SET_SPARSE_BUFFER) lpInBuffer, // input buffer
// (DWORD) nInBufferSize, // size of input buffer
// NULL, // lpOutBuffer
// 0, // nOutBufferSize
// (LPDWORD) lpBytesReturned, // number of bytes returned
// (LPOVERLAPPED) lpOverlapped ); // OVERLAPPED structure
r1, _, e1 = syscall.Syscall9(procDeviceIOControl.Addr(), 8,
fd,
uintptr(fsctl_set_sparse),
// If the lpInBuffer parameter is NULL, the operation will behave the same as if the SetSparse member of the FILE_SET_SPARSE_BUFFER structure were TRUE. In other words, the operation sets the file to a sparse file.
0, // uintptr(unsafe.Pointer(&lpInBuffer)),
0, // 1,
0,
0,
retPtr,
0,
0)
} else {
// BOOL
// WINAPI
// DeviceIoControl( (HANDLE) hDevice, // handle to a file
// FSCTL_SET_ZERO_DATA, // dwIoControlCode
// (LPVOID) lpInBuffer, // input buffer
// (DWORD) nInBufferSize, // size of input buffer
// NULL, // lpOutBuffer
// 0, // nOutBufferSize
// (LPDWORD) lpBytesReturned, // number of bytes returned
// (LPOVERLAPPED) lpOverlapped ); // OVERLAPPED structure
r1, _, e1 = syscall.Syscall9(procDeviceIOControl.Addr(), 8,
fd,
uintptr(fsctl_set_zero_data),
inBuf,
inBufLen,
0,
0,
retPtr,
0,
0)
}
if r1 == 0 {
if e1 != 0 {
err = error(e1)
} else {
err = syscall.EINVAL
}
}
return err
}

View File

@ -1,153 +0,0 @@
// Copyright (c) 2011 CZ.NIC z.s.p.o. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// blame: jnml, labs.nic.cz
/*
WIP: Package hdb provides a "handle"/value DB like store, but actually it's
closer to the model of a process's virtual memory and its alloc, free and move
methods.
The hdb package is a thin layer around falloc.File providing stable-only
handles and the basic synchronizing primitives. The central functionality of
hdb are the New, Set, Get and Delete methods of Store.
Conceptual analogy:
New alloc(sizeof(content)), return new "memory" pointer (a handle).
Get memmove() from "memory" "pointed to" by handle to the result content.
Note: Handle "knows" the size of its content.
Set memmove() from content to "memory" pointed to by handle.
In contrast to real memory, the new content may have different
size than the previously stored one w/o additional handling
and the "pointer" handle remains the same.
Delete free() the "memory" "pointed to" by handle.
*/
package hdb
import (
"github.com/cznic/fileutil/falloc"
"github.com/cznic/fileutil/storage"
)
type Store struct {
f *falloc.File
}
// New returns a newly created Store backed by accessor, discarding its conents if any.
// If successful, methods on the returned Store can be used for I/O.
// It returns the Store and an error, if any.
func New(accessor storage.Accessor) (store *Store, err error) {
s := &Store{}
if s.f, err = falloc.New(accessor); err == nil {
store = s
}
return
}
// Open opens the Store from accessor.
// If successful, methods on the returned Store can be used for data exchange.
// It returns the Store and an error, if any.
func Open(accessor storage.Accessor) (store *Store, err error) {
s := &Store{}
if s.f, err = falloc.Open(accessor); err == nil {
store = s
}
return
}
// Close closes the store. Further access to the store has undefined behavior and may panic.
// It returns an error, if any.
func (s *Store) Close() (err error) {
defer func() {
s.f = nil
}()
return s.f.Close()
}
// Delete deletes the data associated with handle.
// It returns an error if any.
func (s *Store) Delete(handle falloc.Handle) (err error) {
return s.f.Free(handle)
}
// Get gets the data associated with handle.
// It returns the data and an error, if any.
func (s *Store) Get(handle falloc.Handle) (b []byte, err error) {
return s.f.Read(handle)
}
// New associates data with a new handle.
// It returns the handle and an error, if any.
func (s *Store) New(b []byte) (handle falloc.Handle, err error) {
return s.f.Alloc(b)
}
// Set associates data with an existing handle.
// It returns an error, if any.
func (s *Store) Set(handle falloc.Handle, b []byte) (err error) {
_, err = s.f.Realloc(handle, b, true)
return
}
// Root returns the handle of the DB root (top level directory, ...).
func (s *Store) Root() falloc.Handle {
return s.f.Root()
}
// File returns the underlying falloc.File of 's'.
func (s *Store) File() *falloc.File {
return s.f
}
// Lock locks 's' for writing. If the lock is already locked for reading or writing,
// Lock blocks until the lock is available. To ensure that the lock eventually becomes available,
// a blocked Lock call excludes new readers from acquiring the lock.
func (s *Store) Lock() {
s.f.Lock()
}
// RLock locks 's' for reading. If the lock is already locked for writing or there is a writer
// already waiting to release the lock, RLock blocks until the writer has released the lock.
func (s *Store) RLock() {
s.f.RLock()
}
// Unlock unlocks 's' for writing. It's a run-time error if 's' is not locked for writing on entry to Unlock.
//
// As with Mutexes, a locked RWMutex is not associated with a particular goroutine.
// One goroutine may RLock (Lock) 's' and then arrange for another goroutine to RUnlock (Unlock) it.
func (s *Store) Unlock() {
s.f.Unlock()
}
// RUnlock undoes a single RLock call; it does not affect other simultaneous readers.
// It's a run-time error if 's' is not locked for reading on entry to RUnlock.
func (s *Store) RUnlock() {
s.f.RUnlock()
}
// LockedNew wraps New in a Lock/Unlock pair.
func (s *Store) LockedNew(b []byte) (handle falloc.Handle, err error) {
return s.f.LockedAlloc(b)
}
// LockedDelete wraps Delete in a Lock/Unlock pair.
func (s *Store) LockedDelete(handle falloc.Handle) (err error) {
return s.f.LockedFree(handle)
}
// LockedGet wraps Get in a RLock/RUnlock pair.
func (s *Store) LockedGet(handle falloc.Handle) (b []byte, err error) {
return s.f.LockedRead(handle)
}
// LockedSet wraps Set in a Lock/Unlock pair.
func (s *Store) LockedSet(handle falloc.Handle, b []byte) (err error) {
_, err = s.f.Realloc(handle, b, true)
return
}

View File

@ -1,13 +0,0 @@
// Copyright (c) 2011 CZ.NIC z.s.p.o. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// blame: jnml, labs.nic.cz
package hdb
// Pull test dependencies too.
// Enables easy 'go test X' after 'go get X'
import (
// nothing yet
)

View File

@ -1,322 +0,0 @@
// Copyright (c) 2011 CZ.NIC z.s.p.o. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// blame: jnml, labs.nic.cz
package storage
import (
"container/list"
"io"
"math"
"os"
"sync"
"sync/atomic"
)
type cachepage struct {
b [512]byte
dirty bool
lru *list.Element
pi int64
valid int // page content is b[:valid]
}
func (p *cachepage) wr(b []byte, off int) (wasDirty bool) {
copy(p.b[off:], b)
if n := off + len(b); n > p.valid {
p.valid = n
}
wasDirty = p.dirty
p.dirty = true
return
}
func (c *Cache) rd(off int64, read bool) (p *cachepage, ok bool) {
c.Rq++
pi := off >> 9
if p, ok = c.m[pi]; ok {
c.lru.MoveToBack(p.lru)
return
}
if !read {
return
}
fp := off &^ 511
if fp >= c.size {
return
}
rq := 512
if fp+512 > c.size {
rq = int(c.size - fp)
}
p = &cachepage{pi: pi, valid: rq}
p.lru = c.lru.PushBack(p)
if n, err := c.f.ReadAt(p.b[:p.valid], fp); n != rq {
panic(err)
}
c.Load++
if c.advise != nil {
c.advise(fp, 512, false)
}
c.m[pi], ok = p, true
return
}
func (c *Cache) wr(off int64) (p *cachepage) {
var ok bool
if p, ok = c.rd(off, false); ok {
return
}
pi := off >> 9
p = &cachepage{pi: pi}
p.lru = c.lru.PushBack(p)
c.m[pi] = p
return
}
// Cache provides caching support for another store Accessor.
type Cache struct {
advise func(int64, int, bool)
clean chan bool
cleaning int32
close chan bool
f Accessor
fi *FileInfo
lock sync.Mutex
lru *list.List
m map[int64]*cachepage
maxpages int
size int64
sync chan bool
wlist *list.List
write chan bool
writing int32
Rq int64 // Pages requested from cache
Load int64 // Pages loaded (cache miss)
Purge int64 // Pages purged
Top int // "High water" pages
}
// Implementation of Accessor.
func (c *Cache) BeginUpdate() error { return nil }
// Implementation of Accessor.
func (c *Cache) EndUpdate() error { return nil }
// NewCache creates a caching Accessor from store with total of maxcache bytes.
// NewCache returns the new Cache, implementing Accessor or an error if any.
//
// The LRU mechanism is used, so the cache tries to keep often accessed pages cached.
//
func NewCache(store Accessor, maxcache int64, advise func(int64, int, bool)) (c *Cache, err error) {
var fi os.FileInfo
if fi, err = store.Stat(); err != nil {
return
}
x := maxcache >> 9
if x > math.MaxInt32/2 {
x = math.MaxInt32 / 2
}
c = &Cache{
advise: advise,
clean: make(chan bool, 1),
close: make(chan bool),
f: store,
lru: list.New(), // front == oldest used, back == last recently used
m: make(map[int64]*cachepage),
maxpages: int(x),
size: fi.Size(),
sync: make(chan bool),
wlist: list.New(),
write: make(chan bool, 1),
}
c.fi = NewFileInfo(fi, c)
go c.writer()
go c.cleaner(int((int64(c.maxpages) * 95) / 100)) // hysteresis
return
}
func (c *Cache) Accessor() Accessor {
return c.f
}
func (c *Cache) Close() (err error) {
close(c.write)
<-c.close
close(c.clean)
<-c.close
return c.f.Close()
}
func (c *Cache) Name() (s string) {
return c.f.Name()
}
func (c *Cache) ReadAt(b []byte, off int64) (n int, err error) {
po := int(off) & 0x1ff
bp := 0
rem := len(b)
m := 0
for rem != 0 {
c.lock.Lock() // X1+
p, ok := c.rd(off, true)
if !ok {
c.lock.Unlock() // X1-
return -1, io.EOF
}
rq := rem
if po+rq > 512 {
rq = 512 - po
}
if n := copy(b[bp:bp+rq], p.b[po:p.valid]); n != rq {
c.lock.Unlock() // X1-
return -1, io.EOF
}
m = len(c.m)
c.lock.Unlock() // X1-
po = 0
bp += rq
off += int64(rq)
rem -= rq
n += rq
}
if m > c.maxpages && atomic.CompareAndSwapInt32(&c.cleaning, 0, 1) {
if m > c.Top {
c.Top = m
}
c.clean <- true
}
return
}
func (c *Cache) Stat() (fi os.FileInfo, err error) {
c.lock.Lock()
defer c.lock.Unlock()
return c.fi, nil
}
func (c *Cache) Sync() (err error) {
c.write <- false
<-c.sync
return
}
func (c *Cache) Truncate(size int64) (err error) {
c.Sync() //TODO improve (discard pages, the writer goroutine should also be aware, ...)
c.lock.Lock()
defer c.lock.Unlock()
c.size = size
return c.f.Truncate(size)
}
func (c *Cache) WriteAt(b []byte, off int64) (n int, err error) {
po := int(off) & 0x1ff
bp := 0
rem := len(b)
m := 0
for rem != 0 {
c.lock.Lock() // X+
p := c.wr(off)
rq := rem
if po+rq > 512 {
rq = 512 - po
}
if wasDirty := p.wr(b[bp:bp+rq], po); !wasDirty {
c.wlist.PushBack(p)
}
m = len(c.m)
po = 0
bp += rq
off += int64(rq)
if off > c.size {
c.size = off
}
c.lock.Unlock() // X-
rem -= rq
n += rq
}
if atomic.CompareAndSwapInt32(&c.writing, 0, 1) {
c.write <- true
}
if m > c.maxpages && atomic.CompareAndSwapInt32(&c.cleaning, 0, 1) {
if m > c.Top {
c.Top = m
}
c.clean <- true
}
return
}
func (c *Cache) writer() {
for ok := true; ok; {
var wr bool
var off int64
wr, ok = <-c.write
for {
c.lock.Lock() // X1+
item := c.wlist.Front()
if item == nil {
c.lock.Unlock() // X1-
break
}
p := item.Value.(*cachepage)
off = p.pi << 9
if n, err := c.f.WriteAt(p.b[:p.valid], off); n != p.valid {
c.lock.Unlock() // X1-
panic("TODO Cache.writer errchan") //TODO +errchan
panic(err)
}
p.dirty = false
c.wlist.Remove(item)
if c.advise != nil {
c.advise(off, 512, true)
}
c.lock.Unlock() // X1-
}
switch {
case wr:
atomic.AddInt32(&c.writing, -1)
case ok:
c.sync <- true
}
}
c.close <- true
}
func (c *Cache) cleaner(limit int) {
for _ = range c.clean {
var item *list.Element
for {
c.lock.Lock() // X1+
if len(c.m) < limit {
c.lock.Unlock() // X1-
break
}
if item == nil {
item = c.lru.Front()
}
if p := item.Value.(*cachepage); !p.dirty {
delete(c.m, p.pi)
c.lru.Remove(item)
c.Purge++
}
item = item.Next()
c.lock.Unlock() // X1-
}
atomic.AddInt32(&c.cleaning, -1)
}
c.close <- true
}

View File

@ -1,50 +0,0 @@
// Copyright (c) 2011 CZ.NIC z.s.p.o. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// blame: jnml, labs.nic.cz
package storage
import (
"os"
)
// FileAccessor is the concrete type returned by NewFile and OpenFile.
type FileAccessor struct {
*os.File
}
// Implementation of Accessor.
func (f *FileAccessor) BeginUpdate() error { return nil }
// Implementation of Accessor.
func (f *FileAccessor) EndUpdate() error { return nil }
// NewFile returns an Accessor backed by an os.File named name, It opens the
// named file with specified flag (os.O_RDWR etc.) and perm, (0666 etc.) if
// applicable. If successful, methods on the returned Accessor can be used for
// I/O. It returns the Accessor and an Error, if any.
//
// NOTE: The returned Accessor implements BeginUpdate and EndUpdate as a no op.
func NewFile(name string, flag int, perm os.FileMode) (store Accessor, err error) {
var f FileAccessor
if f.File, err = os.OpenFile(name, flag, perm); err == nil {
store = &f
}
return
}
// OpenFile returns an Accessor backed by an existing os.File named name, It
// opens the named file with specified flag (os.O_RDWR etc.) and perm, (0666
// etc.) if applicable. If successful, methods on the returned Accessor can be
// used for I/O. It returns the Accessor and an Error, if any.
//
// NOTE: The returned Accessor implements BeginUpdate and EndUpdate as a no op.
func OpenFile(name string, flag int, perm os.FileMode) (store Accessor, err error) {
var f FileAccessor
if f.File, err = os.OpenFile(name, flag, perm); err == nil {
store = &f
}
return
}

