// Copyright (c) 2014 The mathutil Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package mathutil import ( "math" ) // IsPrimeUint16 returns true if n is prime. Typical run time is few ns. func IsPrimeUint16(n uint16) bool { return n > 0 && primes16[n-1] == 1 } // NextPrimeUint16 returns first prime > n and true if successful or an // undefined value and false if there is no next prime in the uint16 limits. // Typical run time is few ns. func NextPrimeUint16(n uint16) (p uint16, ok bool) { return n + uint16(primes16[n]), n < 65521 } // IsPrime returns true if n is prime. Typical run time is about 100 ns. // //TODO rename to IsPrimeUint32 func IsPrime(n uint32) bool { switch { case n&1 == 0: return n == 2 case n%3 == 0: return n == 3 case n%5 == 0: return n == 5 case n%7 == 0: return n == 7 case n%11 == 0: return n == 11 case n%13 == 0: return n == 13 case n%17 == 0: return n == 17 case n%19 == 0: return n == 19 case n%23 == 0: return n == 23 case n%29 == 0: return n == 29 case n%31 == 0: return n == 31 case n%37 == 0: return n == 37 case n%41 == 0: return n == 41 case n%43 == 0: return n == 43 case n%47 == 0: return n == 47 case n%53 == 0: return n == 53 // Benchmarked optimum case n < 65536: // use table data return IsPrimeUint16(uint16(n)) default: mod := ModPowUint32(2, (n+1)/2, n) if mod != 2 && mod != n-2 { return false } blk := &lohi[n>>24] lo, hi := blk.lo, blk.hi for lo <= hi { index := (lo + hi) >> 1 liar := liars[index] switch { case n > liar: lo = index + 1 case n < liar: hi = index - 1 default: return false } } return true } } // IsPrimeUint64 returns true if n is prime. Typical run time is few tens of µs. // // SPRP bases: http://miller-rabin.appspot.com func IsPrimeUint64(n uint64) bool { switch { case n%2 == 0: return n == 2 case n%3 == 0: return n == 3 case n%5 == 0: return n == 5 case n%7 == 0: return n == 7 case n%11 == 0: return n == 11 case n%13 == 0: return n == 13 case n%17 == 0: return n == 17 case n%19 == 0: return n == 19 case n%23 == 0: return n == 23 case n%29 == 0: return n == 29 case n%31 == 0: return n == 31 case n%37 == 0: return n == 37 case n%41 == 0: return n == 41 case n%43 == 0: return n == 43 case n%47 == 0: return n == 47 case n%53 == 0: return n == 53 case n%59 == 0: return n == 59 case n%61 == 0: return n == 61 case n%67 == 0: return n == 67 case n%71 == 0: return n == 71 case n%73 == 0: return n == 73 case n%79 == 0: return n == 79 case n%83 == 0: return n == 83 case n%89 == 0: return n == 89 // Benchmarked optimum case n <= math.MaxUint16: return IsPrimeUint16(uint16(n)) case n <= math.MaxUint32: return ProbablyPrimeUint32(uint32(n), 11000544) && ProbablyPrimeUint32(uint32(n), 31481107) case n < 105936894253: return ProbablyPrimeUint64_32(n, 2) && ProbablyPrimeUint64_32(n, 1005905886) && ProbablyPrimeUint64_32(n, 1340600841) case n < 31858317218647: return ProbablyPrimeUint64_32(n, 2) && ProbablyPrimeUint64_32(n, 642735) && ProbablyPrimeUint64_32(n, 553174392) && ProbablyPrimeUint64_32(n, 3046413974) case n < 3071837692357849: return ProbablyPrimeUint64_32(n, 2) && ProbablyPrimeUint64_32(n, 75088) && ProbablyPrimeUint64_32(n, 642735) && ProbablyPrimeUint64_32(n, 203659041) && ProbablyPrimeUint64_32(n, 3613982119) default: return ProbablyPrimeUint64_32(n, 2) && ProbablyPrimeUint64_32(n, 325) && ProbablyPrimeUint64_32(n, 9375) && ProbablyPrimeUint64_32(n, 28178) && ProbablyPrimeUint64_32(n, 450775) && ProbablyPrimeUint64_32(n, 9780504) && ProbablyPrimeUint64_32(n, 1795265022) } } // NextPrime returns first prime > n and true if successful or an undefined value and false if there // is no next prime in the uint32 limits. Typical run time is about 2 µs. // //TODO rename to NextPrimeUint32 func NextPrime(n uint32) (p uint32, ok bool) { switch { case n < 65521: p16, _ := NextPrimeUint16(uint16(n)) return uint32(p16), true case n >= math.MaxUint32-4: return } n++ var d0, d uint32 switch mod := n % 6; mod { case 0: d0, d = 1, 4 case 1: d = 4 case 2, 3, 4: d0, d = 5-mod, 2 case 5: d = 2 } p = n + d0 if p < n { // overflow return } for { if IsPrime(p) { return p, true } p0 := p p += d if p < p0 { // overflow break } d ^= 6 } return } // NextPrimeUint64 returns first prime > n and true if successful or an undefined value and false if there // is no next prime in the uint64 limits. Typical run time is in hundreds of µs. func NextPrimeUint64(n uint64) (p uint64, ok bool) { switch { case n < 65521: p16, _ := NextPrimeUint16(uint16(n)) return uint64(p16), true case n >= 18446744073709551557: // last uint64 prime return } n++ var d0, d uint64 switch mod := n % 6; mod { case 0: d0, d = 1, 4 case 1: d = 4 case 2, 3, 4: d0, d = 5-mod, 2 case 5: d = 2 } p = n + d0 if p < n { // overflow return } for { if ok = IsPrimeUint64(p); ok { break } p0 := p p += d if p < p0 { // overflow break } d ^= 6 } return } // FactorTerm is one term of an integer factorization. type FactorTerm struct { Prime uint32 // The divisor Power uint32 // Term == Prime^Power } // FactorTerms represent a factorization of an integer type FactorTerms []FactorTerm // FactorInt returns prime factorization of n > 1 or nil otherwise. // Resulting factors are ordered by Prime. Typical run time is few µs. func FactorInt(n uint32) (f FactorTerms) { switch { case n < 2: return case IsPrime(n): return []FactorTerm{{n, 1}} } f, w := make([]FactorTerm, 9), 0 for p := 2; p < len(primes16); p += int(primes16[p]) { if uint(p*p) > uint(n) { break } power := uint32(0) for n%uint32(p) == 0 { n /= uint32(p) power++ } if power != 0 { f[w] = FactorTerm{uint32(p), power} w++ } if n == 1 { break } } if n != 1 { f[w] = FactorTerm{n, 1} w++ } return f[:w] } // PrimorialProductsUint32 returns a slice of numbers in [lo, hi] which are a // product of max 'max' primorials. The slice is not sorted. // // See also: http://en.wikipedia.org/wiki/Primorial func PrimorialProductsUint32(lo, hi, max uint32) (r []uint32) { lo64, hi64 := int64(lo), int64(hi) if max > 31 { // N/A max = 31 } var f func(int64, int64, uint32) f = func(n, p int64, emax uint32) { e := uint32(1) for n <= hi64 && e <= emax { n *= p if n >= lo64 && n <= hi64 { r = append(r, uint32(n)) } if n < hi64 { p, _ := NextPrime(uint32(p)) f(n, int64(p), e) } e++ } } f(1, 2, max) return }