// Copyright (c) 2014 The mathutil Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package mathutil provides utilities supplementing the standard 'math' and // 'math/rand' packages. // // Release history and compatibility issues // // 2016-10-10: New functions QuadPolyDiscriminant and QuadPolyFactors. // // 2013-12-13: The following functions have been REMOVED // // func Uint64ToBigInt(n uint64) *big.Int // func Uint64FromBigInt(n *big.Int) (uint64, bool) // // 2013-05-13: The following functions are now DEPRECATED // // func Uint64ToBigInt(n uint64) *big.Int // func Uint64FromBigInt(n *big.Int) (uint64, bool) // // These functions will be REMOVED with Go release 1.1+1. // // 2013-01-21: The following functions have been REMOVED // // func MaxInt() int // func MinInt() int // func MaxUint() uint // func UintPtrBits() int // // They are now replaced by untyped constants // // MaxInt // MinInt // MaxUint // UintPtrBits // // Additionally one more untyped constant was added // // IntBits // // This change breaks any existing code depending on the above removed // functions. They should have not been published in the first place, that was // unfortunate. Instead, defining such architecture and/or implementation // specific integer limits and bit widths as untyped constants improves // performance and allows for static dead code elimination if it depends on // these values. Thanks to minux for pointing it out in the mail list // (https://groups.google.com/d/msg/golang-nuts/tlPpLW6aJw8/NT3mpToH-a4J). // // 2012-12-12: The following functions will be DEPRECATED with Go release // 1.0.3+1 and REMOVED with Go release 1.0.3+2, b/c of // http://code.google.com/p/go/source/detail?r=954a79ee3ea8 // // func Uint64ToBigInt(n uint64) *big.Int // func Uint64FromBigInt(n *big.Int) (uint64, bool) package mathutil import ( "math" "math/big" ) // Architecture and/or implementation specific integer limits and bit widths. const ( MaxInt = 1<<(IntBits-1) - 1 MinInt = -MaxInt - 1 MaxUint = 1<>32&1 + ^uint(0)>>16&1 + ^uint(0)>>8&1 + 3) UintPtrBits = 1 << (^uintptr(0)>>32&1 + ^uintptr(0)>>16&1 + ^uintptr(0)>>8&1 + 3) ) var ( _1 = big.NewInt(1) _2 = big.NewInt(2) ) // GCDByte returns the greatest common divisor of a and b. Based on: // http://en.wikipedia.org/wiki/Euclidean_algorithm#Implementations func GCDByte(a, b byte) byte { for b != 0 { a, b = b, a%b } return a } // GCDUint16 returns the greatest common divisor of a and b. func GCDUint16(a, b uint16) uint16 { for b != 0 { a, b = b, a%b } return a } // GCDUint32 returns the greatest common divisor of a and b. func GCDUint32(a, b uint32) uint32 { for b != 0 { a, b = b, a%b } return a } // GCDUint64 returns the greatest common divisor of a and b. func GCDUint64(a, b uint64) uint64 { for b != 0 { a, b = b, a%b } return a } // ISqrt returns floor(sqrt(n)). Typical run time is few hundreds of ns. func ISqrt(n uint32) (x uint32) { if n == 0 { return } if n >= math.MaxUint16*math.MaxUint16 { return math.MaxUint16 } var px, nx uint32 for x = n; ; px, x = x, nx { nx = (x + n/x) / 2 if nx == x || nx == px { break } } return } // SqrtUint64 returns floor(sqrt(n)). Typical run time is about 0.5 µs. func SqrtUint64(n uint64) (x uint64) { if n == 0 { return } if n >= math.MaxUint32*math.MaxUint32 { return math.MaxUint32 } var px, nx uint64 for x = n; ; px, x = x, nx { nx = (x + n/x) / 2 if nx == x || nx == px { break } } return } // SqrtBig returns floor(sqrt(n)). It panics on n < 0. func SqrtBig(n *big.Int) (x *big.Int) { switch n.Sign() { case -1: panic(-1) case 0: return big.NewInt(0) } var px, nx big.Int x = big.NewInt(0) x.SetBit(x, n.BitLen()/2+1, 1) for { nx.Rsh(nx.Add(x, nx.Div(n, x)), 1) if nx.Cmp(x) == 0 || nx.Cmp(&px) == 0 { break } px.Set(x) x.Set(&nx) } return } // Log2Byte returns log base 2 of n. It's the same as