View File

@ -1,161 +0,0 @@
// Copyright (c) 2011 CZ.NIC z.s.p.o. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// blame: jnml, labs.nic.cz
package storage
import (
"errors"
"fmt"
"io/ioutil"
"math"
"os"
)
//TODO -> exported type w/ exported fields
type memaccessor struct {
f *os.File
fi *FileInfo
b []byte
}
// Implementation of Accessor.
func (m *memaccessor) BeginUpdate() error { return nil }
// Implementation of Accessor.
func (f *memaccessor) EndUpdate() error { return nil }
// NewMem returns a new Accessor backed by an os.File. The returned Accessor
// keeps all of the store content in memory. The memory and file images are
// synced only by Sync and Close. Recomended for small amounts of data only
// and content which may be lost on process kill/crash. NewMem return the
// Accessor or an error of any.
//
// NOTE: The returned Accessor implements BeginUpdate and EndUpdate as a no op.
func NewMem(f *os.File) (store Accessor, err error) {
a := &memaccessor{f: f}
if err = f.Truncate(0); err != nil {
return
}
var fi os.FileInfo
if fi, err = a.f.Stat(); err != nil {
return
}
a.fi = NewFileInfo(fi, a)
store = a
return
}
// OpenMem return a new Accessor backed by an os.File. The store content is
// loaded from f. The returned Accessor keeps all of the store content in
// memory. The memory and file images are synced only Sync and Close.
// Recomended for small amounts of data only and content which may be lost on
// process kill/crash. OpenMem return the Accessor or an error of any.
//
// NOTE: The returned Accessor implements BeginUpdate and EndUpdate as a no op.
func OpenMem(f *os.File) (store Accessor, err error) {
a := &memaccessor{f: f}
if a.b, err = ioutil.ReadAll(a.f); err != nil {
a.f.Close()
return
}
var fi os.FileInfo
if fi, err = a.f.Stat(); err != nil {
a.f.Close()
return
}
a.fi = NewFileInfo(fi, a)
store = a
return
}
// Close implements Accessor. Specifically it synchronizes the memory and file images.
func (a *memaccessor) Close() (err error) {
defer func() {
a.b = nil
if a.f != nil {
if e := a.f.Close(); e != nil && err == nil {
err = e
}
}
a.f = nil
}()
return a.Sync()
}
func (a *memaccessor) Name() string {
return a.f.Name()
}
func (a *memaccessor) ReadAt(b []byte, off int64) (n int, err error) {
if off < 0 || off > math.MaxInt32 {
return -1, fmt.Errorf("ReadAt: illegal offset %#x", off)
}
rq, fp := len(b), int(off)
if fp+rq > len(a.b) {
return -1, fmt.Errorf("ReadAt: illegal rq %#x @ offset %#x, len %#x", rq, fp, len(a.b))
}
copy(b, a.b[fp:])
return
}
func (a *memaccessor) Stat() (fi os.FileInfo, err error) {
i := a.fi
i.FSize = int64(len(a.b))
fi = i
return
}
// Sync implements Accessor. Specifically it synchronizes the memory and file images.
func (a *memaccessor) Sync() (err error) {
var n int
if n, err = a.f.WriteAt(a.b, 0); n != len(a.b) {
return
}
return a.f.Truncate(int64(len(a.b)))
}
func (a *memaccessor) Truncate(size int64) (err error) {
defer func() {
if e := recover(); e != nil {
err = e.(error)
}
}()
if size > math.MaxInt32 {
panic(errors.New("truncate: illegal size"))
}
a.b = a.b[:int(size)]
return
}
func (a *memaccessor) WriteAt(b []byte, off int64) (n int, err error) {
if off < 0 || off > math.MaxInt32 {
return -1, errors.New("WriteAt: illegal offset")
}
rq, fp, size := len(b), int(off), len(a.b)
if need := rq + fp; need > size {
if need <= cap(a.b) {
a.b = a.b[:need]
} else {
nb := make([]byte, need, 2*need)
copy(nb, a.b)
a.b = nb
}
}
copy(a.b[int(off):], b)
return
}

View File

@ -1,74 +0,0 @@
// Copyright (c) 2011 CZ.NIC z.s.p.o. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// blame: jnml, labs.nic.cz
package storage
import "sync/atomic"
// Probe collects usage statistics of the embeded Accessor.
// Probe itself IS an Accessor.
type Probe struct {
Accessor
Chain *Probe
OpsRd int64
OpsWr int64
BytesRd int64
BytesWr int64
SectorsRd int64 // Assuming 512 byte sector size
SectorsWr int64
}
// NewProbe returns a newly created probe which embedes the src Accessor.
// The retuned *Probe satisfies Accessor. if chain != nil then Reset()
// is cascaded down the chained Probes.
func NewProbe(src Accessor, chain *Probe) *Probe {
return &Probe{Accessor: src, Chain: chain}
}
func reset(n *int64) {
atomic.AddInt64(n, -atomic.AddInt64(n, 0))
}
// Reset zeroes the collected statistics of p.
func (p *Probe) Reset() {
if p.Chain != nil {
p.Chain.Reset()
}
reset(&p.OpsRd)
reset(&p.OpsWr)
reset(&p.BytesRd)
reset(&p.BytesWr)
reset(&p.SectorsRd)
reset(&p.SectorsWr)
}
func (p *Probe) ReadAt(b []byte, off int64) (n int, err error) {
n, err = p.Accessor.ReadAt(b, off)
atomic.AddInt64(&p.OpsRd, 1)
atomic.AddInt64(&p.BytesRd, int64(n))
if n <= 0 {
return
}
sectorFirst := off >> 9
sectorLast := (off + int64(n) - 1) >> 9
atomic.AddInt64(&p.SectorsRd, sectorLast-sectorFirst+1)
return
}
func (p *Probe) WriteAt(b []byte, off int64) (n int, err error) {
n, err = p.Accessor.WriteAt(b, off)
atomic.AddInt64(&p.OpsWr, 1)
atomic.AddInt64(&p.BytesWr, int64(n))
if n <= 0 {
return
}
sectorFirst := off >> 9
sectorLast := (off + int64(n) - 1) >> 9
atomic.AddInt64(&p.SectorsWr, sectorLast-sectorFirst+1)
return
}

View File

@ -1,141 +0,0 @@
// Copyright (c) 2011 CZ.NIC z.s.p.o. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// blame: jnml, labs.nic.cz
// WIP: Package storage defines and implements storage providers and store accessors.
package storage
import (
"os"
"sync"
"time"
)
// FileInfo is a type implementing os.FileInfo which has setable fields, like
// the older os.FileInfo used to have. It is used wehere e.g. the Size is
// needed to be faked (encapsulated/memory only file, file cache, etc.).
type FileInfo struct {
FName string // base name of the file
FSize int64 // length in bytes
FMode os.FileMode // file mode bits
FModTime time.Time // modification time
FIsDir bool // abbreviation for Mode().IsDir()
sys interface{} // underlying data source (can be nil)
}
// NewFileInfo creates FileInfo from os.FileInfo fi.
func NewFileInfo(fi os.FileInfo, sys interface{}) *FileInfo {
return &FileInfo{fi.Name(), fi.Size(), fi.Mode(), fi.ModTime(), fi.IsDir(), sys}
}
// Implementation of os.FileInfo
func (fi *FileInfo) Name() string {
return fi.FName
}
// Implementation of os.FileInfo
func (fi *FileInfo) Size() int64 {
return fi.FSize
}
// Implementation of os.FileInfo
func (fi *FileInfo) Mode() os.FileMode {
return fi.FMode
}
// Implementation of os.FileInfo
func (fi *FileInfo) ModTime() time.Time {
return fi.FModTime
}
// Implementation of os.FileInfo
func (fi *FileInfo) IsDir() bool {
return fi.FIsDir
}
func (fi *FileInfo) Sys() interface{} {
return fi.sys
}
// Accessor provides I/O methods to access a store.
type Accessor interface {
// Close closes the store, rendering it unusable for I/O. It returns an
// error, if any.
Close() error
// Name returns the name of the file as presented to Open.
Name() string
// ReadAt reads len(b) bytes from the store starting at byte offset off.
// It returns the number of bytes read and the error, if any.
// EOF is signaled by a zero count with err set to os.EOF.
// ReadAt always returns a non-nil Error when n != len(b).
ReadAt(b []byte, off int64) (n int, err error)
// Stat returns the FileInfo structure describing the store. It returns
// the os.FileInfo and an error, if any.
Stat() (fi os.FileInfo, err error)
// Sync commits the current contents of the store to stable storage.
// Typically, this means flushing the file system's in-memory copy of
// recently written data to disk.
Sync() (err error)
// Truncate changes the size of the store. It does not change the I/O
// offset.
Truncate(size int64) error
// WriteAt writes len(b) bytes to the store starting at byte offset off.
// It returns the number of bytes written and an error, if any.
// WriteAt returns a non-nil Error when n != len(b).
WriteAt(b []byte, off int64) (n int, err error)
// Before every [structural] change of a store the BeginUpdate is to be
// called and paired with EndUpdate after the change makes the store's
// state consistent again. Invocations of BeginUpdate may nest. On
// invoking the last non nested EndUpdate an implicit "commit" should
// be performed by the store/provider. The concrete mechanism is
// unspecified. It could be for example a write-ahead log. Stores may
// implement BeginUpdate and EndUpdate as a (documented) no op.
BeginUpdate() error
EndUpdate() error
}
// Mutate is a helper/wrapper for executing f in between a.BeginUpdate and
// a.EndUpdate. Any parameters and/or return values except an error should be
// captured by a function literal passed as f. The returned err is either nil
// or the first non nil error returned from the sequence of execution:
// BeginUpdate, [f,] EndUpdate. The pair BeginUpdate/EndUpdate *is* invoked
// always regardles of any possible errors produced. Mutate doesn't handle
// panic, it should be used only with a function [literal] which doesn't panic.
// Otherwise the pairing of BeginUpdate/EndUpdate is not guaranteed.
//
// NOTE: If BeginUpdate, which is invoked before f, returns a non-nil error,
// then f is not invoked at all (but EndUpdate still is).
func Mutate(a Accessor, f func() error) (err error) {
defer func() {
if e := a.EndUpdate(); e != nil && err == nil {
err = e
}
}()
if err = a.BeginUpdate(); err != nil {
return
}
return f()
}
// LockedMutate wraps Mutate in yet another layer consisting of a
// l.Lock/l.Unlock pair. All other limitations apply as in Mutate, e.g. no
// panics are allowed to happen - otherwise no guarantees can be made about
// Unlock matching the Lock.
func LockedMutate(a Accessor, l sync.Locker, f func() error) (err error) {
l.Lock()
defer l.Unlock()
return Mutate(a, f)
}

View File

@ -1,13 +0,0 @@
// Copyright (c) 2011 CZ.NIC z.s.p.o. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// blame: jnml, labs.nic.cz
package storage
// Pull test dependencies too.
// Enables easy 'go test X' after 'go get X'
import (
// nothing yet
)

View File

@ -1,13 +0,0 @@
// Copyright (c) 2014 The fileutil Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// blame: jnml, labs.nic.cz
package fileutil
// Pull test dependencies too.
// Enables easy 'go test X' after 'go get X'
import (
// nothing yet
)

View File

@ -1,27 +0,0 @@
Copyright (c) 2014 The golex Authors. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the names of the authors nor the names of the
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

