* lib/fs: Add fakefs
This adds a new fake filesystem type. It's described rather extensively
in fakefs.go, but the main point is that it's for testing: when you want
to spin up a Syncthing and have a terabyte or two of random files that
can be synced somewhere, or an inifitely large filesystem to sync files
into.
It has pseudorandom properties such that data read from one fakefs can
be written into another fakefs and read back and it will look
consistent, without any of the data actually being stored.
To use:
<folder id="default" path="whatever" ...>
<filesystemType>fake</filesystemType>
This will create an empty fake filesystem. You can also specify that it
should be prefilled with files:
<folder id="default" path="whatever?size=2000000" ...>
<filesystemType>fake</filesystemType>
This will create a filesystem filled with 2TB of random data that can be
scanned and synced. There are more options, see fakefs.go.
Prefilled data is based on a deterministic seed, so you can index the
data and restart Syncthing and the index is still correct for all the
stored data.
The problem here is that we would update the sequence index before
updating the FileInfos, which would result in a high sequence number
pointing to a low-sequence FileInfo. The index sender would pick up the
high sequence number, send the old file, and think everything was good.
On the receiving side the old file is a no-op and ignored. The file
remains out of sync until another update for it happens.
This fixes that by correcting the order of operations in the database
update: first we remove old sequence index entries, then we update the
FileInfos (which now don't have anything pointing to them) and then we
add the sequence indexes (which the index sender can see).
The other option is to add "proper" transactions where required at the
database layer. I actually have a branch for that, but it's literally
thousands of lines of diff and I'm putting that off for another day as
this solves the problem...
The problem here is that we would update the sequence index before
updating the FileInfos, which would result in a high sequence number
pointing to a low-sequence FileInfo. The index sender would pick up the
high sequence number, send the old file, and think everything was good.
On the receiving side the old file is a no-op and ignored. The file
remains out of sync until another update for it happens.
This fixes that by correcting the order of operations in the database
update: first we remove old sequence index entries, then we update the
FileInfos (which now don't have anything pointing to them) and then we
add the sequence indexes (which the index sender can see).
The other option is to add "proper" transactions where required at the
database layer. I actually have a branch for that, but it's literally
thousands of lines of diff and I'm putting that off for another day as
this solves the problem...
This removes the out of disk space check from CheckHealth. The disk space is now
only checked if there are files to pull, in which case pulling those files is
stopped, but everything else (dirs, links, deletes) keeps running -> can recover
disk space through pulling.
Adds a receive only folder type that does not send changes, and where the user can optionally revert local changes. Also changes some of the icons to make the three folder types distinguishable.
This is an improvement of PR #4493 and related to (and maybe fixing) #4961
and #4475. Maybe fixing, because there is no clear reproducer for that
problem.
The previous PR added a mechanism to resurrect missing parent directories,
if there is a valid child file to be pulled. The same mechanism does not
exist for dirs and symlinks, even though a missing parent can happen for
those items as well. Therefore this PR extends the resurrection to all types
of pulled items.
In addition I moved the IsDeleted branch while iterating over
processDirectly to the existing IsDeleted branch in the WithNeed iteration.
This saves one pointless assignment and IsDeleted query. Also
We have the invalid bit to indicate that a file isn't good. That's enough for remote devices. For ourselves, it would be good to know sometimes why the file isn't good - because it's an unsupported type, because it matches an ignore pattern, or because we detected the data is bad and we need to rescan it.
Or, and this is the main future reason for the PR, because it's a change detected on a receive only device. We will want something like the invalid flag for those changes, but marking them as invalid today means the scanner will rehash them. Hence something more fine grained is required.
This introduces a LocalFlags fields to the FileInfo where we can stash things that we care about locally. For example,
FlagLocalUnsupported = 1 << 0 // The kind is unsupported, e.g. symlinks on Windows
FlagLocalIgnored = 1 << 1 // Matches local ignore patterns
FlagLocalMustRescan = 1 << 2 // Doesn't match content on disk, must be rechecked fully
The LocalFlags fields isn't sent over the wire; instead the Invalid attribute is calculated based on the flags at index sending time. It's on the FileInfo anyway because that's what we serialize to database etc.
The actual Invalid flag should after this just be considered when building the global state and figuring out availability for remote devices. It is not used for local file index entries.
To optimize WithNeed, which is called for the local device whenever an index
update is received. No tracking for remote devices to conserve db space, as
WithNeed is only queried for completion.
I'm trying to slowly clean this up a bit, and moving functionality out
into the folder types and having those methods not reach into model is
part of it. That can mean takign some odd arguments in the meantime,
some of those should probably become interfaces or properties on folder
in the long term.
The functionality was anyway mostly implemented there and not isolated
in the folderScanner type. The attempt to refactor it out in the other
direction wouldn't work given that the event loop and stuff is on
`folder`.
This adds a couple of utilities for transporting databases in JSON and a
test to load a database and verify a couple of invalid bits. The test
itself is quite pointless at the moment, but it lays the groundwork for
testing the migration of this data in the next step (after the invalid
bit should be changed to local flags for local files).
When that happens we need to have a database in the old format already
there in order to be able to test the migration.
To newer names better reflecting their types and yet sorting together
with folder.go. Doing it now without asking because there are no open
PRs that will get killed by it, and to avoid bikeshedding the names.
The actual pull method (which is really the only thing that differs
between them) is now an interface member which gets overridden by the
subclass.
"Subclass?!" Well, this is dynamic dispatch with overriding, I guess.
Instead of walking and unmarshalling the entire db and sorting the resulting
file infos by sequence, add store device keys by sequence number in the
database. Thus only the required file infos need be unmarshalled and are already
sorted by index.
Bumping the limit to 2 * the max block size (16 MiB) is a slight
increase compared to previously. Nonetheless I think it's good to allow
us to queue one request and have one on the way in, or conversely have
one large block on the way in and be able to ask for smaller blocks from
others at the same time.