index of the highest // bit set in n. For n == 0 -1 is returned. func Log2Byte(n byte) int { return log2[n] } // Log2Uint16 returns log base 2 of n. It's the same as index of the highest // bit set in n. For n == 0 -1 is returned. func Log2Uint16(n uint16) int { if b := n >> 8; b != 0 { return log2[b] + 8 } return log2[n] } // Log2Uint32 returns log base 2 of n. It's the same as index of the highest // bit set in n. For n == 0 -1 is returned. func Log2Uint32(n uint32) int { if b := n >> 24; b != 0 { return log2[b] + 24 } if b := n >> 16; b != 0 { return log2[b] + 16 } if b := n >> 8; b != 0 { return log2[b] + 8 } return log2[n] } // Log2Uint64 returns log base 2 of n. It's the same as index of the highest // bit set in n. For n == 0 -1 is returned. func Log2Uint64(n uint64) int { if b := n >> 56; b != 0 { return log2[b] + 56 } if b := n >> 48; b != 0 { return log2[b] + 48 } if b := n >> 40; b != 0 { return log2[b] + 40 } if b := n >> 32; b != 0 { return log2[b] + 32 } if b := n >> 24; b != 0 { return log2[b] + 24 } if b := n >> 16; b != 0 { return log2[b] + 16 } if b := n >> 8; b != 0 { return log2[b] + 8 } return log2[n] } // ModPowByte computes (b^e)%m. It panics for m == 0 || b == e == 0. // // See also: http://en.wikipedia.org/wiki/Modular_exponentiation#Right-to-left_binary_method func ModPowByte(b, e, m byte) byte { if b == 0 && e == 0 { panic(0) } if m == 1 { return 0 } r := uint16(1) for b, m := uint16(b), uint16(m); e > 0; b, e = b*b%m, e>>1 { if e&1 == 1 { r = r * b % m } } return byte(r) } // ModPowUint16 computes (b^e)%m. It panics for m == 0 || b == e == 0. func ModPowUint16(b, e, m uint16) uint16 { if b == 0 && e == 0 { panic(0) } if m == 1 { return 0 } r := uint32(1) for b, m := uint32(b), uint32(m); e > 0; b, e = b*b%m, e>>1 { if e&1 == 1 { r = r * b % m } } return uint16(r) } // ModPowUint32 computes (b^e)%m. It panics for m == 0 || b == e == 0. func ModPowUint32(b, e, m uint32) uint32 { if b == 0 && e == 0 { panic(0) } if m == 1 { return 0 } r := uint64(1) for b, m := uint64(b), uint64(m); e > 0; b, e = b*b%m, e>>1 { if e&1 == 1 { r = r * b % m } } return uint32(r) } // ModPowUint64 computes (b^e)%m. It panics for m == 0 || b == e == 0. func ModPowUint64(b, e, m uint64) (r uint64) { if b == 0 && e == 0 { panic(0) } if m == 1 { return 0 } return modPowBigInt(big.NewInt(0).SetUint64(b), big.NewInt(0).SetUint64(e), big.NewInt(0).SetUint64(m)).Uint64() } func modPowBigInt(b, e, m *big.Int) (r *big.Int) { r = big.NewInt(1) for i, n := 0, e.BitLen(); i < n; i++ { if e.Bit(i) != 0 { r.Mod(r.Mul(r, b), m) } b.Mod(b.Mul(b, b), m) } return } // ModPowBigInt computes (b^e)%m. Returns nil for e < 0. It panics for m == 0 || b == e == 0. func ModPowBigInt(b, e, m *big.Int) (r *big.Int) { if b.Sign() == 0 && e.Sign() == 0 { panic(0) } if m.Cmp(_1) == 0 { return big.NewInt(0) } if e.Sign() < 0 { return } return modPowBigInt(big.NewInt(0).Set(b), big.NewInt(0).Set(e), m) } var uint64ToBigIntDelta big.Int func init() { uint64ToBigIntDelta.SetBit(&uint64ToBigIntDelta, 63, 1) } var uintptrBits int func init() { x := uint64(math.MaxUint64) uintptrBits = BitLenUintptr(uintptr(x)) } // UintptrBits returns the bit width of an uintptr at the executing machine. func UintptrBits() int { return uintptrBits } // AddUint128_64 returns the uint128 sum of uint64 a and b. func AddUint128_64(a, b uint64) (hi uint64, lo uint64) { lo = a + b if lo < a { hi = 1 } return } // MulUint128_64 returns the uint128 bit product of uint64 a and b. func MulUint128_64(a, b uint64) (hi, lo uint64) { /* 2^(2 W) ahi bhi + 2^W alo bhi + 2^W ahi blo + alo blo FEDCBA98 76543210 FEDCBA98 76543210 ---- alo*blo ---- ---- alo*bhi ---- ---- ahi*blo ---- ---- ahi*bhi ---- */ const w = 32 const m = 1<>w, b>>w, a&m, b&m lo = alo * blo mid1 := alo * bhi mid2 := ahi * blo c1, lo := AddUint128_64(lo, mid1<>w+mid2>>w+c1+c2) return } // PowerizeBigInt returns (e, p) such that e is the smallest number for which p // == b^e is greater or equal n. For n < 0 or b < 2 (0, nil) is returned. // // NOTE: Run time for large values of n (above about 2^1e6 ~= 1e300000) can be // significant and/or unacceptabe. For any smaller values of n the function // typically performs in sub second time. For "small" values of n (cca bellow // 2^1e3 ~= 1e300) the same can be easily below 10 µs. // // A special (and trivial) case of b == 2 is handled separately and performs // much faster. func PowerizeBigInt(b, n *big.Int) (e uint32, p *big.Int) { switch { case b.Cmp(_2) < 0 || n.Sign() < 0: return case n.Sign() == 0 || n.Cmp(_1) == 0: return 0, big.NewInt(1) case b.Cmp(_2) == 0: p = big.NewInt(0) e = uint32(n.BitLen() - 1) p.SetBit(p, int(e), 1) if p.Cmp(n) < 0 { p.Mul(p, _2) e++ } return } bw := b.BitLen() nw := n.BitLen() p = big.NewInt(1) var bb, r big.Int for { switch p.Cmp(n) { case -1: x := uint32((nw - p.BitLen()) / bw) if x == 0 { x = 1 } e += x switch x { case 1: p.Mul(p, b) default: r.Set(_1) bb.Set(b) e := x for { if e&1 != 0 { r.Mul(&r, &bb) } if e >>= 1; e == 0 { break } bb.Mul(&bb, &bb) } p.Mul(p, &r) } case 0, 1: return } } } // PowerizeUint32BigInt returns (e, p) such that e is the smallest number for // which p == b^e is greater or equal n. For n < 0 or b < 2 (0, nil) is // returned. // // More info: see PowerizeBigInt. func PowerizeUint32BigInt(b uint32, n *big.Int) (e uint32, p *big.Int) { switch { case b < 2 || n.Sign() < 0: return case n.Sign() == 0 || n.Cmp(_1) == 0: return 0, big.NewInt(1) case b == 2: p = big.NewInt(0) e = uint32(n.BitLen() - 1) p.SetBit(p, int(e), 1) if p.Cmp(n) < 0 { p.Mul(p, _2) e++ } return } var bb big.Int bb.SetInt64(int64(b)) return PowerizeBigInt(&bb, n) } /* ProbablyPrimeUint32 returns true if n is prime or n is a pseudoprime to base a. It implements the Miller-Rabin primality test for one specific value of 'a' and k == 1. Wrt pseudocode shown at http://en.wikipedia.org/wiki/Miller-Rabin_primality_test#Algorithm_and_running_time Input: n > 3, an odd integer to be tested for primality; Input: k, a parameter that determines the accuracy of the test Output: composite if n is composite, otherwise probably prime write n − 1 as 2^s·d with d odd by factoring powers of 2 from n − 1 LOOP: repeat k times: pick a random integer a in the range [2, n − 2] x ← a^d mod n if x = 1 or x = n − 1 then do next LOOP for r = 1 .. s − 1 x ← x^2 mod n if x = 1 then return composite if x = n − 1 then do next LOOP return composite return probably prime ... this function behaves like passing 1 for 'k' and additionally a fixed/non-random 'a'. Otherwise it's the same algorithm. See also: http://mathworld.wolfram.com/Rabin-MillerStrongPseudoprimeTest.html */ func ProbablyPrimeUint32(n, a uint32) bool { d, s := n-1, 0 for ; d&1 == 0; d, s = d>>1, s+1 { } x := uint64(ModPowUint32(a, d, n)) if x == 1 || uint32(x) == n-1 { return true } for ; s > 1; s-- { if x = x * x % uint64(n); x == 1 { return false } if uint32(x) == n-1 { return true } } return false } // ProbablyPrimeUint64_32 returns true if n is prime or n is a pseudoprime to // base a. It implements the Miller-Rabin primality test for one specific value // of 'a' and k == 1. See also ProbablyPrimeUint32. func ProbablyPrimeUint64_32(n uint64, a uint32) bool { d, s := n-1, 0 for ; d&1 == 0; d, s = d>>1, s+1 { } x := ModPowUint64(uint64(a), d, n) if x == 1 || x == n-1 { return true } bx, bn := big.NewInt(0).SetUint64(x), big.NewInt(0).SetUint64(n) for ; s > 1; s-- { if x = bx.Mod(bx.Mul(bx, bx), bn).Uint64(); x == 1 { return false } if x == n-1 { return true } } return false } // ProbablyPrimeBigInt_32 returns true if n is prime or n is a pseudoprime to // base a. It implements the Miller-Rabin