View File

@ -1,410 +0,0 @@
// Copyright (c) 2015 The golex Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package lex
import (
"bytes"
"fmt"
"go/token"
"io"
"os"
)
// BOM handling modes which can be set by the BOMMode Option. Default is BOMIgnoreFirst.
const (
BOMError = iota // BOM is an error anywhere.
BOMIgnoreFirst // Skip BOM if at beginning, report as error if anywhere else.
BOMPassAll // No special handling of BOM.
BOMPassFirst // No special handling of BOM if at beginning, report as error if anywhere else.
)
const (
NonASCII = 0x80 // DefaultRuneClass returns NonASCII for non ASCII runes.
RuneEOF = -1 // Distinct from any valid Unicode rune value.
)
// DefaultRuneClass returns the character class of r. If r is an ASCII code
// then its class equals the ASCII code. Any other rune is of class NonASCII.
//
// DefaultRuneClass is the default implementation Lexer will use to convert
// runes (21 bit entities) to scanner classes (8 bit entities).
//
// Non ASCII aware lexical analyzers will typically use their own
// categorization function. To assign such custom function use the RuneClass
// option.
func DefaultRuneClass(r rune) int {
if r >= 0 && r < 0x80 {
return int(r)
}
return NonASCII
}
// Char represents a rune and its position.
type Char struct {
Rune rune
pos int32
}
// NewChar returns a new Char value.
func NewChar(pos token.Pos, r rune) Char { return Char{pos: int32(pos), Rune: r} }
// IsValid reports whether c is not a zero Char.
func (c Char) IsValid() bool { return c.Pos().IsValid() }
// Pos returns the token.Pos associated with c.
func (c Char) Pos() token.Pos { return token.Pos(c.pos) }
// CharReader is a RuneReader providing additionally explicit position
// information by returning a Char instead of a rune as its first result.
type CharReader interface {
ReadChar() (c Char, size int, err error)
}
// Lexer suports golex[0] generated lexical analyzers.
type Lexer struct {
File *token.File // The *token.File passed to New.
First Char // First remembers the lookahead char when Rule0 was invoked.
Last Char // Last remembers the last Char returned by Next.
Prev Char // Prev remembers the Char previous to Last.
bomMode int // See the BOM* constants.
bytesBuf bytes.Buffer // Used by TokenBytes.
charSrc CharReader // Lexer alternative input.
classf func(rune) int //
errorf func(token.Pos, string) //
lookahead Char // Lookahead if non zero.
mark int // Longest match marker.
off int // Used for File.AddLine.
src io.RuneReader // Lexer input.
tokenBuf []Char // Lexeme collector.
ungetBuf []Char // Unget buffer.
}
// New returns a new *Lexer. The result can be amended using opts.
//
// Non Unicode Input
//
// To consume sources in other encodings and still have exact position
// information, pass an io.RuneReader which returns the next input character
// reencoded as an Unicode rune but returns the size (number of bytes used to
// encode it) of the original character, not the size of its UTF-8
// representation after converted to an Unicode rune. Size is the second
// returned value of io.RuneReader.ReadRune method[4].
//
// When src optionally implements CharReader its ReadChar method is used
// instead of io.ReadRune.
func New(file *token.File, src io.RuneReader, opts ...Option) (*Lexer, error) {
r := &Lexer{
File: file,
bomMode: BOMIgnoreFirst,
classf: DefaultRuneClass,
src: src,
}
if x, ok := src.(CharReader); ok {
r.charSrc = x
}
r.errorf = r.defaultErrorf
for _, o := range opts {
if err := o(r); err != nil {
return nil, err
}
}
return r, nil
}
// Abort handles the situation when the scanner does not successfully recognize
// any token or when an attempt to find the longest match "overruns" from an
// accepting state only to never reach an accepting state again. In the first
// case the scanner was never in an accepting state since last call to Rule0
// and then (true, previousLookahead rune) is returned, effectively consuming a
// single Char token, avoiding scanner stall. Otherwise there was at least one
// accepting scanner state marked using Mark. In this case Abort rollbacks the
// lexer state to the marked state and returns (false, 0). The scanner must
// then execute a prescribed goto statement. For example:
//
// %yyc c
// %yyn c = l.Next()
// %yym l.Mark()
//
// %{
// package foo
//
// import (...)
//
// type lexer struct {
// *lex.Lexer
// ...
// }
//
// func newLexer(...) *lexer {
// return &lexer{
// lex.NewLexer(...),
// ...
// }
// }
//
// func (l *lexer) scan() int {
// c := l.Enter()
// %}
//
// ... more lex defintions
//
// %%
//
// c = l.Rule0()
//
// ... lex rules
//
// %%
//
// if c, ok := l.Abort(); ok {
// return c
// }
//
// goto yyAction
// }
func (l *Lexer) Abort() (int, bool) {
if l.mark >= 0 {
if len(l.tokenBuf) > l.mark {
l.Unget(l.lookahead)
for i := len(l.tokenBuf) - 1; i >= l.mark; i-- {
l.Unget(l.tokenBuf[i])
}
}
l.tokenBuf = l.tokenBuf[:l.mark]
return 0, false
}
switch n := len(l.tokenBuf); n {
case 0: // [] z
c := l.lookahead
l.Next()
return int(c.Rune), true
case 1: // [a] z
return int(l.tokenBuf[0].Rune), true
default: // [a, b, ...], z
c := l.tokenBuf[0] // a
l.Unget(l.lookahead) // z
for i := n - 1; i > 1; i-- {
l.Unget(l.tokenBuf[i]) // ...
}
l.lookahead = l.tokenBuf[1] // b
l.tokenBuf = l.tokenBuf[:1]
return int(c.Rune), true
}
}
func (l *Lexer) class() int { return l.classf(l.lookahead.Rune) }
func (l *Lexer) defaultErrorf(pos token.Pos, msg string) {
l.Error(fmt.Sprintf("%v: %v", l.File.Position(pos), msg))
}
// Enter ensures the lexer has a valid lookahead Char and returns its class.
// Typical use in an .l file
//
// func (l *lexer) scan() lex.Char {
// c := l.Enter()
// ...
func (l *Lexer) Enter() int {
if !l.lookahead.IsValid() {
l.Next()
}
return l.class()
}
// Error Implements yyLexer[2] by printing the msg to stderr.
func (l *Lexer) Error(msg string) {
fmt.Fprintf(os.Stderr, "%s\n", msg)
}
// Lookahead returns the current lookahead.
func (l *Lexer) Lookahead() Char {
if !l.lookahead.IsValid() {
l.Next()
}
return l.lookahead
}
// Mark records the current state of scanner as accepting. It implements the
// golex macro %yym. Typical usage in an .l file:
//
// %yym l.Mark()
func (l *Lexer) Mark() { l.mark = len(l.tokenBuf) }
func (l *Lexer) next() int {
const bom = '\ufeff'
if c := l.lookahead; c.IsValid() {
l.tokenBuf = append(l.tokenBuf, c)
}
if n := len(l.ungetBuf); n != 0 {
l.lookahead = l.ungetBuf[n-1]
l.ungetBuf = l.ungetBuf[:n-1]
return l.class()
}
if l.src == nil {
return RuneEOF
}
var r rune
var sz int
var err error
var pos token.Pos
var c Char
again:
off0 := l.off
switch cs := l.charSrc; {
case cs != nil:
c, sz, err = cs.ReadChar()
r = c.Rune
pos = c.Pos()
default:
r, sz, err = l.src.ReadRune()
pos = l.File.Pos(l.off)
}
l.off += sz
if err != nil {
l.src = nil
r = RuneEOF
if err != io.EOF {
l.errorf(pos, err.Error())
}
}
if r == bom {
switch l.bomMode {
default:
fallthrough
case BOMIgnoreFirst:
if off0 != 0 {
l.errorf(pos, "unicode (UTF-8) BOM in middle of file")
}
goto again
case BOMPassAll:
// nop
case BOMPassFirst:
if off0 != 0 {
l.errorf(pos, "unicode (UTF-8) BOM in middle of file")
goto again
}
case BOMError:
switch {
case off0 == 0:
l.errorf(pos, "unicode (UTF-8) BOM at beginnig of file")
default:
l.errorf(pos, "unicode (UTF-8) BOM in middle of file")
}
goto again
}
}
l.lookahead = NewChar(pos, r)
if r == '\n' {
l.File.AddLine(l.off)
}
return l.class()
}
// Next advances the scanner for one rune and returns the respective character
// class of the new lookahead. Typical usage in an .l file:
//
// %yyn c = l.Next()
func (l *Lexer) Next() int {
l.Prev = l.Last
r := l.next()
l.Last = l.lookahead
return r
}
// Offset returns the current reading offset of the lexer's source.
func (l *Lexer) Offset() int { return l.off }
// Rule0 initializes the scanner state before the attempt to recognize a token
// starts. The token collecting buffer is cleared. Rule0 records the current
// lookahead in l.First and returns its class. Typical usage in an .l file:
//
// ... lex definitions
//
// %%
//
// c := l.Rule0()
//
// first-pattern-regexp
func (l *Lexer) Rule0() int {
if !l.lookahead.IsValid() {
l.Next()
}
l.First = l.lookahead
l.mark = -1
if len(l.tokenBuf) > 1<<18 { //DONE constant tuned
l.tokenBuf = nil
} else {
l.tokenBuf = l.tokenBuf[:0]
}
return l.class()
}
// Token returns the currently collected token chars. The result is R/O.
func (l *Lexer) Token() []Char { return l.tokenBuf }
// TokenBytes returns the UTF-8 encoding of Token. If builder is not nil then
// it's called instead to build the encoded token byte value into the buffer
// passed to it.
//
// The Result is R/O.
func (l *Lexer) TokenBytes(builder func(*bytes.Buffer)) []byte {
if len(l.bytesBuf.Bytes()) < 1<<18 { //DONE constant tuned
l.bytesBuf.Reset()
} else {
l.bytesBuf = bytes.Buffer{}
}
switch {
case builder != nil:
builder(&l.bytesBuf)
default:
for _, c := range l.Token() {
l.bytesBuf.WriteRune(c.Rune)
}
}
return l.bytesBuf.Bytes()
}
// Unget unreads all chars in c.
func (l *Lexer) Unget(c ...Char) {
l.ungetBuf = append(l.ungetBuf, c...)
l.lookahead = Char{} // Must invalidate lookahead.
}
// Option is a function which can be passed as an optional argument to New.
type Option func(*Lexer) error
// BOMMode option selects how the lexer handles BOMs. See the BOM* constants for details.
func BOMMode(mode int) Option {
return func(l *Lexer) error {
l.bomMode = mode
return nil
}
}
// ErrorFunc option sets a function called when an, for example I/O error,
// occurs. The default is to call Error with the position and message already
// formated as a string.
func ErrorFunc(f func(token.Pos, string)) Option {
return func(l *Lexer) error {
l.errorf = f
return nil
}
}
// RuneClass option sets the function used to convert runes to character
// classes.
func RuneClass(f func(rune) int) Option {
return func(l *Lexer) error {
l.classf = f
return nil
}
}

View File

@ -1,40 +0,0 @@
// Copyright (c) 2015 The golex Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package lex is a Unicode-friendly run time library for golex[0] generated
// lexical analyzers[1].
//
// Changelog
//
// 2015-04-08: Initial release.
//
// Character classes
//
// Golex internally handles only 8 bit "characters". Many Unicode-aware
// tokenizers do not actually need to recognize every Unicode rune, but only
// some particular partitions/subsets. Like, for example, a particular Unicode
// category, say upper case letters: Lu.
//
// The idea is to convert all runes in a particular set as a single 8 bit
// character allocated outside the ASCII range of codes. The token value, a
// string of runes and their exact positions is collected as usual (see the
// Token and TokenBytes method), but the tokenizer DFA is simpler (and thus
// smaller and perhaps also faster) when this technique is used. In the example
// program (see below), recognizing (and skipping) white space, integer
// literals, one keyword and Go identifiers requires only an 8 state DFA[5].
//
// To provide the conversion from runes to character classes, "install" your
// converting function using the RuneClass option.
//
// References
//
// -
//
// [0]: http://godoc.org/github.com/cznic/golex
// [1]: http://en.wikipedia.org/wiki/Lexical_analysis
// [2]: http://golang.org/cmd/yacc/
// [3]: https://github.com/cznic/golex/blob/master/lex/example.l
// [4]: http://golang.org/pkg/io/#RuneReader
// [5]: https://github.com/cznic/golex/blob/master/lex/dfa
package lex

View File

@ -1,27 +0,0 @@
Copyright (c) 2016 The Internal Authors. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the names of the authors nor the names of the
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

View File

@ -1,146 +0,0 @@
// Copyright 2016 The Internal Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package buffer implements a pool of pointers to byte slices.
//
// Example usage pattern
//
// p := buffer.Get(size)
// b := *p // Now you can use b in any way you need.
// ...
// // When b will not be used anymore
// buffer.Put(p)
// ...
// // If b or p are not going out of scope soon, optionally
// b = nil
// p = nil
//
// Otherwise the pool cannot release the buffer on garbage collection.
//
// Do not do
//
// p := buffer.Get(size)
// b := *p
// ...
// buffer.Put(&b)
//
// or
//
// b := *buffer.Get(size)
// ...
// buffer.Put(&b)
package buffer
import (
"github.com/cznic/internal/slice"
"io"
)
// CGet returns a pointer to a byte slice of len size. The pointed to byte
// slice is zeroed up to its cap. CGet panics for size < 0.
//
// CGet is safe for concurrent use by multiple goroutines.
func CGet(size int) *[]byte { return slice.Bytes.CGet(size).(*[]byte) }
// Get returns a pointer to a byte slice of len size. The pointed to byte slice
// is not zeroed. Get panics for size < 0.
//
// Get is safe for concurrent use by multiple goroutines.
func Get(size int) *[]byte { return slice.Bytes.Get(size).(*[]byte) }
// Put puts a pointer to a byte slice into a pool for possible later reuse by
// CGet or Get.
//
// Put is safe for concurrent use by multiple goroutines.
func Put(p *[]byte) { slice.Bytes.Put(p) }
// Bytes is similar to bytes.Buffer but may generate less garbage when properly
// Closed. Zero value is ready to use.
type Bytes struct {
p *[]byte
}
// Bytes return the content of b. The result is R/O.
func (b *Bytes) Bytes() []byte {
if b.p != nil {
return *b.p
}
return nil
}
// Close will recycle the underlying storage, if any. After Close, b is again
// the zero value.
func (b *Bytes) Close() error {
if b.p != nil {
Put(b.p)
b.p = nil
}
return nil
}
// Len returns the size of content in b.
func (b *Bytes) Len() int {
if b.p != nil {
return len(*b.p)
}
return 0
}
// Reset discard the content of Bytes while keeping the internal storage, if any.
func (b *Bytes) Reset() {
if b.p != nil {
*b.p = (*b.p)[:0]
}
}
// Write writes p into b and returns (len(p), nil).
func (b *Bytes) Write(p []byte) (int, error) {
n := b.Len()
b.grow(n + len(p))
copy((*b.p)[n:], p)
return len(p), nil
}
// WriteByte writes p into b and returns nil.
func (b *Bytes) WriteByte(p byte) error {
n := b.Len()
b.grow(n + 1)
(*b.p)[n] = p
return nil
}
// WriteTo writes b's content to w and returns the number of bytes written to w
// and an error, if any.
func (b *Bytes) WriteTo(w io.Writer) (int64, error) {
n, err := w.Write(b.Bytes())
return int64(n), err
}
// WriteString writes s to b and returns (len(s), nil).
func (b *Bytes) WriteString(s string) (int, error) {
n := b.Len()
b.grow(n + len(s))
copy((*b.p)[n:], s)
return len(s), nil
}
func (b *Bytes) grow(n int) {
if b.p != nil {
if n <= cap(*b.p) {
*b.p = (*b.p)[:n]
return
}
np := Get(2 * n)
*np = (*np)[:n]
copy(*np, *b.p)
Put(b.p)
b.p = np
return
}
b.p = Get(n)
}

View File

@ -1,27 +0,0 @@
Copyright (c) 2016 The Internal Authors. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the names of the authors nor the names of the
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

