// Copyright (C) 2015 The Syncthing Authors. // // This Source Code Form is subject to the terms of the Mozilla Public // License, v. 2.0. If a copy of the MPL was not distributed with this file, // You can obtain one at http://mozilla.org/MPL/2.0/. package connections import ( "crypto/tls" "encoding/binary" "fmt" "io" "net" "net/url" "sync" "time" "github.com/juju/ratelimit" "github.com/syncthing/syncthing/lib/config" "github.com/syncthing/syncthing/lib/discover" "github.com/syncthing/syncthing/lib/model" "github.com/syncthing/syncthing/lib/protocol" "github.com/syncthing/syncthing/lib/relay" "github.com/syncthing/syncthing/lib/relay/client" "github.com/syncthing/syncthing/lib/upnp" "github.com/syncthing/syncthing/lib/util" "github.com/thejerf/suture" ) type DialerFactory func(*url.URL, *tls.Config) (*tls.Conn, error) type ListenerFactory func(*url.URL, *tls.Config, chan<- model.IntermediateConnection) var ( dialers = make(map[string]DialerFactory, 0) listeners = make(map[string]ListenerFactory, 0) ) type Model interface { protocol.Model AddConnection(conn model.Connection, hello protocol.HelloMessage) ConnectedTo(remoteID protocol.DeviceID) bool IsPaused(remoteID protocol.DeviceID) bool OnHello(protocol.DeviceID, net.Addr, protocol.HelloMessage) GetHello(protocol.DeviceID) protocol.HelloMessage } // Service listens on TLS and dials configured unconnected devices. Successful // connections are handed to the model. type Service struct { *suture.Supervisor cfg *config.Wrapper myID protocol.DeviceID model Model tlsCfg *tls.Config discoverer discover.Finder conns chan model.IntermediateConnection upnpService *upnp.Service relayService relay.Service bepProtocolName string tlsDefaultCommonName string lans []*net.IPNet writeRateLimit *ratelimit.Bucket readRateLimit *ratelimit.Bucket lastRelayCheck map[protocol.DeviceID]time.Time mut sync.RWMutex connType map[protocol.DeviceID]model.ConnectionType relaysEnabled bool } func NewConnectionService(cfg *config.Wrapper, myID protocol.DeviceID, mdl Model, tlsCfg *tls.Config, discoverer discover.Finder, upnpService *upnp.Service, relayService relay.Service, bepProtocolName string, tlsDefaultCommonName string, lans []*net.IPNet) *Service { service := &Service{ Supervisor: suture.NewSimple("connections.Service"), cfg: cfg, myID: myID, model: mdl, tlsCfg: tlsCfg, discoverer: discoverer, upnpService: upnpService, relayService: relayService, conns: make(chan model.IntermediateConnection), bepProtocolName: bepProtocolName, tlsDefaultCommonName: tlsDefaultCommonName, lans: lans, connType: make(map[protocol.DeviceID]model.ConnectionType), relaysEnabled: cfg.Options().RelaysEnabled, lastRelayCheck: make(map[protocol.DeviceID]time.Time), } cfg.Subscribe(service) // The rate variables are in KiB/s in the UI (despite the camel casing // of the name). We multiply by 1024 here to get B/s. if service.cfg.Options().MaxSendKbps > 0 { service.writeRateLimit = ratelimit.NewBucketWithRate(float64(1024*service.cfg.Options().MaxSendKbps), int64(5*1024*service.cfg.Options().MaxSendKbps)) } if service.cfg.Options().MaxRecvKbps > 0 { service.readRateLimit = ratelimit.NewBucketWithRate(float64(1024*service.cfg.Options().MaxRecvKbps), int64(5*1024*service.cfg.Options().MaxRecvKbps)) } // There are several moving parts here; one routine per listening address // to handle incoming connections, one routine to periodically attempt // outgoing connections, one routine to the the common handling // regardless of whether the connection was incoming or outgoing. // Furthermore, a relay service which handles incoming requests to connect // via the relays. // // TODO: Clean shutdown, and/or handling config changes on the fly. We // partly do this now - new devices and addresses will be picked up, but // not new listen addresses and we don't support disconnecting devices // that are removed and so on... service.Add(serviceFunc(service.connect)) for _, addr := range service.cfg.Options().ListenAddress { uri, err := url.Parse(addr) if err != nil { l.Infoln("Failed to parse listen address:", addr, err) continue } listener, ok := listeners[uri.Scheme] if !ok { l.Infoln("Unknown listen address scheme:", uri.String()) continue } l.Debugln("listening on", uri) service.Add(serviceFunc(func() { listener(uri, service.tlsCfg, service.conns) })) } service.Add(serviceFunc(service.handle)) if service.relayService != nil { service.Add(serviceFunc(service.acceptRelayConns)) } return service } func (s *Service) handle() { next: for c := range s.conns { cs := c.ConnectionState() // We should have negotiated the next level protocol "bep/1.0" as part // of the TLS handshake. Unfortunately this can't be a hard error, // because there are implementations out there that don't support // protocol negotiation (iOS for one...). if !cs.NegotiatedProtocolIsMutual || cs.NegotiatedProtocol != s.bepProtocolName { l.Infof("Peer %s did not negotiate bep/1.0", c.RemoteAddr()) } // We should have received exactly one certificate from the other // side. If we didn't, they don't have a device ID and we drop the // connection. certs := cs.PeerCertificates if cl := len(certs); cl != 1 { l.Infof("Got peer certificate list of length %d != 1 from %s; protocol error", cl, c.RemoteAddr()) c.Close() continue } remoteCert := certs[0] remoteID := protocol.NewDeviceID(remoteCert.Raw) // The device ID should not be that of ourselves. It can happen // though, especially in the presence of NAT hairpinning, multiple // clients between the same NAT gateway, and global discovery. if remoteID == s.myID { l.Infof("Connected to myself (%s) - should not happen", remoteID) c.Close() continue } hello, err := exchangeHello(c, s.model.GetHello(remoteID)) if err != nil { l.Infof("Failed to exchange Hello messages with %s (%s): %s", remoteID, c.RemoteAddr(), err) c.Close() continue next } s.model.OnHello(remoteID, c.RemoteAddr(), hello) // If we have a relay connection, and the new incoming connection is // not a relay connection, we should drop that, and prefer the this one. s.mut.RLock() ct, ok := s.connType[remoteID] s.mut.RUnlock() if ok && !ct.IsDirect() && c.Type.IsDirect() { l.Debugln("Switching connections", remoteID) s.model.Close(remoteID, fmt.Errorf("switching connections")) } else if s.model.ConnectedTo(remoteID) { // We should not already be connected to the other party. TODO: This // could use some better handling. If the old connection is dead but // hasn't timed out yet we may want to drop *that* connection and keep // this one. But in case we are two devices connecting to each other // in parallel we don't want to do that or we end up with no // connections still established... l.Infof("Connected to already connected device (%s)", remoteID) c.Close() continue } else if s.model.IsPaused(remoteID) { l.Infof("Connection from paused device (%s)", remoteID) c.Close() continue } for deviceID, deviceCfg := range s.cfg.Devices() { if deviceID == remoteID { // Verify the name on the certificate. By default we set it to // "syncthing" when generating, but the user may have replaced // the certificate and used another name. certName := deviceCfg.CertName if certName == "" { certName = s.tlsDefaultCommonName } err := remoteCert.VerifyHostname(certName) if err != nil { // Incorrect certificate name is something the user most // likely wants to know about, since it's an advanced // config. Warn instead of Info. l.Warnf("Bad certificate from %s (%v): %v", remoteID, c.RemoteAddr(), err) c.Close() continue next } // If rate limiting is set, and based on the address we should // limit the connection, then we wrap it in a limiter. limit := s.shouldLimit(c.RemoteAddr()) wr := io.Writer(c.Conn) if limit && s.writeRateLimit != nil { wr = NewWriteLimiter(c.Conn, s.writeRateLimit) } rd := io.Reader(c.Conn) if limit && s.readRateLimit != nil { rd = NewReadLimiter(c.Conn, s.readRateLimit) } name := fmt.Sprintf("%s-%s (%s)", c.LocalAddr(), c.RemoteAddr(), c.Type) protoConn := protocol.NewConnection(remoteID, rd, wr, s.model, name, deviceCfg.Compression) l.Infof("Established secure connection to %s at %s", remoteID, name) l.Debugf("cipher suite: %04X in lan: %t", c.ConnectionState().CipherSuite, !limit) s.model.AddConnection(model.Connection{ c, protoConn, c.Type, }, hello) s.mut.Lock() s.connType[remoteID] = c.Type s.mut.Unlock() continue next } } l.Infof("Connection from %s (%s) with ignored device ID %s", c.RemoteAddr(), c.Type, remoteID) c.Close() } } func (s *Service) connect() { delay := time.Second for { l.Debugln("Reconnect loop") nextDevice: for deviceID, deviceCfg := range s.cfg.Devices() { if deviceID == s.myID { continue } l.Debugln("Reconnect loop for", deviceID) if s.model.IsPaused(deviceID) { continue } connected := s.model.ConnectedTo(deviceID) s.mut.RLock() ct, ok := s.connType[deviceID] relaysEnabled := s.relaysEnabled s.mut.RUnlock() if connected && ok && ct.IsDirect() { l.Debugln("Already connected to", deviceID, "via", ct.String()) continue } addrs, relays := s.resolveAddresses(deviceID, deviceCfg.Addresses) for _, addr := range addrs { if conn := s.connectDirect(deviceID, addr); conn != nil { l.Debugln("Connecting to", deviceID, "via", addr, "succeeded") if connected { s.model.Close(deviceID, fmt.Errorf("switching connections")) } s.conns <- model.IntermediateConnection{ conn, model.ConnectionTypeDirectDial, } continue nextDevice } l.Debugln("Connecting to", deviceID, "via", addr, "failed") } // Only connect via relays if not already connected // Also, do not set lastRelayCheck time if we have no relays, // as otherwise when we do discover relays, we might have to // wait up to RelayReconnectIntervalM to connect again. // Also, do not try relays if we are explicitly told not to. if connected || len(relays) == 0 || !relaysEnabled { l.Debugln("Not connecting via relay", connected, len(relays) == 0, !relaysEnabled) continue nextDevice } reconIntv := time.Duration(s.cfg.Options().RelayReconnectIntervalM) * time.Minute if last, ok := s.lastRelayCheck[deviceID]; ok && time.Since(last) < reconIntv { l.Debugln("Skipping connecting via relay to", deviceID, "last checked at", last) continue nextDevice } l.Debugln("Trying relay connections to", deviceID, relays) s.lastRelayCheck[deviceID] = time.Now() for _, addr := range relays { if conn := s.connectViaRelay(deviceID, addr); conn != nil { l.Debugln("Connecting to", deviceID, "via", addr, "succeeded") s.conns <- model.IntermediateConnection{ conn, model.ConnectionTypeRelayDial, } continue nextDevice } l.Debugln("Connecting to", deviceID, "via", addr, "failed") } } time.Sleep(delay) delay *= 2 if maxD := time.Duration(s.cfg.Options().ReconnectIntervalS) * time.Second; delay > maxD { delay = maxD } } } func (s *Service) resolveAddresses(deviceID protocol.DeviceID, inAddrs []string) (addrs []string, relays []discover.Relay) { for _, addr := range inAddrs { if addr == "dynamic" { if s.discoverer != nil { if t, r, err := s.discoverer.Lookup(deviceID); err == nil { addrs = append(addrs, t...) relays = append(relays, r...) } } } else { addrs = append(addrs, addr) } } return } func (s *Service) connectDirect(deviceID protocol.DeviceID, addr string) *tls.Conn { uri, err := url.Parse(addr) if err != nil { l.Infoln("Failed to parse connection url:", addr, err) return nil } dialer, ok := dialers[uri.Scheme] if !ok { l.Infoln("Unknown address schema", uri) return nil } l.Debugln("dial", deviceID, uri) conn, err := dialer(uri, s.tlsCfg) if err != nil { l.Debugln("dial failed", deviceID, uri, err) return nil } return conn } func (s *Service) connectViaRelay(deviceID protocol.DeviceID, addr discover.Relay) *tls.Conn { uri, err := url.Parse(addr.URL) if err != nil { l.Infoln("Failed to parse relay connection url:", addr, err) return nil } inv, err := client.GetInvitationFromRelay(uri, deviceID, s.tlsCfg.Certificates, 10*time.Second) if err != nil { l.Debugf("Failed to get invitation for %s from %s: %v", deviceID, uri, err) return nil } l.Debugln("Succesfully retrieved relay invitation", inv, "from", uri) conn, err := client.JoinSession(inv) if err != nil { l.Debugf("Failed to join relay session %s: %v", inv, err) return nil } l.Debugln("Successfully joined relay session", inv) var tc *tls.Conn if inv.ServerSocket { tc = tls.Server(conn, s.tlsCfg) } else { tc = tls.Client(conn, s.tlsCfg) } err = tc.Handshake() if err != nil { l.Infof("TLS handshake (BEP/relay %s): %v", inv, err) tc.Close() return nil } return tc } func (s *Service) acceptRelayConns() { for { conn := s.relayService.Accept() s.conns <- model.IntermediateConnection{ Conn: conn, Type: model.ConnectionTypeRelayAccept, } } } func (s *Service) shouldLimit(addr net.Addr) bool { if s.cfg.Options().LimitBandwidthInLan { return true } tcpaddr, ok := addr.