// Copyright (C) 2014 The Syncthing Authors. // // This Source Code Form is subject to the terms of the Mozilla Public // License, v. 2.0. If a copy of the MPL was not distributed with this file, // You can obtain one at https://mozilla.org/MPL/2.0/. package tlsutil import ( "crypto/ecdsa" "crypto/elliptic" "crypto/rsa" "crypto/tls" "crypto/x509" "crypto/x509/pkix" "encoding/pem" "errors" "fmt" "math/big" "net" "os" "time" "github.com/syncthing/syncthing/lib/rand" ) var ( ErrIdentificationFailed = errors.New("failed to identify socket type") // The list of cipher suites we will use / suggest for TLS 1.2 connections. cipherSuites = []uint16{ // Suites that are good and fast on hardware *without* AES-NI. tls.TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305, tls.TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305, // Suites that are good and fast on hardware with AES-NI. These are // reordered from the Go default to put the 256 bit ciphers above the // 128 bit ones - because that looks cooler, even though there is // probably no relevant difference in strength yet. tls.TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384, tls.TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, tls.TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, tls.TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, // The rest of the suites, minus DES stuff. tls.TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256, tls.TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA, tls.TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256, tls.TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, tls.TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA, tls.TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, tls.TLS_RSA_WITH_AES_128_GCM_SHA256, tls.TLS_RSA_WITH_AES_256_GCM_SHA384, tls.TLS_RSA_WITH_AES_128_CBC_SHA256, tls.TLS_RSA_WITH_AES_128_CBC_SHA, tls.TLS_RSA_WITH_AES_256_CBC_SHA, } ) // SecureDefault returns a tls.Config with reasonable, secure defaults set. // This variant allows only TLS 1.3. func SecureDefaultTLS13() *tls.Config { return &tls.Config{ // TLS 1.3 is the minimum we accept MinVersion: tls.VersionTLS13, ClientSessionCache: tls.NewLRUClientSessionCache(0), } } // SecureDefaultWithTLS12 returns a tls.Config with reasonable, secure // defaults set. This variant allows TLS 1.2. func SecureDefaultWithTLS12() *tls.Config { // paranoia cs := make([]uint16, len(cipherSuites)) copy(cs, cipherSuites) return &tls.Config{ // TLS 1.2 is the minimum we accept MinVersion: tls.VersionTLS12, // The cipher suite lists built above. These are ignored in TLS 1.3. CipherSuites: cs, // We've put some thought into this choice and would like it to // matter. PreferServerCipherSuites: true, ClientSessionCache: tls.NewLRUClientSessionCache(0), } } // generateCertificate generates a PEM formatted key pair and self-signed certificate in memory. func generateCertificate(commonName string, lifetimeDays int) (*pem.Block, *pem.Block, error) { priv, err := ecdsa.GenerateKey(elliptic.P384(), rand.Reader) if err != nil { return nil, nil, fmt.Errorf("generate key: %w", err) } notBefore := time.Now().Truncate(24 * time.Hour) notAfter := notBefore.Add(time.Duration(lifetimeDays*24) * time.Hour) // NOTE: update lib/api.shouldRegenerateCertificate() appropriately if // you add or change attributes in here, especially DNSNames or // IPAddresses. template := x509.Certificate{ SerialNumber: new(big.Int).SetUint64(rand.Uint64()), Subject: pkix.Name{ CommonName: commonName, Organization: []string{"Syncthing"}, OrganizationalUnit: []string{"Automatically Generated"}, }, DNSNames: []string{commonName}, NotBefore: notBefore, NotAfter: notAfter, SignatureAlgorithm: x509.ECDSAWithSHA256, KeyUsage: x509.KeyUsageKeyEncipherment | x509.KeyUsageDigitalSignature, ExtKeyUsage: []x509.ExtKeyUsage{x509.ExtKeyUsageServerAuth, x509.ExtKeyUsageClientAuth}, BasicConstraintsValid: true, } derBytes, err := x509.CreateCertificate(rand.Reader, &template, &template, priv.Public(), priv) if err != nil { return nil, nil, fmt.Errorf("create cert: %w", err) } certBlock := &pem.Block{Type: "CERTIFICATE", Bytes: derBytes} keyBlock, err := pemBlockForKey(priv) if err != nil { return nil, nil, fmt.Errorf("save key: %w", err) } return certBlock, keyBlock, nil } // NewCertificate generates and returns a new TLS certificate, saved to the given PEM files. func NewCertificate(certFile, keyFile string, commonName string, lifetimeDays int) (tls.Certificate, error) { certBlock, keyBlock, err := generateCertificate(commonName, lifetimeDays) if err != nil { return tls.Certificate{}, err } certOut, err := os.Create(certFile) if err != nil { return tls.Certificate{}, fmt.Errorf("save cert: %w", err) } if err = pem.Encode(certOut, certBlock); err != nil { return tls.Certificate{}, fmt.Errorf("save cert: %w", err) } if err = certOut.Close(); err != nil { return tls.Certificate{}, fmt.Errorf("save cert: %w", err) } keyOut, err := os.OpenFile(keyFile, os.O_WRONLY|os.O_CREATE|os.O_TRUNC, 0o600) if err != nil { return tls.Certificate{}, fmt.Errorf("save key: %w", err) } if err = pem.Encode(keyOut, keyBlock); err != nil { return tls.Certificate{}, fmt.Errorf("save key: %w", err) } if err = keyOut.Close(); err != nil { return tls.Certificate{}, fmt.Errorf("save key: %w", err) } return tls.X509KeyPair(pem.EncodeToMemory(certBlock), pem.EncodeToMemory(keyBlock)) } // NewCertificateInMemory generates and returns a new TLS certificate, kept only in memory. func NewCertificateInMemory(commonName string, lifetimeDays int) (tls.Certificate, error) { certBlock, keyBlock, err := generateCertificate(commonName, lifetimeDays) if err != nil { return tls.Certificate{}, err } return tls.X509KeyPair(pem.EncodeToMemory(certBlock), pem.EncodeToMemory(keyBlock)) } type DowngradingListener struct { net.Listener TLSConfig *tls.Config } func (l *DowngradingListener) Accept() (net.Conn, error) { conn, isTLS, err := l.AcceptNoWrapTLS() // We failed to identify the socket type, pretend that everything is fine, // and pass it to the underlying handler, and let them deal with it. if err == ErrIdentificationFailed { return conn, nil } if err != nil { return conn, err } if isTLS { return tls.Server(conn, l.TLSConfig), nil } return conn, nil } func (l *DowngradingListener) AcceptNoWrapTLS() (net.Conn, bool, error) { conn, err := l.Listener.Accept() if err != nil { return nil, false, err } union := &UnionedConnection{Conn: conn} conn.SetReadDeadline(time.Now().Add(1 * time.Second)) n, err := conn.Read(union.first[:]) conn.SetReadDeadline(time.Time{}) if err != nil || n == 0 { // We hit a read error here, but the Accept() call succeeded so we must not return an error. // We return the connection as is with a special error which handles this // special case in Accept(). return conn, false, ErrIdentificationFailed } return union, union.first[0] == 0x16, nil } type UnionedConnection struct { first [1]byte firstDone bool net.Conn } func (c *UnionedConnection) Read(b []byte) (n int, err error) { if !c.firstDone { if len(b) == 0 { // this probably doesn't happen, but handle it anyway return 0, nil } b[0] = c.first[0] c.firstDone = true return 1, nil } return c.Conn.Read(b) } func pemBlockForKey(priv interface{}) (*pem.Block, error) { switch k := priv.(type) { case *rsa.PrivateKey: return &pem.Block{Type: "RSA PRIVATE KEY", Bytes: x509.MarshalPKCS1PrivateKey(k)}, nil case *ecdsa.PrivateKey: b, err := x509.MarshalECPrivateKey(k) if err != nil { return nil, err } return &pem.Block{Type: "EC PRIVATE KEY", Bytes: b}, nil default: return nil, errors.New("unknown key type") } }