This changes the cache to cache less things, yet retain the required
efficiency for our walk usecase. This uses less memory.
Specifically, instead of keeping result and child caches for each path
level, only keep a single cached child. In practice our operations are
depth-first, or almost depth-first, and then we retain the same hit
ratio for a smaller cache size.
I improved the benchmark so that it counts the Lstat and DirNames
operations performed, and they do not change significantly. The amount
of allocated memory is reduced by 20% and the walk itself is actually
slightly faster.
This also removes the clear based on number of cached names (as that is
not a thing any more) and the timer based clear (which was unused). This
means we'll retain the last cache state forever until it's cleared by a
write operation, but we did that before too and that state is now a lot
smaller...
The overhead compared to not using a casefs, for our typical "double
walk" (walk the tree then stat everything again) is 2x the dirnames we
would otherwise call, and no overhead on the stats (unchanged from old
implementation)
```
name old time/op new time/op delta
WalkCaseFakeFS100k/rawfs-8 306ms ± 1% 305ms ± 2% ~ (p=0.182 n=9+10)
WalkCaseFakeFS100k/casefs-8 579ms ± 5% 557ms ± 1% -3.77% (p=0.000 n=10+10)
name old B/entry new B/entry delta
WalkCaseFakeFS100k/rawfs-8 590 ± 0% 590 ± 0% ~ (all equal)
WalkCaseFakeFS100k/casefs-8 1.09k ± 0% 0.87k ± 0% -19.98% (p=0.000 n=10+10)
name old DirNames/entry new DirNames/entry delta
WalkCaseFakeFS100k/rawfs-8 0.51 ± 0% 0.51 ± 0% ~ (all equal)
WalkCaseFakeFS100k/casefs-8 1.02 ± 0% 1.02 ± 0% ~ (all equal)
name old DirNames/op new DirNames/op delta
WalkCaseFakeFS100k/rawfs-8 51.2k ± 0% 51.2k ± 0% ~ (all equal)
WalkCaseFakeFS100k/casefs-8 102k ± 0% 102k ± 0% ~ (all equal)
name old Lstat/entry new Lstat/entry delta
WalkCaseFakeFS100k/rawfs-8 3.02 ± 0% 3.02 ± 0% ~ (all equal)
WalkCaseFakeFS100k/casefs-8 3.02 ± 0% 3.02 ± 0% ~ (all equal)
name old Lstat/op new Lstat/op delta
WalkCaseFakeFS100k/rawfs-8 302k ± 0% 302k ± 0% ~ (all equal)
WalkCaseFakeFS100k/casefs-8 302k ± 0% 302k ± 0% ~ (all equal)
name old allocs/entry new allocs/entry delta
WalkCaseFakeFS100k/rawfs-8 15.7 ± 0% 15.7 ± 0% ~ (all equal)
WalkCaseFakeFS100k/casefs-8 27.5 ± 0% 26.1 ± 0% -5.09% (p=0.000 n=10+10)
name old ns/entry new ns/entry delta
WalkCaseFakeFS100k/rawfs-8 2.02k ± 1% 2.02k ± 2% ~ (p=0.163 n=9+10)
WalkCaseFakeFS100k/casefs-8 3.83k ± 5% 3.68k ± 1% -3.77% (p=0.000 n=10+10)
name old alloc/op new alloc/op delta
WalkCaseFakeFS100k/rawfs-8 89.2MB ± 0% 89.2MB ± 0% ~ (p=0.364 n=9+10)
WalkCaseFakeFS100k/casefs-8 164MB ± 0% 131MB ± 0% -19.97% (p=0.000 n=10+10)
name old allocs/op new allocs/op delta
WalkCaseFakeFS100k/rawfs-8 2.38M ± 0% 2.38M ± 0% ~ (all equal)
WalkCaseFakeFS100k/casefs-8 4.16M ± 0% 3.95M ± 0% -5.05% (p=0.000 n=10+10)
```
Since iterators must be released before committing or discarding a
transaction we have the pattern of both deferring a release plus doing
it manually. But we can't release twice because we track this with a
WaitGroup that will panic when there are more Done()s than Add()s. This
just adds a boolean to let an iterator keep track.
We created a new fileset before stopping the folder during restart. When
we create that fileset it loads the current metadata and sequence
numbers from the database. But the folder may have time to update those
before stopping, leaving the new fileset with bad data.
This would cause wrong accounting (forgotten files) and potentially
sequence reuse causing files not sent to other devices.
This change reuses the fileset on restart, skipping the issue entirely.
It also moves the creation of the fileset back under the lock so there
should be no chance of concurrency issues here.
The FileSet.Drop operation in there needs to potentially update a whole lot of global lists, which can take a while (longer than the deadlock interval apparently)
* Add clean up for Simple File Versioning pt.1
created test
* Add clean up for Simple File Versioning pt.2
Passing the test
* stuck on how javascript communicates with backend
* Add trash clean up for Simple File Versioning
Add trash clean up functionality of to allow the user to delete backups
after specified amount of days.
* Fixed html and js style
* Refactored cleanup test cases
Refactored cleanup test cases to one file and deleted duplicated code.
* Added copyright to test file
* Refactor folder cleanout to utility function
* change utility function to package private
* refactored utility function; fixed build errors
* Updated copyright year.
* refactor test and logging
* refactor html and js
* revert style change in html
* reverted changes in html and some js
* checkout origin head version edit...html
* checkout upstream master and correct file
Our authentication is based on device ID (certificate fingerprint) but
we also check the certificate name for ... historical extra security
reasons. (I don't think this adds anything but it is what it is.) Since
that check breaks in Go 1.15 this change does two things:
- Adds a manual check for the peer certificate CommonName, and if they
are equal we are happy and don't call the more advanced
VerifyHostname() function. This allows our old style certificates to
still pass the check.
- Adds the cert name "syncthing" as a DNS SAN when generating the
certificate. This is the correct way nowadays and makes VerifyHostname()
happy in Go 1.15 as well, even without the above patch.
Apparently our Tags field depended on having specific files react to
tags and add themselves there. This, instead, works for all tags.
Also, pass tags to the test command line.
The QUIC package is notorious for being incompatible with either too
old or too new Go releases. Currently it doesn't build with Go 1.15 RC
and I want to test the rest with Go 1.15. With this I can do `go run
build.go --tags noquic` to do that.