(*net.TCPAddr) if !ok { return true } for _, lan := range s.lans { if lan.Contains(tcpaddr.IP) { return false } } return !tcpaddr.IP.IsLoopback() } func (s *Service) VerifyConfiguration(from, to config.Configuration) error { return nil } func (s *Service) CommitConfiguration(from, to config.Configuration) bool { s.mut.Lock() s.relaysEnabled = to.Options.RelaysEnabled s.mut.Unlock() // We require a restart if a device as been removed. newDevices := make(map[protocol.DeviceID]bool, len(to.Devices)) for _, dev := range to.Devices { newDevices[dev.DeviceID] = true } for _, dev := range from.Devices { if !newDevices[dev.DeviceID] { return false } } return true } // ExternalAddresses returns a list of addresses that are our best guess for // where we are reachable from the outside. As a special case, we may return // one or more addresses with an empty IP address (0.0.0.0 or ::) and just // port number - this means that the outside address of a NAT gateway should // be substituted. func (s *Service) ExternalAddresses() []string { return s.addresses(false) } // AllAddresses returns a list of addresses that are our best guess for where // we are reachable from the local network. Same conditions as // ExternalAddresses, but private IPv4 addresses are included. func (s *Service) AllAddresses() []string { return s.addresses(true) } func (s *Service) addresses(includePrivateIPV4 bool) []string { var addrs []string // Grab our listen addresses from the config. Unspecified ones are passed // on verbatim (to be interpreted by a global discovery server or local // discovery peer). Public addresses are passed on verbatim. Private // addresses are filtered. for _, addrStr := range s.cfg.Options().ListenAddress { addrURL, err := url.Parse(addrStr) if err != nil { l.Infoln("Listen address", addrStr, "is invalid:", err) continue } addr, err := net.ResolveTCPAddr(addrURL.Scheme, addrURL.Host) if err != nil { l.Infoln("Listen address", addrStr, "is invalid:", err) continue } if addr.IP == nil || addr.IP.IsUnspecified() { // Address like 0.0.0.0:22000 or [::]:22000 or :22000; include as is. addrs = append(addrs, util.Address(addrURL.Scheme, addr.String())) } else if isPublicIPv4(addr.IP) || isPublicIPv6(addr.IP) { // A public address; include as is. addrs = append(addrs, util.Address(addrURL.Scheme, addr.String())) } else if includePrivateIPV4 && addr.IP.To4().IsGlobalUnicast() { // A private IPv4 address. addrs = append(addrs, util.Address(addrURL.Scheme, addr.String())) } } // Get an external port mapping from the upnpService, if it has one. If so, // add it as another unspecified address. if s.upnpService != nil { if port := s.upnpService.ExternalPort(); port != 0 { addrs = append(addrs, fmt.Sprintf("tcp://:%d", port)) } } return addrs } func isPublicIPv4(ip net.IP) bool { ip = ip.To4() if ip == nil { // Not an IPv4 address (IPv6) return false } // IsGlobalUnicast below only checks that it's not link local or // multicast, and we want to exclude private (NAT:ed) addresses as well. rfc1918 := []net.IPNet{ {IP: net.IP{10, 0, 0, 0}, Mask: net.IPMask{255, 0, 0, 0}}, {IP: net.IP{172, 16, 0, 0}, Mask: net.IPMask{255, 240, 0, 0}}, {IP: net.IP{192, 168, 0, 0}, Mask: net.IPMask{255, 255, 0, 0}}, } for _, n := range rfc1918 { if n.Contains(ip) { return false } } return ip.IsGlobalUnicast() } func isPublicIPv6(ip net.IP) bool { if ip.To4() != nil { // Not an IPv6 address (IPv4) // (To16() returns a v6 mapped v4 address so can't be used to check // that it's an actual v6 address) return false } return ip.IsGlobalUnicast() } func exchangeHello(c net.Conn, h protocol.HelloMessage) (protocol.HelloMessage, error) { if err := c.SetDeadline(time.Now().Add(2 * time.Second)); err != nil { return protocol.HelloMessage{}, err } defer c.SetDeadline(time.Time{}) header := make([]byte, 8) msg := h.MustMarshalXDR() binary.BigEndian.PutUint32(header[:4], protocol.HelloMessageMagic) binary.BigEndian.PutUint32(header[4:], uint32(len(msg))) if _, err := c.Write(header); err != nil { return protocol.HelloMessage{}, err } if _, err := c.Write(msg); err != nil { return protocol.HelloMessage{}, err } if _, err := io.ReadFull(c, header); err != nil { return protocol.HelloMessage{}, err } if binary.BigEndian.Uint32(header[:4]) != protocol.HelloMessageMagic { return protocol.HelloMessage{}, fmt.Errorf("incorrect magic") } msgSize := binary.BigEndian.Uint32(header[4:]) if msgSize > 1024 { return protocol.HelloMessage{}, fmt.Errorf("hello message too big") } buf := make([]byte, msgSize) var hello protocol.HelloMessage if _, err := io.ReadFull(c, buf); err != nil { return protocol.HelloMessage{}, err } if err := hello.UnmarshalXDR(buf); err != nil { return protocol.HelloMessage{}, err } return hello, nil } // serviceFunc wraps a function to create a suture.Service without stop // functionality. type serviceFunc func() func (f serviceFunc) Serve() { f() } func (f serviceFunc) Stop() {}