View File

@ -1,466 +0,0 @@
// Copyright 2016 The Internal Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package file provides an os.File-like interface of a memory mapped file.
package file
import (
"fmt"
"io"
"os"
"time"
"github.com/cznic/fileutil"
"github.com/cznic/internal/buffer"
"github.com/cznic/mathutil"
"github.com/edsrzf/mmap-go"
)
const copyBufSize = 1 << 20 // 1 MB.
var (
_ Interface = (*mem)(nil)
_ Interface = (*file)(nil)
_ os.FileInfo = stat{}
sysPage = os.Getpagesize()
)
// Interface is a os.File-like entity.
type Interface interface {
io.ReaderAt
io.ReaderFrom
io.WriterAt
io.WriterTo
Close() error
Stat() (os.FileInfo, error)
Sync() error
Truncate(int64) error
}
// Open returns a new Interface backed by f, or an error, if any.
func Open(f *os.File) (Interface, error) { return newFile(f, 1<<30, 20) }
// OpenMem returns a new Interface, or an error, if any. The Interface content
// is volatile, it's backed only by process' memory.
func OpenMem(name string) (Interface, error) { return newMem(name, 18), nil }
type memMap map[int64]*[]byte
type mem struct {
m memMap
modTime time.Time
name string
pgBits uint
pgMask int
pgSize int
size int64
}
func newMem(name string, pgBits uint) *mem {
pgSize := 1 << pgBits
return &mem{
m: memMap{},
modTime: time.Now(),
name: name,
pgBits: pgBits,
pgMask: pgSize - 1,
pgSize: pgSize,
}
}
func (f *mem) IsDir() bool { return false }
func (f *mem) Mode() os.FileMode { return os.ModeTemporary + 0600 }
func (f *mem) ModTime() time.Time { return f.modTime }
func (f *mem) Name() string { return f.name }
func (f *mem) ReadFrom(r io.Reader) (n int64, err error) { return readFrom(f, r) }
func (f *mem) Size() (n int64) { return f.size }
func (f *mem) Stat() (os.FileInfo, error) { return f, nil }
func (f *mem) Sync() error { return nil }
func (f *mem) Sys() interface{} { return nil }
func (f *mem) WriteTo(w io.Writer) (n int64, err error) { return writeTo(f, w) }
func (f *mem) Close() error {
f.Truncate(0)
f.m = nil
return nil
}
func (f *mem) ReadAt(b []byte, off int64) (n int, err error) {
avail := f.size - off
pi := off >> f.pgBits
po := int(off) & f.pgMask
rem := len(b)
if int64(rem) >= avail {
rem = int(avail)
err = io.EOF
}
var zeroPage *[]byte
for rem != 0 && avail > 0 {
pg := f.m[pi]
if pg == nil {
if zeroPage == nil {
zeroPage = buffer.CGet(f.pgSize)
defer buffer.Put(zeroPage)
}
pg = zeroPage
}
nc := copy(b[:mathutil.Min(rem, f.pgSize)], (*pg)[po:])
pi++
po = 0
rem -= nc
n += nc
b = b[nc:]
}
return n, err
}
func (f *mem) Truncate(size int64) (err error) {
if size < 0 {
return fmt.Errorf("invalid truncate size: %d", size)
}
first := size >> f.pgBits
if po := size & int64(f.pgMask); po != 0 {
if p := f.m[first]; p != nil {
b := (*p)[po:]
for i := range b {
b[i] = 0
}
}
first++
}
last := f.size >> f.pgBits
if po := f.size & int64(f.pgMask); po != 0 {
if p := f.m[last]; p != nil {
b := (*p)[po:]
for i := range b {
b[i] = 0
}
}
last++
}
for ; first <= last; first++ {
if p := f.m[first]; p != nil {
buffer.Put(p)
}
delete(f.m, first)
}
f.size = size
return nil
}
func (f *mem) WriteAt(b []byte, off int64) (n int, err error) {
if len(b) == 0 {
return 0, nil
}
pi := off >> f.pgBits
po := int(off) & f.pgMask
n = len(b)
rem := n
var nc int
for rem != 0 {
pg := f.m[pi]
if pg == nil {
pg = buffer.CGet(f.pgSize)
f.m[pi] = pg
}
nc = copy((*pg)[po:], b)
pi++
po = 0
rem -= nc
b = b[nc:]
}
f.size = mathutil.MaxInt64(f.size, off+int64(n))
return n, nil
}
type stat struct {
os.FileInfo
size int64
}
func (s stat) Size() int64 { return s.size }
type fileMap map[int64]mmap.MMap
type file struct {
f *os.File
m fileMap
maxPages int
pgBits uint
pgMask int
pgSize int
size int64
fsize int64
}
func newFile(f *os.File, maxSize int64, pgBits uint) (*file, error) {
if maxSize < 0 {
panic("internal error")
}
pgSize := 1 << pgBits
switch {
case sysPage > pgSize:
pgBits = uint(mathutil.Log2Uint64(uint64(sysPage)))
default:
pgBits = uint(mathutil.Log2Uint64(uint64(pgSize / sysPage * sysPage)))
}
pgSize = 1 << pgBits
fi := &file{
f: f,
m: fileMap{},
maxPages: int(mathutil.MinInt64(
1024,
mathutil.MaxInt64(maxSize/int64(pgSize), 1)),
),
pgBits: pgBits,
pgMask: pgSize - 1,
pgSize: pgSize,
}
info, err := f.Stat()
if err != nil {
return nil, err
}
if err = fi.Truncate(info.Size()); err != nil {
return nil, err
}
return fi, nil
}
func (f *file) ReadFrom(r io.Reader) (n int64, err error) { return readFrom(f, r) }
func (f *file) Sync() (err error) { return f.f.Sync() }
func (f *file) WriteTo(w io.Writer) (n int64, err error) { return writeTo(f, w) }
func (f *file) Close() (err error) {
for _, p := range f.m {
if err = p.Unmap(); err != nil {
return err
}
}
if err = f.f.Truncate(f.size); err != nil {
return err
}
if err = f.f.Sync(); err != nil {
return err
}
if err = f.f.Close(); err != nil {
return err
}
f.m = nil
f.f = nil
return nil
}
func (f *file) page(index int64) (mmap.MMap, error) {
if len(f.m) == f.maxPages {
for i, p := range f.m {
if err := p.Unmap(); err != nil {
return nil, err
}
delete(f.m, i)
break
}
}
off := index << f.pgBits
fsize := off + int64(f.pgSize)
if fsize > f.fsize {
if err := f.f.Truncate(fsize); err != nil {
return nil, err
}
f.fsize = fsize
}
p, err := mmap.MapRegion(f.f, f.pgSize, mmap.RDWR, 0, off)
if err != nil {
return nil, err
}
f.m[index] = p
return p, nil
}
func (f *file) ReadAt(b []byte, off int64) (n int, err error) {
avail := f.size - off
pi := off >> f.pgBits
po := int(off) & f.pgMask
rem := len(b)
if int64(rem) >= avail {
rem = int(avail)
err = io.EOF
}
for rem != 0 && avail > 0 {
pg := f.m[pi]
if pg == nil {
if pg, err = f.page(pi); err != nil {
return n, err
}
}
nc := copy(b[:mathutil.Min(rem, f.pgSize)], pg[po:])
pi++
po = 0
rem -= nc
n += nc
b = b[nc:]
}
return n, err
}
func (f *file) Stat() (os.FileInfo, error) {
fi, err := f.f.Stat()
if err != nil {
return nil, err
}
return stat{fi, f.size}, nil
}
func (f *file) Truncate(size int64) (err error) {
if size < 0 {
return fmt.Errorf("invalid truncate size: %d", size)
}
first := size >> f.pgBits
if po := size & int64(f.pgMask); po != 0 {
if p := f.m[first]; p != nil {
b := p[po:]
for i := range b {
b[i] = 0
}
}
first++
}
last := f.size >> f.pgBits
if po := f.size & int64(f.pgMask); po != 0 {
if p := f.m[last]; p != nil {
b := p[po:]
for i := range b {
b[i] = 0
}
}
last++
}
for ; first <= last; first++ {
if p := f.m[first]; p != nil {
if err := p.Unmap(); err != nil {
return err
}
}
delete(f.m, first)
}
f.size = size
fsize := (size + int64(f.pgSize) - 1) &^ int64(f.pgMask)
if fsize != f.fsize {
if err := f.f.Truncate(fsize); err != nil {
return err
}
}
f.fsize = fsize
return nil
}
func (f *file) WriteAt(b []byte, off int64) (n int, err error) {
if len(b) == 0 {
return 0, nil
}
pi := off >> f.pgBits
po := int(off) & f.pgMask
n = len(b)
rem := n
var nc int
for rem != 0 {
pg := f.m[pi]
if pg == nil {
pg, err = f.page(pi)
if err != nil {
return n, err
}
}
nc = copy(pg[po:], b)
pi++
po = 0
rem -= nc
b = b[nc:]
}
f.size = mathutil.MaxInt64(f.size, off+int64(n))
return n, nil
}
// ----------------------------------------------------------------------------
func readFrom(f Interface, r io.Reader) (n int64, err error) {
f.Truncate(0)
p := buffer.Get(copyBufSize)
b := *p
defer buffer.Put(p)
var off int64
var werr error
for {
rn, rerr := r.Read(b)
if rn != 0 {
_, werr = f.WriteAt(b[:rn], off)
n += int64(rn)
off += int64(rn)
}
if rerr != nil {
if !fileutil.IsEOF(rerr) {
err = rerr
}
break
}
if werr != nil {
err = werr
break
}
}
return n, err
}
func writeTo(f Interface, w io.Writer) (n int64, err error) {
p := buffer.Get(copyBufSize)
b := *p
defer buffer.Put(p)
var off int64
var werr error
for {
rn, rerr := f.ReadAt(b, off)
if rn != 0 {
_, werr = w.Write(b[:rn])
n += int64(rn)
off += int64(rn)
}
if rerr != nil {
if !fileutil.IsEOF(rerr) {
err = rerr
}
break
}
if werr != nil {
err = werr
break
}
}
return n, err
}

View File

@ -1,27 +0,0 @@
Copyright (c) 2016 The Internal Authors. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the names of the authors nor the names of the
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

View File

@ -1,173 +0,0 @@
// Copyright 2016 The Internal Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package slice implements pools of pointers to slices.
package slice
import (
"sync"
"github.com/cznic/mathutil"
)
var (
// Bytes is a ready to use *[]byte Pool.
Bytes *Pool
// Ints is a ready to use *[]int Pool.
Ints *Pool
)
func init() {
Bytes = newBytes()
Ints = NewPool(
func(size int) interface{} { // create
b := make([]int, size)
return &b
},
func(s interface{}) { // clear
b := *s.(*[]int)
b = b[:cap(b)]
for i := range b {
b[i] = 0
}
},
func(s interface{}, size int) { // setSize
p := s.(*[]int)
*p = (*p)[:size]
},
func(s interface{}) int { return cap(*s.(*[]int)) }, // cap
)
}
func newBytes() *Pool {
return NewPool(
func(size int) interface{} { // create
b := make([]byte, size)
return &b
},
func(s interface{}) { // clear
b := *s.(*[]byte)
b = b[:cap(b)]
for i := range b {
b[i] = 0
}
},
func(s interface{}, size int) { // setSize
p := s.(*[]byte)
*p = (*p)[:size]
},
func(s interface{}) int { return cap(*s.(*[]byte)) }, // cap
)
}
// Pool implements a pool of pointers to slices.
//
// Example usage pattern (assuming pool is, for example, a *[]byte Pool)
//
// p := pool.Get(size).(*[]byte)
// b := *p // Now you can use b in any way you need.
// ...
// // When b will not be used anymore
// pool.Put(p)
// ...
// // If b or p are not going out of scope soon, optionally
// b = nil
// p = nil
//
// Otherwise the pool cannot release the slice on garbage collection.
//
// Do not do
//
// p := pool.Get(size).(*[]byte)
// b := *p
// ...
// pool.Put(&b)
//
// or
//
// b := *pool.Get(size).(*[]byte)
// ...
// pool.Put(&b)
type Pool struct {
cap func(interface{}) int
clear func(interface{})
m [63]sync.Pool
null interface{}
setSize func(interface{}, int)
}
// NewPool returns a newly created Pool. Assuming the desired slice type is
// []T:
//
// The create function returns a *[]T of len == cap == size.
//
// The argument of clear is *[]T and the function sets all the slice elements
// to the respective zero value.
//
// The setSize function gets a *[]T and sets its len to size.
//
// The cap function gets a *[]T and returns its capacity.
func NewPool(
create func(size int) interface{},
clear func(interface{}),
setSize func(p interface{}, size int),
cap func(p interface{}) int,
) *Pool {
p := &Pool{clear: clear, setSize: setSize, cap: cap, null: create(0)}
for i := range p.m {
size := 1 << uint(i)
p.m[i] = sync.Pool{New: func() interface{} {
// 0: 1 - 1
// 1: 10 - 10
// 2: 11 - 100
// 3: 101 - 1000
// 4: 1001 - 10000
// 5: 10001 - 100000
return create(size)
}}
}
return p
}
// CGet returns a *[]T of len size. The pointed to slice is zeroed up to its
// cap. CGet panics for size < 0.
//
// CGet is safe for concurrent use by multiple goroutines.
func (p *Pool) CGet(size int) interface{} {
s := p.Get(size)
p.clear(s)
return s
}
// Get returns a *[]T of len size. The pointed to slice is not zeroed. Get
// panics for size < 0.
//
// Get is safe for concurrent use by multiple goroutines.
func (p *Pool) Get(size int) interface{} {
var index int
switch {
case size < 0:
panic("Pool.Get: negative size")
case size == 0:
return p.null
case size > 1:
index = mathutil.Log2Uint64(uint64(size-1)) + 1
}
s := p.m[index].Get()
p.setSize(s, size)
return s
}
// Put puts a *[]T into a pool for possible later reuse by CGet or Get. Put
// panics is its argument is not of type *[]T.
//
// Put is safe for concurrent use by multiple goroutines.
func (p *Pool) Put(b interface{}) {
size := p.cap(b)
if size == 0 {
return
}
p.m[mathutil.Log2Uint64(uint64(size))].Put(b)
}