primality test for one specific value // of 'a' and k == 1. See also ProbablyPrimeUint32. func ProbablyPrimeBigInt_32(n *big.Int, a uint32) bool { var d big.Int d.Set(n) d.Sub(&d, _1) // d <- n-1 s := 0 for ; d.Bit(s) == 0; s++ { } nMinus1 := big.NewInt(0).Set(&d) d.Rsh(&d, uint(s)) x := ModPowBigInt(big.NewInt(int64(a)), &d, n) if x.Cmp(_1) == 0 || x.Cmp(nMinus1) == 0 { return true } for ; s > 1; s-- { if x = x.Mod(x.Mul(x, x), n); x.Cmp(_1) == 0 { return false } if x.Cmp(nMinus1) == 0 { return true } } return false } // ProbablyPrimeBigInt returns true if n is prime or n is a pseudoprime to base // a. It implements the Miller-Rabin primality test for one specific value of // 'a' and k == 1. See also ProbablyPrimeUint32. func ProbablyPrimeBigInt(n, a *big.Int) bool { var d big.Int d.Set(n) d.Sub(&d, _1) // d <- n-1 s := 0 for ; d.Bit(s) == 0; s++ { } nMinus1 := big.NewInt(0).Set(&d) d.Rsh(&d, uint(s)) x := ModPowBigInt(a, &d, n) if x.Cmp(_1) == 0 || x.Cmp(nMinus1) == 0 { return true } for ; s > 1; s-- { if x = x.Mod(x.Mul(x, x), n); x.Cmp(_1) == 0 { return false } if x.Cmp(nMinus1) == 0 { return true } } return false } // Max returns the larger of a and b. func Max(a, b int) int { if a > b { return a } return b } // Min returns the smaller of a and b. func Min(a, b int) int { if a < b { return a } return b } // UMax returns the larger of a and b. func UMax(a, b uint) uint { if a > b { return a } return b } // UMin returns the smaller of a and b. func UMin(a, b uint) uint { if a < b { return a } return b } // MaxByte returns the larger of a and b. func MaxByte(a, b byte) byte { if a > b { return a } return b } // MinByte returns the smaller of a and b. func MinByte(a, b byte) byte { if a < b { return a } return b } // MaxInt8 returns the larger of a and b. func MaxInt8(a, b int8) int8 { if a > b { return a } return b } // MinInt8 returns the smaller of a and b. func MinInt8(a, b int8) int8 { if a < b { return a } return b } // MaxUint16 returns the larger of a and b. func MaxUint16(a, b uint16) uint16 { if a > b { return a } return b } // MinUint16 returns the smaller of a and b. func MinUint16(a, b uint16) uint16 { if a < b { return a } return b } // MaxInt16 returns the larger of a and b. func MaxInt16(a, b int16) int16 { if a > b { return a } return b } // MinInt16 returns the smaller of a and b. func MinInt16(a, b int16) int16 { if a < b { return a } return b } // MaxUint32 returns the larger of a and b. func MaxUint32(a, b uint32) uint32 { if a > b { return a } return b } // MinUint32 returns the smaller of a and b. func MinUint32(a, b uint32) uint32 { if a < b { return a } return b } // MaxInt32 returns the larger of a and b. func MaxInt32(a, b int32) int32 { if a > b { return a } return b } // MinInt32 returns the smaller of a and b. func MinInt32(a, b int32) int32 { if a < b { return a } return b } // MaxUint64 returns the larger of a and b. func MaxUint64(a, b uint64) uint64 { if a > b { return a } return b } // MinUint64 returns the smaller of a and b. func MinUint64(a, b uint64) uint64 { if a < b { return a } return b } // MaxInt64 returns the larger of a and b. func MaxInt64(a, b int64) int64 { if a > b { return a } return b } // MinInt64 returns the smaller of a and b. func MinInt64(a, b int64) int64 { if a < b { return a } return b } // ToBase produces n in base b. For example // // ToBase(2047, 22) -> [1, 5, 4] // // 1 * 22^0 1 // 5 * 22^1 110 // 4 * 22^2 1936 // ---- // 2047 // // ToBase panics for bases < 2. func ToBase(n *big.Int, b int) []int { var nn big.Int nn.Set(n) if b < 2 { panic("invalid base") } k := 1 switch nn.Sign() { case -1: nn.Neg(&nn) k = -1 case 0: return []int{0} } bb := big.NewInt(int64(b)) var r []int rem := big.NewInt(0) for nn.Sign() != 0 { nn.QuoRem(&nn, bb, rem) r = append(r, k*int(rem.Int64())) } return r }