This introduces a better set of defaults for large databases. I've
experimentally determined that it results in much better throughput in a
couple of scenarios with large databases, but I can't give any
guarantees the values are always optimal. They're probably no worse than
the defaults though.
This adds a set of magical environment variables that can be used to
tweak the database parameters. It's totally undocumented and not
intended to be a long term or supported thing.
It's ugly, but there is a backstory. I have a couple of large
installations where the database options are inefficient or otherwise
suboptimal (24/7 compaction going on and stuff like that). I don't
*know* the correct database parameters, nor yet the formula or method to
derive them by, so this requires experimentation. Experimentation needs
to happen partly in production, and rolling out new builds for every
tweak isn't practical. This provides override points for all reasonable
values, while not changing anything by default.
Ideally, at the end of such experimentation, we'll know which values are
relevant to change and in what manner, and can provide a more user
friendly knob to do so - or do it automatically based on the database
size.
Flush the batch when exceeding a certain size, instead of when reaching a number
of batched operations.
Move batch to lowlevel to be able to use it in NamespacedKV.
Increase the leveldb memory buffer from 4 to 16 MiB.
To do so the BlockMap struct has been removed. It behaves like any other prefixed
part of the database, but was not integrated in the recent keyer refactor. Now
the database is only flushed when files are in a consistent state.
There was a problem in iterating the sequence index that could result
in missing updates. The issue is that while the index was (correctly)
iterated in a snapshot, the actual file infos were read dirty outside of
the snapshot. This fixes this by doing the reads inside the snapshot,
and also updates a couple of other places that did the same thing more
or less harmfully (I didn't investigate).
To avoid similar issues in the future I did some renaming of the
getFile* methods - the ones in a transaction are just getFile, while the
ones directly on the database are variants of getFileDirty to highlight
what's going on.
* go mod init; rm -rf vendor
* tweak proto files and generation
* go mod vendor
* clean up build.go
* protobuf literals in tests
* downgrade gogo/protobuf
This adds a thin type that holds the state associated with the
leveldb.DB, leaving the huge Instance type more or less stateless. Also
moves some keying stuff into the DB package so that other packages need
not know the keying specifics.
(This does not, yet, fix the cmd/stindex program, in order to keep the
diff size down. Hence the keying constants are still exported.)
The problem here is that we would update the sequence index before
updating the FileInfos, which would result in a high sequence number
pointing to a low-sequence FileInfo. The index sender would pick up the
high sequence number, send the old file, and think everything was good.
On the receiving side the old file is a no-op and ignored. The file
remains out of sync until another update for it happens.
This fixes that by correcting the order of operations in the database
update: first we remove old sequence index entries, then we update the
FileInfos (which now don't have anything pointing to them) and then we
add the sequence indexes (which the index sender can see).
The other option is to add "proper" transactions where required at the
database layer. I actually have a branch for that, but it's literally
thousands of lines of diff and I'm putting that off for another day as
this solves the problem...
Adds a receive only folder type that does not send changes, and where the user can optionally revert local changes. Also changes some of the icons to make the three folder types distinguishable.
We have the invalid bit to indicate that a file isn't good. That's enough for remote devices. For ourselves, it would be good to know sometimes why the file isn't good - because it's an unsupported type, because it matches an ignore pattern, or because we detected the data is bad and we need to rescan it.
Or, and this is the main future reason for the PR, because it's a change detected on a receive only device. We will want something like the invalid flag for those changes, but marking them as invalid today means the scanner will rehash them. Hence something more fine grained is required.
This introduces a LocalFlags fields to the FileInfo where we can stash things that we care about locally. For example,
FlagLocalUnsupported = 1 << 0 // The kind is unsupported, e.g. symlinks on Windows
FlagLocalIgnored = 1 << 1 // Matches local ignore patterns
FlagLocalMustRescan = 1 << 2 // Doesn't match content on disk, must be rechecked fully
The LocalFlags fields isn't sent over the wire; instead the Invalid attribute is calculated based on the flags at index sending time. It's on the FileInfo anyway because that's what we serialize to database etc.
The actual Invalid flag should after this just be considered when building the global state and figuring out availability for remote devices. It is not used for local file index entries.
To optimize WithNeed, which is called for the local device whenever an index
update is received. No tracking for remote devices to conserve db space, as
WithNeed is only queried for completion.