400
vendor/github.com/cznic/lldb/2pc.go generated vendored
View File

@ -1,400 +0,0 @@
// Copyright 2014 The lldb Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Two Phase Commit & Structural ACID
package lldb
import (
"bufio"
"encoding/binary"
"fmt"
"io"
"os"
"github.com/cznic/fileutil"
"github.com/cznic/mathutil"
)
var _ Filer = &ACIDFiler0{} // Ensure ACIDFiler0 is a Filer
type acidWrite struct {
b []byte
off int64
}
type acidWriter0 ACIDFiler0
func (a *acidWriter0) WriteAt(b []byte, off int64) (n int, err error) {
f := (*ACIDFiler0)(a)
if f.newEpoch {
f.newEpoch = false
f.data = f.data[:0]
if err = a.writePacket([]interface{}{wpt00Header, walTypeACIDFiler0, ""}); err != nil {
return
}
}
if err = a.writePacket([]interface{}{wpt00WriteData, b, off}); err != nil {
return
}
f.data = append(f.data, acidWrite{b, off})
return len(b), nil
}
func (a *acidWriter0) writePacket(items []interface{}) (err error) {
f := (*ACIDFiler0)(a)
b, err := EncodeScalars(items...)
if err != nil {
return
}
var b4 [4]byte
binary.BigEndian.PutUint32(b4[:], uint32(len(b)))
if _, err = f.bwal.Write(b4[:]); err != nil {
return
}
if _, err = f.bwal.Write(b); err != nil {
return
}
if m := (4 + len(b)) % 16; m != 0 {
var pad [15]byte
_, err = f.bwal.Write(pad[:16-m])
}
return
}
// WAL Packet Tags
const (
wpt00Header = iota
wpt00WriteData
wpt00Checkpoint
wpt00Empty
)
const (
walTypeACIDFiler0 = iota
)
// ACIDFiler0 is a very simple, synchronous implementation of 2PC. It uses a
// single write ahead log file to provide the structural atomicity
// (BeginUpdate/EndUpdate/Rollback) and durability (DB can be recovered from
// WAL if a crash occurred).
//
// ACIDFiler0 is a Filer.
//
// NOTE: Durable synchronous 2PC involves three fsyncs in this implementation
// (WAL, DB, zero truncated WAL). Where possible, it's recommended to collect
// transactions for, say one second before performing the two phase commit as
// the typical performance for rotational hard disks is about few tens of
// fsyncs per second atmost. For an example of such collective transaction
// approach please see the colecting FSM STT in Dbm's documentation[1].
//
// [1]: http://godoc.org/github.com/cznic/exp/dbm
type ACIDFiler0 struct {
*RollbackFiler
bwal *bufio.Writer
data []acidWrite
newEpoch bool
peakWal int64 // tracks WAL maximum used size
testHook bool // keeps WAL untruncated (once)
wal *os.File
walOptions walOptions
}
type walOptions struct {
headroom int64 // Minimum WAL size.
}
// WALOption amends WAL properties.
type WALOption func(*walOptions) error
// MinWAL sets the minimum size a WAL file will have. The "extra" allocated
// file space serves as a headroom. Commits that fit into the headroom should
// not fail due to 'not enough space on the volume' errors.
//
// The min parameter is first rounded-up to a non negative multiple of the size
// of the Allocator atom.
//
// Note: Setting minimum WAL size may render the DB non-recoverable when a
// crash occurs and the DB is opened in an earlier version of LLDB that does
// not support minimum WAL sizes.
func MinWAL(min int64) WALOption {
min = mathutil.MaxInt64(0, min)
if r := min % 16; r != 0 {
min += 16 - r
}
return func(o *walOptions) error {
o.headroom = min
return nil
}
}
// NewACIDFiler0 returns a newly created ACIDFiler0 with WAL in wal.
//
// If the WAL is zero sized then a previous clean shutdown of db is taken for
// granted and no recovery procedure is taken.
//
// If the WAL is of non zero size then it is checked for having a
// committed/fully finished transaction not yet been reflected in db. If such
// transaction exists it's committed to db. If the recovery process finishes
// successfully, the WAL is truncated to the minimum WAL size and fsync'ed
// prior to return from NewACIDFiler0.
//
// opts allow to amend WAL properties.
func NewACIDFiler(db Filer, wal *os.File, opts ...WALOption) (r *ACIDFiler0, err error) {
fi, err := wal.Stat()
if err != nil {
return
}
r = &ACIDFiler0{wal: wal}
for _, o := range opts {
if err := o(&r.walOptions); err != nil {
return nil, err
}
}
if fi.Size() != 0 {
if err = r.recoverDb(db); err != nil {
return
}
}
r.bwal = bufio.NewWriter(r.wal)
r.newEpoch = true
acidWriter := (*acidWriter0)(r)
if r.RollbackFiler, err = NewRollbackFiler(
db,
func(sz int64) (err error) {
// Checkpoint
if err = acidWriter.writePacket([]interface{}{wpt00Checkpoint, sz}); err != nil {
return
}
if err = r.bwal.Flush(); err != nil {
return
}
if err = r.wal.Sync(); err != nil {
return
}
var wfi os.FileInfo
if wfi, err = r.wal.Stat(); err != nil {
return
}
r.peakWal = mathutil.MaxInt64(wfi.Size(), r.peakWal)
// Phase 1 commit complete
for _, v := range r.data {
n := len(v.b)
if m := v.off + int64(n); m > sz {
if n -= int(m - sz); n <= 0 {
continue
}
}
if _, err = db.WriteAt(v.b[:n], v.off); err != nil {
return err
}
}
if err = db.Truncate(sz); err != nil {
return
}
if err = db.Sync(); err != nil {
return
}
// Phase 2 commit complete
if !r.testHook {
if err := r.emptyWAL(); err != nil {
return err
}
}
r.testHook = false
r.bwal.Reset(r.wal)
r.newEpoch = true
return r.wal.Sync()
},
acidWriter,
); err != nil {
return
}
return r, nil
}
func (a *ACIDFiler0) emptyWAL() error {
if err := a.wal.Truncate(a.walOptions.headroom); err != nil {
return err
}
if _, err := a.wal.Seek(0, 0); err != nil {
return err
}
if a.walOptions.headroom != 0 {
a.bwal.Reset(a.wal)
if err := (*acidWriter0)(a).writePacket([]interface{}{wpt00Empty}); err != nil {
return err
}
if err := a.bwal.Flush(); err != nil {
return err
}
if _, err := a.wal.Seek(0, 0); err != nil {
return err
}
}
return nil
}
// PeakWALSize reports the maximum size WAL has ever used.
func (a ACIDFiler0) PeakWALSize() int64 {
return a.peakWal
}
func (a *ACIDFiler0) readPacket(f *bufio.Reader) (items []interface{}, err error) {
var b4 [4]byte
n, err := io.ReadAtLeast(f, b4[:], 4)
if n != 4 {
return
}
ln := int(binary.BigEndian.Uint32(b4[:]))
m := (4 + ln) % 16
padd := (16 - m) % 16
b := make([]byte, ln+padd)
if n, err = io.ReadAtLeast(f, b, len(b)); n != len(b) {
return
}
return DecodeScalars(b[:ln])
}
func (a *ACIDFiler0) recoverDb(db Filer) (err error) {
fi, err := a.wal.Stat()
if err != nil {
return &ErrILSEQ{Type: ErrInvalidWAL, Name: a.wal.Name(), More: err}
}
if sz := fi.Size(); sz%16 != 0 {
return &ErrILSEQ{Type: ErrFileSize, Name: a.wal.Name(), Arg: sz}
}
f := bufio.NewReader(a.wal)
items, err := a.readPacket(f)
if err != nil {
return
}
if items[0] == int64(wpt00Empty) {
if len(items) != 1 {
return &ErrILSEQ{Type: ErrInvalidWAL, Name: a.wal.Name(), More: fmt.Sprintf("invalid packet items %#v", items)}
}
return nil
}
if len(items) != 3 || items[0] != int64(wpt00Header) || items[1] != int64(walTypeACIDFiler0) {
return &ErrILSEQ{Type: ErrInvalidWAL, Name: a.wal.Name(), More: fmt.Sprintf("invalid packet items %#v", items)}
}
tr := NewBTree(nil)
for {
items, err = a.readPacket(f)
if err != nil {
return
}
if len(items) < 2 {
return &ErrILSEQ{Type: ErrInvalidWAL, Name: a.wal.Name(), More: fmt.Sprintf("too few packet items %#v", items)}
}
switch items[0] {
case int64(wpt00WriteData):
if len(items) != 3 {
return &ErrILSEQ{Type: ErrInvalidWAL, Name: a.wal.Name(), More: fmt.Sprintf("invalid data packet items %#v", items)}
}
b, off := items[1].([]byte), items[2].(int64)
var key [8]byte
binary.BigEndian.PutUint64(key[:], uint64(off))
if err = tr.Set(key[:], b); err != nil {
return
}
case int64(wpt00Checkpoint):
var b1 [1]byte
if n, err := f.Read(b1[:]); n != 0 || err == nil {
return &ErrILSEQ{Type: ErrInvalidWAL, Name: a.wal.Name(), More: fmt.Sprintf("checkpoint n %d, err %v", n, err)}
}
if len(items) != 2 {
return &ErrILSEQ{Type: ErrInvalidWAL, Name: a.wal.Name(), More: fmt.Sprintf("checkpoint packet invalid items %#v", items)}
}
sz := items[1].(int64)
enum, err := tr.seekFirst()
if err != nil {
return err
}
for {
var k, v []byte
k, v, err = enum.current()
if err != nil {
if fileutil.IsEOF(err) {
break
}
return err
}
if _, err = db.WriteAt(v, int64(binary.BigEndian.Uint64(k))); err != nil {
return err
}
if err = enum.next(); err != nil {
if fileutil.IsEOF(err) {
break
}
return err
}
}
if err = db.Truncate(sz); err != nil {
return err
}
if err = db.Sync(); err != nil {
return err
}
// Recovery complete
if err := a.emptyWAL(); err != nil {
return err
}
return a.wal.Sync()
default:
return &ErrILSEQ{Type: ErrInvalidWAL, Name: a.wal.Name(), More: fmt.Sprintf("packet tag %v", items[0])}
}
}
}

View File

@ -1,48 +0,0 @@
// Copyright 2014 The lldb Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
/*
Anatomy of a WAL file
WAL file
A sequence of packets
WAL packet, parts in slice notation
[0:4], 4 bytes: N uint32 // network byte order
[4:4+N], N bytes: payload []byte // gb encoded scalars
Packets, including the 4 byte 'size' prefix, MUST BE padded to size == 0 (mod
16). The values of the padding bytes MUST BE zero.
Encoded scalars first item is a packet type number (packet tag). The meaning of
any other item(s) of the payload depends on the packet tag.
Packet definitions
{wpt00Header int, typ int, s string}
typ: Must be zero (ACIDFiler0 file).
s: Any comment string, empty string is okay.
This packet must be present only once - as the first packet of
a WAL file.
{wpt00WriteData int, b []byte, off int64}
Write data (WriteAt(b, off)).
{wpt00Checkpoint int, sz int64}
Checkpoint (Truncate(sz)).
This packet must be present only once - as the last packet of
a WAL file.
{wpt00Empty int}
The WAL size is of non-zero size due to configured headroom,
but empty otherwise.
*/
package lldb
//TODO optimize bitfiler/wal/2pc data above final size

27
vendor/github.com/cznic/lldb/LICENSE generated vendored
View File

@ -1,27 +0,0 @@
Copyright (c) 2014 The lldb Authors. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the names of the authors nor the names of the
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

2346
vendor/github.com/cznic/lldb/btree.go generated vendored

File diff suppressed because it is too large Load Diff

View File

@ -1,170 +0,0 @@
// Copyright 2014 The lldb Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Some errors returned by this package.
//
// Note that this package can return more errors than declared here, for
// example io.EOF from Filer.ReadAt().
package lldb
import (
"fmt"
)
// ErrDecodeScalars is possibly returned from DecodeScalars
type ErrDecodeScalars struct {
B []byte // Data being decoded
I int // offending offset
}
// Error implements the built in error type.
func (e *ErrDecodeScalars) Error() string {
return fmt.Sprintf("DecodeScalars: corrupted data @ %d/%d", e.I, len(e.B))
}
// ErrINVAL reports invalid values passed as parameters, for example negative
// offsets where only non-negative ones are allowed or read from the DB.
type ErrINVAL struct {
Src string
Val interface{}
}
// Error implements the built in error type.
func (e *ErrINVAL) Error() string {
return fmt.Sprintf("%s: %+v", e.Src, e.Val)
}
// ErrPERM is for example reported when a Filer is closed while BeginUpdate(s)
// are not balanced with EndUpdate(s)/Rollback(s) or when EndUpdate or Rollback
// is invoked which is not paired with a BeginUpdate.
type ErrPERM struct {
Src string
}
// Error implements the built in error type.
func (e *ErrPERM) Error() string {
return fmt.Sprintf("%s: Operation not permitted", e.Src)
}
// ErrTag represents an ErrILSEQ kind.
type ErrType int
// ErrILSEQ types
const (
ErrOther ErrType = iota
ErrAdjacentFree // Adjacent free blocks (.Off and .Arg)
ErrDecompress // Used compressed block: corrupted compression
ErrExpFreeTag // Expected a free block tag, got .Arg
ErrExpUsedTag // Expected a used block tag, got .Arg
ErrFLT // Free block is invalid or referenced multiple times
ErrFLTLoad // FLT truncated to .Off, need size >= .Arg
ErrFLTSize // Free block size (.Arg) doesn't belong to its list min size: .Arg2
ErrFileSize // File .Name size (.Arg) != 0 (mod 16)
ErrFreeChaining // Free block, .prev.next doesn't point back to this block
ErrFreeTailBlock // Last block is free
ErrHead // Head of a free block list has non zero Prev (.Arg)
ErrInvalidRelocTarget // Reloc doesn't target (.Arg) a short or long used block
ErrInvalidWAL // Corrupted write ahead log. .Name: file name, .More: more
ErrLongFreeBlkTooLong // Long free block spans beyond EOF, size .Arg
ErrLongFreeBlkTooShort // Long free block must have at least 2 atoms, got only .Arg
ErrLongFreeNextBeyondEOF // Long free block .Next (.Arg) spans beyond EOF
ErrLongFreePrevBeyondEOF // Long free block .Prev (.Arg) spans beyond EOF
ErrLongFreeTailTag // Expected a long free block tail tag, got .Arg
ErrLostFreeBlock // Free block is not in any FLT list
ErrNullReloc // Used reloc block with nil target
ErrRelocBeyondEOF // Used reloc points (.Arg) beyond EOF
ErrShortFreeTailTag // Expected a short free block tail tag, got .Arg
ErrSmall // Request for a free block (.Arg) returned a too small one (.Arg2) at .Off
ErrTailTag // Block at .Off has invalid tail CC (compression code) tag, got .Arg
ErrUnexpReloc // Unexpected reloc block referred to from reloc block .Arg
ErrVerifyPadding // Used block has nonzero padding
ErrVerifyTailSize // Long free block size .Arg but tail size .Arg2
ErrVerifyUsedSpan // Used block size (.Arg) spans beyond EOF
)
// ErrILSEQ reports a corrupted file format. Details in fields according to Type.
type ErrILSEQ struct {
Type ErrType
Off int64
Arg int64
Arg2 int64
Arg3 int64
Name string
More interface{}
}
// Error implements the built in error type.
func (e *ErrILSEQ) Error() string {
switch e.Type {
case ErrAdjacentFree:
return fmt.Sprintf("Adjacent free blocks at offset %#x and %#x", e.Off, e.Arg)
case ErrDecompress:
return fmt.Sprintf("Compressed block at offset %#x: Corrupted compressed content", e.Off)
case ErrExpFreeTag:
return fmt.Sprintf("Block at offset %#x: Expected a free block tag, got %#2x", e.Off, e.Arg)
case ErrExpUsedTag:
return fmt.Sprintf("Block at ofset %#x: Expected a used block tag, got %#2x", e.Off, e.Arg)
case ErrFLT:
return fmt.Sprintf("Free block at offset %#x is invalid or referenced multiple times", e.Off)
case ErrFLTLoad:
return fmt.Sprintf("FLT truncated to size %d, expected at least %d", e.Off, e.Arg)
case ErrFLTSize:
return fmt.Sprintf("Free block at offset %#x has size (%#x) should be at least (%#x)", e.Off, e.Arg, e.Arg2)
case ErrFileSize:
return fmt.Sprintf("File %q size (%#x) != 0 (mod 16)", e.Name, e.Arg)
case ErrFreeChaining:
return fmt.Sprintf("Free block at offset %#x: .prev.next doesn point back here.", e.Off)
case ErrFreeTailBlock:
return fmt.Sprintf("Free block at offset %#x: Cannot be last file block", e.Off)
case ErrHead:
return fmt.Sprintf("Block at offset %#x: Head of free block list has non zero .prev %#x", e.Off, e.Arg)
case ErrInvalidRelocTarget:
return fmt.Sprintf("Used reloc block at offset %#x: Target (%#x) is not a short or long used block", e.Off, e.Arg)
case ErrInvalidWAL:
return fmt.Sprintf("Corrupted write ahead log file: %q %v", e.Name, e.More)
case ErrLongFreeBlkTooLong:
return fmt.Sprintf("Long free block at offset %#x: Size (%#x) beyond EOF", e.Off, e.Arg)
case ErrLongFreeBlkTooShort:
return fmt.Sprintf("Long free block at offset %#x: Size (%#x) too small", e.Off, e.Arg)
case ErrLongFreeNextBeyondEOF:
return fmt.Sprintf("Long free block at offset %#x: Next (%#x) points beyond EOF", e.Off, e.Arg)
case ErrLongFreePrevBeyondEOF:
return fmt.Sprintf("Long free block at offset %#x: Prev (%#x) points beyond EOF", e.Off, e.Arg)
case ErrLongFreeTailTag:
return fmt.Sprintf("Block at offset %#x: Expected long free tail tag, got %#2x", e.Off, e.Arg)
case ErrLostFreeBlock:
return fmt.Sprintf("Free block at offset %#x: not in any FLT list", e.Off)
case ErrNullReloc:
return fmt.Sprintf("Used reloc block at offset %#x: Nil target", e.Off)
case ErrRelocBeyondEOF:
return fmt.Sprintf("Used reloc block at offset %#x: Link (%#x) points beyond EOF", e.Off, e.Arg)
case ErrShortFreeTailTag:
return fmt.Sprintf("Block at offset %#x: Expected short free tail tag, got %#2x", e.Off, e.Arg)
case ErrSmall:
return fmt.Sprintf("Request for of free block of size %d returned a too small (%d) one at offset %#x", e.Arg, e.Arg2, e.Off)
case ErrTailTag:
return fmt.Sprintf("Block at offset %#x: Invalid tail CC tag, got %#2x", e.Off, e.Arg)
case ErrUnexpReloc:
return fmt.Sprintf("Block at offset %#x: Unexpected reloc block. Referred to from reloc block at offset %#x", e.Off, e.Arg)
case ErrVerifyPadding:
return fmt.Sprintf("Used block at offset %#x: Nonzero padding", e.Off)
case ErrVerifyTailSize:
return fmt.Sprintf("Long free block at offset %#x: Size %#x, but tail size %#x", e.Off, e.Arg, e.Arg2)
case ErrVerifyUsedSpan:
return fmt.Sprintf("Used block at offset %#x: Size %#x spans beyond EOF", e.Off, e.Arg)
}
more := ""
if e.More != nil {
more = fmt.Sprintf(", %v", e.More)
}
off := ""
if e.Off != 0 {
off = fmt.Sprintf(", off: %#x", e.Off)
}
return fmt.Sprintf("Error%s%s", off, more)
}

