// Copyright (c) 2016 The mathutil Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package mathutil import ( "fmt" ) func abs(n int) uint64 { if n >= 0 { return uint64(n) } return uint64(-n) } // QuadPolyDiscriminant returns the discriminant of a quadratic polynomial in // one variable of the form a*x^2+b*x+c with integer coefficients a, b, c, or // an error on overflow. // // ds is the square of the discriminant. If |ds| is a square number, d is set // to sqrt(|ds|), otherwise d is < 0. func QuadPolyDiscriminant(a, b, c int) (ds, d int, _ error) { if 2*BitLenUint64(abs(b)) > IntBits-1 || 2+BitLenUint64(abs(a))+BitLenUint64(abs(c)) > IntBits-1 { return 0, 0, fmt.Errorf("overflow") } ds = b*b - 4*a*c s := ds if s < 0 { s = -s } d64 := SqrtUint64(uint64(s)) if d64*d64 != uint64(s) { return ds, -1, nil } return ds, int(d64), nil } // PolyFactor describes an irreducible factor of a polynomial in one variable // with integer coefficients P, Q of the form P*x+Q. type PolyFactor struct { P, Q int } // QuadPolyFactors returns the content and the irreducible factors of the // primitive part of a quadratic polynomial in one variable with integer // coefficients a, b, c of the form a*x^2+b*x+c in integers, or an error on // overflow. // // If the factorization in integers does not exists, the return value is (nil, // nil). // // See also: // https://en.wikipedia.org/wiki/Factorization_of_polynomials#Primitive_part.E2.80.93content_factorization func QuadPolyFactors(a, b, c int) (content int, primitivePart []PolyFactor, _ error) { content = int(GCDUint64(abs(a), GCDUint64(abs(b), abs(c)))) switch { case content == 0: content = 1 case content > 0: if a < 0 || a == 0 && b < 0 { content = -content } } a /= content b /= content c /= content if a == 0 { if b == 0 { return content, []PolyFactor{{0, c}}, nil } if b < 0 && c < 0 { b = -b c = -c } if b < 0 { b = -b c = -c } return content, []PolyFactor{{b, c}}, nil } ds, d, err := QuadPolyDiscriminant(a, b, c) if err != nil { return 0, nil, err } if ds < 0 || d < 0 { return 0, nil, nil } x1num := -b + d x1denom := 2 * a gcd := int(GCDUint64(abs(x1num), abs(x1denom))) x1num /= gcd x1denom /= gcd x2num := -b - d x2denom := 2 * a gcd = int(GCDUint64(abs(x2num), abs(x2denom))) x2num /= gcd x2denom /= gcd return content, []PolyFactor{{x1denom, -x1num}, {x2denom, -x2num}}, nil }