This improves the ignore handling so that directories can be fully
ignored (skipped in the watcher) in more cases. Specifically, where the
previous rule was that any complex `!`-pattern would disable skipping
directories, the new rule is that only matches on patterns *after* such
a `!`-pattern disable skipping. That is, the following now does the
intuitive thing:
```
/foo
/bar
!whatever
*
```
- `/foo/**` and `/bar/**` are completely skipped, since there is no
chance anything underneath them could ever be not-ignored
- `!whatever` toggles the "can't skip directories any more" flag
- Anything that matches `*` can't skip directories, because it's
possible we can have `whatever` match something deeper.
To enable this, some refactoring was necessary:
- The "can skip dirs" flag is now a property of the match result, not of
the pattern set as a whole.
- That meant returning a boolean is not good enough, we need to actually
return the entire `Result` (or, like, two booleans but that seemed
uglier and more annoying to use)
- `ShouldIgnore(string) boolean` went away with
`Match(string).IsIgnored()` being the obvious replacement (API
simplification!)
- The watcher then needed to import the `ignore` package (for the
`Result` type), but `fs` imports the watcher and `ignore` imports `fs`.
That's a cycle, so I broke out `Result` into a package of its own so
that it can be safely imported everywhere in things like `type Matcher
interface { Match(string) result.Result }`. There's a fair amount of
stuttering in `result.Result` and maybe we should go with something like
`ignoreresult.R` or so, leaving this open for discussion.
Tests refactored to suit, I think this change is in fact quite well
covered by the existing ones...
Also some noise because a few of the changed files were quite old and
got the `gofumpt` treatment by my editor. Sorry not sorry.
---------
Co-authored-by: Simon Frei <freisim93@gmail.com>
### Purpose
This PR changes behaviour of syncthing related to `receive-only`
folders, which I believe to be a bug since I wouldn't expect the current
behaviour. With the current syncthing codebase, a file of a
`receive-only` folder that is only modified locally can cause the
creation of a `.sync-conflict` file.
### Testing
Consider this szenario: Setup two paired clients that sync a folder with
a given file (e.g. `Test.txt`). One of the clients configures the folder
to be `receive-only`. Now, change the contents of the file for the
receive-only client **_twice_**.
With the current syncthing codebase, this leads to the creation of a
`.sync-conflict` file that contains the modified contents, while the
regular `Test.txt` file is reset to the cluster's provided contents.
This is due to a `protocol.FileInfo#ShouldConflict` check, that is
succeeding on the locally modified file.
This PR changes this behaviour to not reset the file and not cause the
creation of a `.sync-conflict`. Instead, the second content update is
treated the same as the first content update.
This PR also contains a test that fails on the current codebase and
succeeds with the changes introduced in this PR.
### Screenshots
This is not a GUI change
### Documentation
This is not a user visible change.
## Authorship
Your name and email will be added automatically to the AUTHORS file
based on the commit metadata.
#### Thanks to all the syncthing folks for this awesome piece of
software!
Previous debug input didn't really give enough info to show what was
happening, while it also printed full block lists which are enormously
verbose. Now it consistently prints 1. what it sees on disk, 2. what it
got from CurrentFile (without blocks), 3. the action taken on that file.
This adds support for syncing extended attributes on supported
filesystem on Linux, macOS, FreeBSD and NetBSD. Windows is currently
excluded because the APIs seem onerous and annoying and frankly the uses
cases seem few and far between. On Unixes this also covers ACLs as those
are stored as extended attributes.
Similar to ownership syncing this will optional & opt-in, which two
settings controlling the main behavior: one to "sync" xattrs (read &
write) and another one to "scan" xattrs (only read them so other devices
can "sync" them, but not apply any locally).
Co-authored-by: Tomasz Wilczyński <twilczynski@naver.com>
all: Add package runtimeos for runtime.GOOS comparisons
I grew tired of hand written string comparisons. This adds generated
constants for the GOOS values, and predefined Is$OS constants that can
be iffed on. In a couple of places I rewrote trivial switch:es to if:s,
and added Illumos where we checked for Solaris (because they are
effectively the same, and if we're going to target one of them that
would be Illumos...).
This adds support for syncing ownership on Unixes and on Windows. The
scanner always picks up ownership information, but it is not applied
unless the new folder option "Sync Ownership" is set.
Ownership data is stored in a new FileInfo field called "platform data". This
is intended to hold further platform-specific data in the future
(specifically, extended attributes), which is why the whole design is a
bit overkill for just ownership.
With this change we emulate a case sensitive filesystem on top of
insensitive filesystems. This means we correctly pick up case-only renames
and throw a case conflict error when there would be multiple files differing
only in case.
This safety check has a small performance hit (about 20% more filesystem
operations when scanning for changes). The new advanced folder option
`caseSensitiveFS` can be used to disable the safety checks, retaining the
previous behavior on systems known to be fully case sensitive.
Co-authored-by: Jakob Borg <jakob@kastelo.net>
- In the few places where we wrap errors, use the new Go 1.13 "%w"
construction instead of %s or %v.
- Where we create errors with constant strings, consistently use
errors.New and not fmt.Errorf.
- Remove capitalization from errors in the few places where we had that.
Per the sync/atomic bug note:
> On ARM, x86-32, and 32-bit MIPS, it is the caller's
> responsibility to arrange for 64-bit alignment of 64-bit words
> accessed atomically. The first word in a variable or in an
> allocated struct, array, or slice can be relied upon to be
> 64-bit aligned.
All atomic accesses of 64-bit variables in syncthing code base are
currently ok (i.e they are all 64-bit aligned).
Generally, the bug is triggered because of incorrect alignement
of struct fields. Free variables (declared in a function) are
guaranteed to be 64-bit aligned by the Go compiler.
To ensure the code remains correct upon further addition/removal
of fields, which would change the currently correct alignment, I
added the following comment where required:
// atomic, must remain 64-bit aligned
See https://golang.org/pkg/sync/atomic/#pkg-note-BUG.
Adds a receive only folder type that does not send changes, and where the user can optionally revert local changes. Also changes some of the icons to make the three folder types distinguishable.
We have the invalid bit to indicate that a file isn't good. That's enough for remote devices. For ourselves, it would be good to know sometimes why the file isn't good - because it's an unsupported type, because it matches an ignore pattern, or because we detected the data is bad and we need to rescan it.
Or, and this is the main future reason for the PR, because it's a change detected on a receive only device. We will want something like the invalid flag for those changes, but marking them as invalid today means the scanner will rehash them. Hence something more fine grained is required.
This introduces a LocalFlags fields to the FileInfo where we can stash things that we care about locally. For example,
FlagLocalUnsupported = 1 << 0 // The kind is unsupported, e.g. symlinks on Windows
FlagLocalIgnored = 1 << 1 // Matches local ignore patterns
FlagLocalMustRescan = 1 << 2 // Doesn't match content on disk, must be rechecked fully
The LocalFlags fields isn't sent over the wire; instead the Invalid attribute is calculated based on the flags at index sending time. It's on the FileInfo anyway because that's what we serialize to database etc.
The actual Invalid flag should after this just be considered when building the global state and figuring out availability for remote devices. It is not used for local file index entries.
Unignored files are marked as conflicting while scanning, which is then resolved
in the subsequent pull. Automatically reconciles needed items on send-only
folders, if they do not actually differ except for internal metadata.