1999
vendor/github.com/cznic/lldb/falloc.go generated vendored

File diff suppressed because it is too large Load Diff

184
vendor/github.com/cznic/lldb/filer.go generated vendored
View File

@ -1,184 +0,0 @@
// Copyright 2014 The lldb Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// An abstraction of file like (persistent) storage with optional (abstracted)
// support for structural integrity.
package lldb
import "github.com/cznic/mathutil"
// A Filer is a []byte-like model of a file or similar entity. It may
// optionally implement support for structural transaction safety. In contrast
// to a file stream, a Filer is not sequentially accessible. ReadAt and WriteAt
// are always "addressed" by an offset and are assumed to perform atomically.
// A Filer is not safe for concurrent access, it's designed for consumption by
// the other objects in package, which should use a Filer from one goroutine
// only or via a mutex. BeginUpdate, EndUpdate and Rollback must be either all
// implemented by a Filer for structural integrity - or they should be all
// no-ops; where/if that requirement is relaxed.
//
// If a Filer wraps another Filer implementation, it usually invokes the same
// methods on the "inner" one, after some possible argument translations etc.
// If a Filer implements the structural transactions handling methods
// (BeginUpdate, EndUpdate and Rollback) as no-ops _and_ wraps another Filer:
// it then still MUST invoke those methods on the inner Filer. This is
// important for the case where a RollbackFiler exists somewhere down the
// chain. It's also important for an Allocator - to know when it must
// invalidate its FLT cache.
type Filer interface {
// BeginUpdate increments the "nesting" counter (initially zero). Every
// call to BeginUpdate must be eventually "balanced" by exactly one of
// EndUpdate or Rollback. Calls to BeginUpdate may nest.
BeginUpdate() error
// Analogous to os.File.Close().
Close() error
// EndUpdate decrements the "nesting" counter. If it's zero after that
// then assume the "storage" has reached structural integrity (after a
// batch of partial updates). If a Filer implements some support for
// that (write ahead log, journal, etc.) then the appropriate actions
// are to be taken for nesting == 0. Invocation of an unbalanced
// EndUpdate is an error.
EndUpdate() error
// Analogous to os.File.Name().
Name() string
// PunchHole deallocates space inside a "file" in the byte range
// starting at off and continuing for size bytes. The actual hole
// created by PunchHole may be smaller than requested. The Filer size
// (as reported by `Size()` does not change when hole punching, even
// when punching the end of a file off. In contrast to the Linux
// implementation of FALLOC_FL_PUNCH_HOLE in `fallocate`(2); a Filer is
// free not only to ignore `PunchHole()` (implement it as a nop), but
// additionally no guarantees about the content of the hole, when
// eventually read back, are required, i.e. any data, not only zeros,
// can be read from the "hole", including just anything what was left
// there - with all of the possible security problems.
PunchHole(off, size int64) error
// As os.File.ReadAt. Note: `off` is an absolute "file pointer"
// address and cannot be negative even when a Filer is a InnerFiler.
ReadAt(b []byte, off int64) (n int, err error)
// Rollback cancels and undoes the innermost pending update level.
// Rollback decrements the "nesting" counter. If a Filer implements
// some support for keeping structural integrity (write ahead log,
// journal, etc.) then the appropriate actions are to be taken.
// Invocation of an unbalanced Rollback is an error.
Rollback() error
// Analogous to os.File.FileInfo().Size().
Size() (int64, error)
// Analogous to os.Sync().
Sync() (err error)
// Analogous to os.File.Truncate().
Truncate(size int64) error
// Analogous to os.File.WriteAt(). Note: `off` is an absolute "file
// pointer" address and cannot be negative even when a Filer is a
// InnerFiler.
WriteAt(b []byte, off int64) (n int, err error)
}
var _ Filer = &InnerFiler{} // Ensure InnerFiler is a Filer.
// A InnerFiler is a Filer with added addressing/size translation.
type InnerFiler struct {
outer Filer
off int64
}
// NewInnerFiler returns a new InnerFiler wrapped by `outer` in a way which
// adds `off` to every access.
//
// For example, considering:
//
// inner := NewInnerFiler(outer, 10)
//
// then
//
// inner.WriteAt([]byte{42}, 4)
//
// translates to
//
// outer.WriteAt([]byte{42}, 14)
//
// But an attempt to emulate
//
// outer.WriteAt([]byte{17}, 9)
//
// by
//
// inner.WriteAt([]byte{17}, -1)
//
// will fail as the `off` parameter can never be < 0. Also note that
//
// inner.Size() == outer.Size() - off,
//
// i.e. `inner` pretends no `outer` exists. Finally, after e.g.
//
// inner.Truncate(7)
// outer.Size() == 17
//
// will be true.
func NewInnerFiler(outer Filer, off int64) *InnerFiler { return &InnerFiler{outer, off} }
// BeginUpdate implements Filer.
func (f *InnerFiler) BeginUpdate() error { return f.outer.BeginUpdate() }
// Close implements Filer.
func (f *InnerFiler) Close() (err error) { return f.outer.Close() }
// EndUpdate implements Filer.
func (f *InnerFiler) EndUpdate() error { return f.outer.EndUpdate() }
// Name implements Filer.
func (f *InnerFiler) Name() string { return f.outer.Name() }
// PunchHole implements Filer. `off`, `size` must be >= 0.
func (f *InnerFiler) PunchHole(off, size int64) error { return f.outer.PunchHole(f.off+off, size) }
// ReadAt implements Filer. `off` must be >= 0.
func (f *InnerFiler) ReadAt(b []byte, off int64) (n int, err error) {
if off < 0 {
return 0, &ErrINVAL{f.outer.Name() + ":ReadAt invalid off", off}
}
return f.outer.ReadAt(b, f.off+off)
}
// Rollback implements Filer.
func (f *InnerFiler) Rollback() error { return f.outer.Rollback() }
// Size implements Filer.
func (f *InnerFiler) Size() (int64, error) {
sz, err := f.outer.Size()
if err != nil {
return 0, err
}
return mathutil.MaxInt64(sz-f.off, 0), nil
}
// Sync() implements Filer.
func (f *InnerFiler) Sync() (err error) {
return f.outer.Sync()
}
// Truncate implements Filer.
func (f *InnerFiler) Truncate(size int64) error { return f.outer.Truncate(size + f.off) }
// WriteAt implements Filer. `off` must be >= 0.
func (f *InnerFiler) WriteAt(b []byte, off int64) (n int, err error) {
if off < 0 {
return 0, &ErrINVAL{f.outer.Name() + ":WriteAt invalid off", off}
}
return f.outer.WriteAt(b, f.off+off)
}

