// Package bigfft implements multiplication of big.Int using FFT. // // The implementation is based on the Schönhage-Strassen method // using integer FFT modulo 2^n+1. package bigfft import ( "math/big" "unsafe" ) const _W = int(unsafe.Sizeof(big.Word(0)) * 8) type nat []big.Word func (n nat) String() string { v := new(big.Int) v.SetBits(n) return v.String() } // fftThreshold is the size (in words) above which FFT is used over // Karatsuba from math/big. // // TestCalibrate seems to indicate a threshold of 60kbits on 32-bit // arches and 110kbits on 64-bit arches. var fftThreshold = 1800 // Mul computes the product x*y and returns z. // It can be used instead of the Mul method of // *big.Int from math/big package. func Mul(x, y *big.Int) *big.Int { xwords := len(x.Bits()) ywords := len(y.Bits()) if xwords > fftThreshold && ywords > fftThreshold { return mulFFT(x, y) } return new(big.Int).Mul(x, y) } func mulFFT(x, y *big.Int) *big.Int { var xb, yb nat = x.Bits(), y.Bits() zb := fftmul(xb, yb) z := new(big.Int) z.SetBits(zb) if x.Sign()*y.Sign() < 0 { z.Neg(z) } return z } // A FFT size of K=1< bits { k = uint(i) break } } // The 1< words m = words>>k + 1 return } // valueSize returns the smallest multiple of 1< 0, the // returned value is only required to be a multiple of 1<<(k-extra) func valueSize(k uint, m int, extra uint) int { n := 2*m*_W + int(k) K := 1 << (k - extra) if K < _W { K = _W } n = ((n / K) + 1) * K return n / _W } // poly represents an integer via a polynomial in Z[x]/(x^K+1) // where K is the FFT length and b is the computation basis 1<<(m*_W). // If P = a[0] + a[1] x + ... a[n] x^(K-1), the associated natural number // is P(b^m). type poly struct { k uint // k is such that K = 1< 0 { length += len(p.a[na-1]) } n := make(nat, length) m := p.m np := n for i := range p.a { l := len(p.a[i]) c := addVV(np[:l], np[:l], p.a[i]) if np[l] < ^big.Word(0) { np[l] += c } else { addVW(np[l:], np[l:], c) } np = np[m:] } n = trim(n) return n } func trim(n nat) nat { for i := range n { if n[len(n)-1-i] != 0 { return n[:len(n)-i] } } return nil } // Mul multiplies p and q modulo X^K-1, where K = 1<= 1<= 1<> k // p(x) = a_0 + a_1 x + ... + a_{K-1} x^(K-1) // p(θx) = q(x) where // q(x) = a_0 + θa_1 x + ... + θ^(K-1) a_{K-1} x^(K-1) // // Twist p by θ to obtain q. tbits := make([]big.Word, (n+1)<> k // Perform an inverse Fourier transform to recover q. qbits := make([]big.Word, (n+1)<> size if backward { ω2shift = -ω2shift } // Easy cases. if len(src[0]) != n+1 || len(dst[0]) != n+1 { panic("len(src[0]) != n+1 || len(dst[0]) != n+1") } switch size { case 0: copy(dst[0], src[0]) return case 1: dst[0].Add(src[0], src[1<