812
vendor/github.com/cznic/lldb/gb.go generated vendored
View File

@ -1,812 +0,0 @@
// Copyright 2014 The lldb Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Utilities to encode/decode and collate Go predeclared scalar types (and the
// typeless nil and []byte). The encoding format is a variation of the one
// used by the "encoding/gob" package.
package lldb
import (
"bytes"
"fmt"
"math"
"github.com/cznic/mathutil"
)
const (
gbNull = iota // 0x00
gbFalse // 0x01
gbTrue // 0x02
gbFloat0 // 0x03
gbFloat1 // 0x04
gbFloat2 // 0x05
gbFloat3 // 0x06
gbFloat4 // 0x07
gbFloat5 // 0x08
gbFloat6 // 0x09
gbFloat7 // 0x0a
gbFloat8 // 0x0b
gbComplex0 // 0x0c
gbComplex1 // 0x0d
gbComplex2 // 0x0e
gbComplex3 // 0x0f
gbComplex4 // 0x10
gbComplex5 // 0x11
gbComplex6 // 0x12
gbComplex7 // 0x13
gbComplex8 // 0x14
gbBytes00 // 0x15
gbBytes01 // 0x16
gbBytes02 // 0x17
gbBytes03 // 0x18
gbBytes04 // 0x19
gbBytes05 // 0x1a
gbBytes06 // 0x1b
gbBytes07 // 0x1c
gbBytes08 // 0x1d
gbBytes09 // 0x1e
gbBytes10 // 0x1f
gbBytes11 // 0x20
gbBytes12 // 0x21
gbBytes13 // 0x22
gbBytes14 // 0x23
gbBytes15 // 0x24
gbBytes16 // 0x25
gbBytes17 // Ox26
gbBytes1 // 0x27
gbBytes2 // 0x28: Offset by one to allow 64kB sized []byte.
gbString00 // 0x29
gbString01 // 0x2a
gbString02 // 0x2b
gbString03 // 0x2c
gbString04 // 0x2d
gbString05 // 0x2e
gbString06 // 0x2f
gbString07 // 0x30
gbString08 // 0x31
gbString09 // 0x32
gbString10 // 0x33
gbString11 // 0x34
gbString12 // 0x35
gbString13 // 0x36
gbString14 // 0x37
gbString15 // 0x38
gbString16 // 0x39
gbString17 // 0x3a
gbString1 // 0x3b
gbString2 // 0x3c
gbUintP1 // 0x3d
gbUintP2 // 0x3e
gbUintP3 // 0x3f
gbUintP4 // 0x40
gbUintP5 // 0x41
gbUintP6 // 0x42
gbUintP7 // 0x43
gbUintP8 // 0x44
gbIntM8 // 0x45
gbIntM7 // 0x46
gbIntM6 // 0x47
gbIntM5 // 0x48
gbIntM4 // 0x49
gbIntM3 // 0x4a
gbIntM2 // 0x4b
gbIntM1 // 0x4c
gbIntP1 // 0x4d
gbIntP2 // 0x4e
gbIntP3 // 0x4f
gbIntP4 // 0x50
gbIntP5 // 0x51
gbIntP6 // 0x52
gbIntP7 // 0x53
gbIntP8 // 0x54
gbInt0 // 0x55
gbIntMax = 255 - gbInt0 // 0xff == 170
)
// EncodeScalars encodes a vector of predeclared scalar type values to a
// []byte, making it suitable to store it as a "record" in a DB or to use it as
// a key of a BTree.
func EncodeScalars(scalars ...interface{}) (b []byte, err error) {
for _, scalar := range scalars {
switch x := scalar.(type) {
default:
return nil, &ErrINVAL{"EncodeScalars: unsupported type", fmt.Sprintf("%T in `%#v`", x, scalars)}
case nil:
b = append(b, gbNull)
case bool:
switch x {
case false:
b = append(b, gbFalse)
case true:
b = append(b, gbTrue)
}
case float32:
encFloat(float64(x), &b)
case float64:
encFloat(x, &b)
case complex64:
encComplex(complex128(x), &b)
case complex128:
encComplex(x, &b)
case string:
n := len(x)
if n <= 17 {
b = append(b, byte(gbString00+n))
b = append(b, []byte(x)...)
break
}
if n > 65535 {
return nil, fmt.Errorf("EncodeScalars: cannot encode string of length %d (limit 65536)", n)
}
pref := byte(gbString1)
if n > 255 {
pref++
}
b = append(b, pref)
encUint0(uint64(n), &b)
b = append(b, []byte(x)...)
case int8:
encInt(int64(x), &b)
case int16:
encInt(int64(x), &b)
case int32:
encInt(int64(x), &b)
case int64:
encInt(x, &b)
case int:
encInt(int64(x), &b)
case uint8:
encUint(uint64(x), &b)
case uint16:
encUint(uint64(x), &b)
case uint32:
encUint(uint64(x), &b)
case uint64:
encUint(x, &b)
case uint:
encUint(uint64(x), &b)
case []byte:
n := len(x)
if n <= 17 {
b = append(b, byte(gbBytes00+n))
b = append(b, x...)
break
}
if n > 655356 {
return nil, fmt.Errorf("EncodeScalars: cannot encode []byte of length %d (limit 65536)", n)
}
pref := byte(gbBytes1)
if n > 255 {
pref++
}
b = append(b, pref)
if n <= 255 {
b = append(b, byte(n))
} else {
n--
b = append(b, byte(n>>8), byte(n))
}
b = append(b, x...)
}
}
return
}
func encComplex(f complex128, b *[]byte) {
encFloatPrefix(gbComplex0, real(f), b)
encFloatPrefix(gbComplex0, imag(f), b)
}
func encFloatPrefix(prefix byte, f float64, b *[]byte) {
u := math.Float64bits(f)
var n uint64
for i := 0; i < 8; i++ {
n <<= 8
n |= u & 0xFF
u >>= 8
}
bits := mathutil.BitLenUint64(n)
if bits == 0 {
*b = append(*b, prefix)
return
}
// 0 1 2 3 4 5 6 7 8 9
// . 1 1 1 1 1 1 1 1 2
encUintPrefix(prefix+1+byte((bits-1)>>3), n, b)
}
func encFloat(f float64, b *[]byte) {
encFloatPrefix(gbFloat0, f, b)
}
func encUint0(n uint64, b *[]byte) {
switch {
case n <= 0xff:
*b = append(*b, byte(n))
case n <= 0xffff:
*b = append(*b, byte(n>>8), byte(n))
case n <= 0xffffff:
*b = append(*b, byte(n>>16), byte(n>>8), byte(n))
case n <= 0xffffffff:
*b = append(*b, byte(n>>24), byte(n>>16), byte(n>>8), byte(n))
case n <= 0xffffffffff:
*b = append(*b, byte(n>>32), byte(n>>24), byte(n>>16), byte(n>>8), byte(n))
case n <= 0xffffffffffff:
*b = append(*b, byte(n>>40), byte(n>>32), byte(n>>24), byte(n>>16), byte(n>>8), byte(n))
case n <= 0xffffffffffffff:
*b = append(*b, byte(n>>48), byte(n>>40), byte(n>>32), byte(n>>24), byte(n>>16), byte(n>>8), byte(n))
case n <= math.MaxUint64:
*b = append(*b, byte(n>>56), byte(n>>48), byte(n>>40), byte(n>>32), byte(n>>24), byte(n>>16), byte(n>>8), byte(n))
}
}
func encUintPrefix(prefix byte, n uint64, b *[]byte) {
*b = append(*b, prefix)
encUint0(n, b)
}
func encUint(n uint64, b *[]byte) {
bits := mathutil.Max(1, mathutil.BitLenUint64(n))
encUintPrefix(gbUintP1+byte((bits-1)>>3), n, b)
}
func encInt(n int64, b *[]byte) {
switch {
case n < -0x100000000000000:
*b = append(*b, byte(gbIntM8), byte(n>>56), byte(n>>48), byte(n>>40), byte(n>>32), byte(n>>24), byte(n>>16), byte(n>>8), byte(n))
case n < -0x1000000000000:
*b = append(*b, byte(gbIntM7), byte(n>>48), byte(n>>40), byte(n>>32), byte(n>>24), byte(n>>16), byte(n>>8), byte(n))
case n < -0x10000000000:
*b = append(*b, byte(gbIntM6), byte(n>>40), byte(n>>32), byte(n>>24), byte(n>>16), byte(n>>8), byte(n))
case n < -0x100000000:
*b = append(*b, byte(gbIntM5), byte(n>>32), byte(n>>24), byte(n>>16), byte(n>>8), byte(n))
case n < -0x1000000:
*b = append(*b, byte(gbIntM4), byte(n>>24), byte(n>>16), byte(n>>8), byte(n))
case n < -0x10000:
*b = append(*b, byte(gbIntM3), byte(n>>16), byte(n>>8), byte(n))
case n < -0x100:
*b = append(*b, byte(gbIntM2), byte(n>>8), byte(n))
case n < 0:
*b = append(*b, byte(gbIntM1), byte(n))
case n <= gbIntMax:
*b = append(*b, byte(gbInt0+n))
case n <= 0xff:
*b = append(*b, gbIntP1, byte(n))
case n <= 0xffff:
*b = append(*b, gbIntP2, byte(n>>8), byte(n))
case n <= 0xffffff:
*b = append(*b, gbIntP3, byte(n>>16), byte(n>>8), byte(n))
case n <= 0xffffffff:
*b = append(*b, gbIntP4, byte(n>>24), byte(n>>16), byte(n>>8), byte(n))
case n <= 0xffffffffff:
*b = append(*b, gbIntP5, byte(n>>32), byte(n>>24), byte(n>>16), byte(n>>8), byte(n))
case n <= 0xffffffffffff:
*b = append(*b, gbIntP6, byte(n>>40), byte(n>>32), byte(n>>24), byte(n>>16), byte(n>>8), byte(n))
case n <= 0xffffffffffffff:
*b = append(*b, gbIntP7, byte(n>>48), byte(n>>40), byte(n>>32), byte(n>>24), byte(n>>16), byte(n>>8), byte(n))
case n <= 0x7fffffffffffffff:
*b = append(*b, gbIntP8, byte(n>>56), byte(n>>48), byte(n>>40), byte(n>>32), byte(n>>24), byte(n>>16), byte(n>>8), byte(n))
}
}
func decodeFloat(b []byte) float64 {
var u uint64
for i, v := range b {
u |= uint64(v) << uint((i+8-len(b))*8)
}
return math.Float64frombits(u)
}
// DecodeScalars decodes a []byte produced by EncodeScalars.
func DecodeScalars(b []byte) (scalars []interface{}, err error) {
b0 := b
for len(b) != 0 {
switch tag := b[0]; tag {
//default:
//return nil, fmt.Errorf("tag %d(%#x) not supported", b[0], b[0])
case gbNull:
scalars = append(scalars, nil)
b = b[1:]
case gbFalse:
scalars = append(scalars, false)
b = b[1:]
case gbTrue:
scalars = append(scalars, true)
b = b[1:]
case gbFloat0:
scalars = append(scalars, 0.0)
b = b[1:]
case gbFloat1, gbFloat2, gbFloat3, gbFloat4, gbFloat5, gbFloat6, gbFloat7, gbFloat8:
n := 1 + int(tag) - gbFloat0
if len(b) < n-1 {
goto corrupted
}
scalars = append(scalars, decodeFloat(b[1:n]))
b = b[n:]
case gbComplex0, gbComplex1, gbComplex2, gbComplex3, gbComplex4, gbComplex5, gbComplex6, gbComplex7, gbComplex8:
n := 1 + int(tag) - gbComplex0
if len(b) < n-1 {
goto corrupted
}
re := decodeFloat(b[1:n])
b = b[n:]
if len(b) == 0 {
goto corrupted
}
tag = b[0]
if tag < gbComplex0 || tag > gbComplex8 {
goto corrupted
}
n = 1 + int(tag) - gbComplex0
if len(b) < n-1 {
goto corrupted
}
scalars = append(scalars, complex(re, decodeFloat(b[1:n])))
b = b[n:]
case gbBytes00, gbBytes01, gbBytes02, gbBytes03, gbBytes04,
gbBytes05, gbBytes06, gbBytes07, gbBytes08, gbBytes09,
gbBytes10, gbBytes11, gbBytes12, gbBytes13, gbBytes14,
gbBytes15, gbBytes16, gbBytes17:
n := int(tag - gbBytes00)
if len(b) < n+1 {
goto corrupted
}
scalars = append(scalars, append([]byte(nil), b[1:n+1]...))
b = b[n+1:]
case gbBytes1:
if len(b) < 2 {
goto corrupted
}
n := int(b[1])
b = b[2:]
if len(b) < n {
goto corrupted
}
scalars = append(scalars, append([]byte(nil), b[:n]...))
b = b[n:]
case gbBytes2:
if len(b) < 3 {
goto corrupted
}
n := int(b[1])<<8 | int(b[2]) + 1
b = b[3:]
if len(b) < n {
goto corrupted
}
scalars = append(scalars, append([]byte(nil), b[:n]...))
b = b[n:]
case gbString00, gbString01, gbString02, gbString03, gbString04,
gbString05, gbString06, gbString07, gbString08, gbString09,
gbString10, gbString11, gbString12, gbString13, gbString14,
gbString15, gbString16, gbString17:
n := int(tag - gbString00)
if len(b) < n+1 {
goto corrupted
}
scalars = append(scalars, string(b[1:n+1]))
b = b[n+1:]
case gbString1:
if len(b) < 2 {
goto corrupted
}
n := int(b[1])
b = b[2:]
if len(b) < n {
goto corrupted
}
scalars = append(scalars, string(b[:n]))
b = b[n:]
case gbString2:
if len(b) < 3 {
goto corrupted
}
n := int(b[1])<<8 | int(b[2])
b = b[3:]
if len(b) < n {
goto corrupted
}
scalars = append(scalars, string(b[:n]))
b = b[n:]
case gbUintP1, gbUintP2, gbUintP3, gbUintP4, gbUintP5, gbUintP6, gbUintP7, gbUintP8:
b = b[1:]
n := 1 + int(tag) - gbUintP1
if len(b) < n {
goto corrupted
}
var u uint64
for _, v := range b[:n] {
u = u<<8 | uint64(v)
}
scalars = append(scalars, u)
b = b[n:]
case gbIntM8, gbIntM7, gbIntM6, gbIntM5, gbIntM4, gbIntM3, gbIntM2, gbIntM1:
b = b[1:]
n := 8 - (int(tag) - gbIntM8)
if len(b) < n {
goto corrupted
}
u := uint64(math.MaxUint64)
for _, v := range b[:n] {
u = u<<8 | uint64(v)
}
scalars = append(scalars, int64(u))
b = b[n:]
case gbIntP1, gbIntP2, gbIntP3, gbIntP4, gbIntP5, gbIntP6, gbIntP7, gbIntP8:
b = b[1:]
n := 1 + int(tag) - gbIntP1
if len(b) < n {
goto corrupted
}
i := int64(0)
for _, v := range b[:n] {
i = i<<8 | int64(v)
}
scalars = append(scalars, i)
b = b[n:]
default:
scalars = append(scalars, int64(b[0])-gbInt0)
b = b[1:]
}
}
return append([]interface{}(nil), scalars...), nil
corrupted:
return nil, &ErrDecodeScalars{append([]byte(nil), b0...), len(b0) - len(b)}
}
func collateComplex(x, y complex128) int {
switch rx, ry := real(x), real(y); {
case rx < ry:
return -1
case rx == ry:
switch ix, iy := imag(x), imag(y); {
case ix < iy:
return -1
case ix == iy:
return 0
case ix > iy:
return 1
}
}
//case rx > ry:
return 1
}
func collateFloat(x, y float64) int {
switch {
case x < y:
return -1
case x == y:
return 0
}
//case x > y:
return 1
}
func collateInt(x, y int64) int {
switch {
case x < y:
return -1
case x == y:
return 0
}
//case x > y:
return 1
}
func collateUint(x, y uint64) int {
switch {
case x < y:
return -1
case x == y:
return 0
}
//case x > y:
return 1
}
func collateIntUint(x int64, y uint64) int {
if y > math.MaxInt64 {
return -1
}
return collateInt(x, int64(y))
}
func collateUintInt(x uint64, y int64) int {
return -collateIntUint(y, x)
}
func collateType(i interface{}) (r interface{}, err error) {
switch x := i.(type) {
default:
return nil, fmt.Errorf("invalid collate type %T", x)
case nil:
return i, nil
case bool:
return i, nil
case int8:
return int64(x), nil
case int16:
return int64(x), nil
case int32:
return int64(x), nil
case int64:
return i, nil
case int:
return int64(x), nil
case uint8:
return uint64(x), nil
case uint16:
return uint64(x), nil
case uint32:
return uint64(x), nil
case uint64:
return i, nil
case uint:
return uint64(x), nil
case float32:
return float64(x), nil
case float64:
return i, nil
case complex64:
return complex128(x), nil
case complex128:
return i, nil
case []byte:
return i, nil
case string:
return i, nil
}
}
// Collate collates two arrays of Go predeclared scalar types (and the typeless
// nil or []byte). If any other type appears in x or y, Collate will return a
// non nil error. String items are collated using strCollate or lexically
// byte-wise (as when using Go comparison operators) when strCollate is nil.
// []byte items are collated using bytes.Compare.
//
// Collate returns:
//
// -1 if x < y
// 0 if x == y
// +1 if x > y
//
// The same value as defined above must be returned from strCollate.
//
// The "outer" ordering is: nil, bool, number, []byte, string. IOW, nil is
// "smaller" than anything else except other nil, numbers collate before
// []byte, []byte collate before strings, etc.
//
// Integers and real numbers collate as expected in math. However, complex
// numbers are not ordered in Go. Here the ordering is defined: Complex numbers
// are in comparison considered first only by their real part. Iff the result
// is equality then the imaginary part is used to determine the ordering. In
// this "second order" comparing, integers and real numbers are considered as
// complex numbers with a zero imaginary part.
func Collate(x, y []interface{}, strCollate func(string, string) int) (r int, err error) {
nx, ny := len(x), len(y)
switch {
case nx == 0 && ny != 0:
return -1, nil
case nx == 0 && ny == 0:
return 0, nil
case nx != 0 && ny == 0:
return 1, nil
}
r = 1
if nx > ny {
x, y, r = y, x, -r
}
var c int
for i, xi0 := range x {
yi0 := y[i]
xi, err := collateType(xi0)
if err != nil {
return 0, err
}
yi, err := collateType(yi0)
if err != nil {
return 0, err
}
switch x := xi.(type) {
default:
panic(fmt.Errorf("internal error: %T", x))
case nil:
switch yi.(type) {
case nil:
// nop
default:
return -r, nil
}
case bool:
switch y := yi.(type) {
case nil:
return r, nil
case bool:
switch {
case !x && y:
return -r, nil
case x == y:
// nop
case x && !y:
return r, nil
}
default:
return -r, nil
}
case int64:
switch y := yi.(type) {
case nil, bool:
return r, nil
case int64:
c = collateInt(x, y)
case uint64:
c = collateIntUint(x, y)
case float64:
c = collateFloat(float64(x), y)
case complex128:
c = collateComplex(complex(float64(x), 0), y)
case []byte:
return -r, nil
case string:
return -r, nil
}
if c != 0 {
return c * r, nil
}
case uint64:
switch y := yi.(type) {
case nil, bool:
return r, nil
case int64:
c = collateUintInt(x, y)
case uint64:
c = collateUint(x, y)
case float64:
c = collateFloat(float64(x), y)
case complex128:
c = collateComplex(complex(float64(x), 0), y)
case []byte:
return -r, nil
case string:
return -r, nil
}
if c != 0 {
return c * r, nil
}
case float64:
switch y := yi.(type) {
case nil, bool:
return r, nil
case int64:
c = collateFloat(x, float64(y))
case uint64:
c = collateFloat(x, float64(y))
case float64:
c = collateFloat(x, y)
case complex128:
c = collateComplex(complex(x, 0), y)
case []byte:
return -r, nil
case string:
return -r, nil
}
if c != 0 {
return c * r, nil
}
case complex128:
switch y := yi.(type) {
case nil, bool:
return r, nil
case int64:
c = collateComplex(x, complex(float64(y), 0))
case uint64:
c = collateComplex(x, complex(float64(y), 0))
case float64:
c = collateComplex(x, complex(y, 0))
case complex128:
c = collateComplex(x, y)
case []byte:
return -r, nil
case string:
return -r, nil
}
if c != 0 {
return c * r, nil
}
case []byte:
switch y := yi.(type) {
case nil, bool, int64, uint64, float64, complex128:
return r, nil
case []byte:
c = bytes.Compare(x, y)
case string:
return -r, nil
}
if c != 0 {
return c * r, nil
}
case string:
switch y := yi.(type) {
case nil, bool, int64, uint64, float64, complex128:
return r, nil
case []byte:
return r, nil
case string:
switch {
case strCollate != nil:
c = strCollate(x, y)
case x < y:
return -r, nil
case x == y:
c = 0
case x > y:
return r, nil
}
}
if c != 0 {
return c * r, nil
}
}
}
if nx == ny {
return 0, nil
}
return -r, nil
}

160
vendor/github.com/cznic/lldb/lldb.go generated vendored
View File

@ -1,160 +0,0 @@
// Copyright 2014 The lldb Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package lldb implements a low level database engine. The database model used
// could be considered a specific implementation of some small(est)
// intersection of models listed in [1]. As a settled term is lacking, it'll be
// called here a 'Virtual memory model' (VMM).
//
// Changelog
//
// 2016-07-24: v1.0.4 brings some performance improvements.
//
// 2016-07-22: v1.0.3 brings some small performance improvements.
//
// 2016-07-12: v1.0.2 now uses packages from cznic/internal.
//
// 2016-07-12: v1.0.1 adds a license for testdata/fortunes.txt.
//
// 2016-07-11: First standalone release v1.0.0 of the package previously
// published as experimental (github.com/cznic/exp/lldb).
//
// Filers
//
// A Filer is an abstraction of storage. A Filer may be a part of some process'
// virtual address space, an OS file, a networked, remote file etc. Persistence
// of the storage is optional, opaque to VMM and it is specific to a concrete
// Filer implementation.
//
// Space management
//
// Mechanism to allocate, reallocate (resize), deallocate (and later reclaim
// the unused) contiguous parts of a Filer, called blocks. Blocks are
// identified and referred to by a handle, an int64.
//
// BTrees
//
// In addition to the VMM like services, lldb provides volatile and
// non-volatile BTrees. Keys and values of a BTree are limited in size to 64kB
// each (a bit more actually). Support for larger keys/values, if desired, can
// be built atop a BTree to certain limits.
//
// Handles vs pointers
//
// A handle is the abstracted storage counterpart of a memory address. There
// is one fundamental difference, though. Resizing a block never results in a
// change to the handle which refers to the resized block, so a handle is more
// akin to an unique numeric id/key. Yet it shares one property of pointers -
// handles can be associated again with blocks after the original handle block
// was deallocated. In other words, a handle uniqueness domain is the state of
// the database and is not something comparable to e.g. an ever growing
// numbering sequence.
//
// Also, as with memory pointers, dangling handles can be created and blocks
// overwritten when such handles are used. Using a zero handle to refer to a
// block will not panic; however, the resulting error is effectively the same
// exceptional situation as dereferencing a nil pointer.
//
// Blocks
//
// Allocated/used blocks, are limited in size to only a little bit more than
// 64kB. Bigger semantic entities/structures must be built in lldb's client
// code. The content of a block has no semantics attached, it's only a fully
// opaque `[]byte`.
//
// Scalars
//
// Use of "scalars" applies to EncodeScalars, DecodeScalars and Collate. Those
// first two "to bytes" and "from bytes" functions are suggested for handling
// multi-valued Allocator content items and/or keys/values of BTrees (using
// Collate for keys). Types called "scalar" are:
//
// nil (the typeless one)
// bool
// all integral types: [u]int8, [u]int16, [u]int32, [u]int, [u]int64
// all floating point types: float32, float64
// all complex types: complex64, complex128
// []byte (64kB max)
// string (64kb max)
//
// Specific implementations
//
// Included are concrete implementations of some of the VMM interfaces included
// to ease serving simple client code or for testing and possibly as an
// example. More details in the documentation of such implementations.
//
// [1]: http://en.wikipedia.org/wiki/Database_model
package lldb
const (
fltSz = 0x70 // size of the FLT
maxShort = 251
maxRq = 65787
maxFLTRq = 4112
maxHandle = 1<<56 - 1
atomLen = 16
tagUsedLong = 0xfc
tagUsedRelocated = 0xfd
tagFreeShort = 0xfe
tagFreeLong = 0xff
tagNotCompressed = 0
tagCompressed = 1
)
// Content size n -> blocksize in atoms.
func n2atoms(n int) int {
if n > maxShort {
n += 2
}
return (n+1)/16 + 1
}
// Content size n -> number of padding zeros.
func n2padding(n int) int {
if n > maxShort {
n += 2
}
return 15 - (n+1)&15
}
// Handle <-> offset
func h2off(h int64) int64 { return (h + 6) * 16 }
func off2h(off int64) int64 { return off/16 - 6 }
// Get a 7B int64 from b
func b2h(b []byte) (h int64) {
for _, v := range b[:7] {
h = h<<8 | int64(v)
}
return
}
// Put a 7B int64 into b
func h2b(b []byte, h int64) []byte {
for i := range b[:7] {
b[i], h = byte(h>>48), h<<8
}
return b
}
// Content length N (must be in [252, 65787]) to long used block M field.
func n2m(n int) (m int) {
return n % 0x10000
}
// Long used block M (must be in [0, 65535]) field to content length N.
func m2n(m int) (n int) {
if m <= maxShort {
m += 0x10000
}
return m
}
func bpack(a []byte) []byte {
if cap(a) > len(a) {
return append([]byte(nil), a...)
}
return a
}

View File

@ -1,101 +0,0 @@
// Copyright 2014 The lldb Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// A memory-only implementation of Filer.
package lldb
import (
"fmt"
"io"
"github.com/cznic/internal/file"
)
var _ Filer = &MemFiler{}
// MemFiler is a memory backed Filer. It implements BeginUpdate, EndUpdate and
// Rollback as no-ops. MemFiler is not automatically persistent, but it has
// ReadFrom and WriteTo methods.
type MemFiler struct {
fi file.Interface
nest int
}
// NewMemFiler returns a new MemFiler.
func NewMemFiler() *MemFiler {
fi, err := file.OpenMem("")
if err != nil {
return nil
}
return &MemFiler{fi: fi}
}
// BeginUpdate implements Filer.
func (f *MemFiler) BeginUpdate() error {
f.nest++
return nil
}
// Close implements Filer.
func (f *MemFiler) Close() (err error) {
if f.nest != 0 {
return &ErrPERM{(f.Name() + ":Close")}
}
return f.fi.Close()
}
// EndUpdate implements Filer.
func (f *MemFiler) EndUpdate() (err error) {
if f.nest == 0 {
return &ErrPERM{(f.Name() + ": EndUpdate")}
}
f.nest--
return
}
// Name implements Filer.
func (f *MemFiler) Name() string { return fmt.Sprintf("%p.memfiler", f) }
// PunchHole implements Filer.
func (f *MemFiler) PunchHole(off, size int64) (err error) { return nil }
// ReadAt implements Filer.
func (f *MemFiler) ReadAt(b []byte, off int64) (n int, err error) { return f.fi.ReadAt(b, off) }
// ReadFrom is a helper to populate MemFiler's content from r. 'n' reports the
// number of bytes read from 'r'.
func (f *MemFiler) ReadFrom(r io.Reader) (n int64, err error) { return f.fi.ReadFrom(r) }
// Rollback implements Filer.
func (f *MemFiler) Rollback() (err error) { return nil }
// Size implements Filer.
func (f *MemFiler) Size() (int64, error) {
info, err := f.fi.Stat()
if err != nil {
return 0, err
}
return info.Size(), nil
}
// Sync implements Filer.
func (f *MemFiler) Sync() error { return nil }
// Truncate implements Filer.
func (f *MemFiler) Truncate(size int64) (err error) { return f.fi.Truncate(size) }
// WriteAt implements Filer.
func (f *MemFiler) WriteAt(b []byte, off int64) (n int, err error) { return f.fi.WriteAt(b, off) }
// WriteTo is a helper to copy/persist MemFiler's content to w. If w is also
// an io.WriterAt then WriteTo may attempt to _not_ write any big, for some
// value of big, runs of zeros, i.e. it will attempt to punch holes, where
// possible, in `w` if that happens to be a freshly created or to zero length
// truncated OS file. 'n' reports the number of bytes written to 'w'.
func (f *MemFiler) WriteTo(w io.Writer) (n int64, err error) { return f.fi.WriteTo(w) }

View File

@ -1,130 +0,0 @@
// Copyright 2014 The lldb Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package lldb
import (
"io"
"os"
"github.com/cznic/mathutil"
)
var _ Filer = (*OSFiler)(nil)
// OSFile is an os.File like minimal set of methods allowing to construct a
// Filer.
type OSFile interface {
Name() string
Stat() (fi os.FileInfo, err error)
Sync() (err error)
Truncate(size int64) (err error)
io.Closer
io.Reader
io.ReaderAt
io.Seeker
io.Writer
io.WriterAt
}
// OSFiler is like a SimpleFileFiler but based on an OSFile.
type OSFiler struct {
f OSFile
nest int
size int64 // not set if < 0
}
// NewOSFiler returns a Filer from an OSFile. This Filer is like the
// SimpleFileFiler, it does not implement the transaction related methods.
func NewOSFiler(f OSFile) (r *OSFiler) {
return &OSFiler{
f: f,
size: -1,
}
}
// BeginUpdate implements Filer.
func (f *OSFiler) BeginUpdate() (err error) {
f.nest++
return nil
}
// Close implements Filer.
func (f *OSFiler) Close() (err error) {
if f.nest != 0 {
return &ErrPERM{(f.Name() + ":Close")}
}
return f.f.Close()
}
// EndUpdate implements Filer.
func (f *OSFiler) EndUpdate() (err error) {
if f.nest == 0 {
return &ErrPERM{(f.Name() + ":EndUpdate")}
}
f.nest--
return
}
// Name implements Filer.
func (f *OSFiler) Name() string {
return f.f.Name()
}
// PunchHole implements Filer.
func (f *OSFiler) PunchHole(off, size int64) (err error) {
return
}
// ReadAt implements Filer.
func (f *OSFiler) ReadAt(b []byte, off int64) (n int, err error) {
return f.f.ReadAt(b, off)
}
// Rollback implements Filer.
func (f *OSFiler) Rollback() (err error) { return }
// Size implements Filer.
func (f *OSFiler) Size() (n int64, err error) {
if f.size < 0 { // boot
fi, err := f.f.Stat()
if err != nil {
return 0, err
}
f.size = fi.Size()
}
return f.size, nil
}
// Sync implements Filer.
func (f *OSFiler) Sync() (err error) {
return f.f.Sync()
}
// Truncate implements Filer.
func (f *OSFiler) Truncate(size int64) (err error) {
if size < 0 {
return &ErrINVAL{"Truncate size", size}
}
f.size = size
return f.f.Truncate(size)
}
// WriteAt implements Filer.
func (f *OSFiler) WriteAt(b []byte, off int64) (n int, err error) {
if f.size < 0 { // boot
fi, err := os.Stat(f.f.Name())
if err != nil {
return 0, err
}
f.size = fi.Size()
}
f.size = mathutil.MaxInt64(f.size, int64(len(b))+off)
return f.f.WriteAt(b, off)
}

View File

@ -1,99 +0,0 @@
// Copyright 2014 The lldb Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// A basic os.File backed Filer.
package lldb
import (
"os"
"github.com/cznic/internal/file"
)
var _ Filer = &SimpleFileFiler{}
// SimpleFileFiler is an os.File backed Filer intended for use where structural
// consistency can be reached by other means (SimpleFileFiler is for example
// wrapped in eg. an RollbackFiler or ACIDFiler0) or where persistence is not
// required (temporary/working data sets).
//
// SimpleFileFiler is the most simple os.File backed Filer implementation as it
// does not really implement BeginUpdate and EndUpdate/Rollback in any way
// which would protect the structural integrity of data. If misused e.g. as a
// real database storage w/o other measures, it can easily cause data loss
// when, for example, a power outage occurs or the updating process terminates
// abruptly.
type SimpleFileFiler struct {
fi file.Interface
name string
nest int
}
// NewSimpleFileFiler returns a new SimpleFileFiler.
func NewSimpleFileFiler(f *os.File) *SimpleFileFiler {
fi, err := file.Open(f)
if err != nil {
return nil
}
sf := &SimpleFileFiler{fi: fi, name: f.Name()}
return sf
}
// BeginUpdate implements Filer.
func (f *SimpleFileFiler) BeginUpdate() error {
f.nest++
return nil
}
// Close implements Filer.
func (f *SimpleFileFiler) Close() (err error) {
if f.nest != 0 {
return &ErrPERM{(f.Name() + ":Close")}
}
return f.fi.Close()
}
// EndUpdate implements Filer.
func (f *SimpleFileFiler) EndUpdate() (err error) {
if f.nest == 0 {
return &ErrPERM{(f.Name() + ":EndUpdate")}
}
f.nest--
return
}
// Name implements Filer.
func (f *SimpleFileFiler) Name() string { return f.name }
// PunchHole implements Filer.
func (f *SimpleFileFiler) PunchHole(off, size int64) (err error) { return nil }
// ReadAt implements Filer.
func (f *SimpleFileFiler) ReadAt(b []byte, off int64) (n int, err error) { return f.fi.ReadAt(b, off) }
// Rollback implements Filer.
func (f *SimpleFileFiler) Rollback() (err error) { return nil }
// Size implements Filer.
func (f *SimpleFileFiler) Size() (int64, error) {
info, err := f.fi.Stat()
if err != nil {
return 0, err
}
return info.Size(), nil
}
// Sync implements Filer.
func (f *SimpleFileFiler) Sync() error { return f.fi.Sync() }
// Truncate implements Filer.
func (f *SimpleFileFiler) Truncate(size int64) (err error) { return f.fi.Truncate(size) }
// WriteAt implements Filer.
func (f *SimpleFileFiler) WriteAt(b []byte, off int64) (n int, err error) { return f.fi.WriteAt(b, off) }

Some files were not shown because too many files have changed in this diff Show More