syncthing/lib/protocol/protocol.go
Jakob Borg 134df290a3 wip
2023-04-28 09:14:50 +02:00

1227 lines
34 KiB
Go

// Copyright (C) 2014 The Protocol Authors.
//go:generate -command counterfeiter go run github.com/maxbrunsfeld/counterfeiter/v6
// Prevents import loop, for internal testing
//go:generate counterfeiter -o mocked_connection_info_test.go --fake-name mockedConnectionInfo . ConnectionInfo
//go:generate go run ../../script/prune_mocks.go -t mocked_connection_info_test.go
//go:generate counterfeiter -o mocks/connection_info.go --fake-name ConnectionInfo . ConnectionInfo
//go:generate counterfeiter -o mocks/connection.go --fake-name Connection . Connection
package protocol
import (
"context"
"crypto/sha256"
"encoding/binary"
"errors"
"fmt"
"io"
"net"
"path"
"strings"
"sync"
"time"
lz4 "github.com/pierrec/lz4/v4"
"github.com/syncthing/syncthing/lib/netutil"
)
const (
// Shifts
KiB = 10
MiB = 20
GiB = 30
)
const (
// MaxMessageLen is the largest message size allowed on the wire. (500 MB)
MaxMessageLen = 500 * 1000 * 1000
// MinBlockSize is the minimum block size allowed
MinBlockSize = 128 << KiB
// MaxBlockSize is the maximum block size allowed
MaxBlockSize = 16 << MiB
// DesiredPerFileBlocks is the number of blocks we aim for per file
DesiredPerFileBlocks = 2000
desiredQUICSubstreams = 64 // number of QUIC substreams we want open per connection
)
// BlockSizes is the list of valid block sizes, from min to max
var BlockSizes []int
// For each block size, the hash of a block of all zeroes
var sha256OfEmptyBlock = map[int][sha256.Size]byte{
128 << KiB: {0xfa, 0x43, 0x23, 0x9b, 0xce, 0xe7, 0xb9, 0x7c, 0xa6, 0x2f, 0x0, 0x7c, 0xc6, 0x84, 0x87, 0x56, 0xa, 0x39, 0xe1, 0x9f, 0x74, 0xf3, 0xdd, 0xe7, 0x48, 0x6d, 0xb3, 0xf9, 0x8d, 0xf8, 0xe4, 0x71},
256 << KiB: {0x8a, 0x39, 0xd2, 0xab, 0xd3, 0x99, 0x9a, 0xb7, 0x3c, 0x34, 0xdb, 0x24, 0x76, 0x84, 0x9c, 0xdd, 0xf3, 0x3, 0xce, 0x38, 0x9b, 0x35, 0x82, 0x68, 0x50, 0xf9, 0xa7, 0x0, 0x58, 0x9b, 0x4a, 0x90},
512 << KiB: {0x7, 0x85, 0x4d, 0x2f, 0xef, 0x29, 0x7a, 0x6, 0xba, 0x81, 0x68, 0x5e, 0x66, 0xc, 0x33, 0x2d, 0xe3, 0x6d, 0x5d, 0x18, 0xd5, 0x46, 0x92, 0x7d, 0x30, 0xda, 0xad, 0x6d, 0x7f, 0xda, 0x15, 0x41},
1 << MiB: {0x30, 0xe1, 0x49, 0x55, 0xeb, 0xf1, 0x35, 0x22, 0x66, 0xdc, 0x2f, 0xf8, 0x6, 0x7e, 0x68, 0x10, 0x46, 0x7, 0xe7, 0x50, 0xab, 0xb9, 0xd3, 0xb3, 0x65, 0x82, 0xb8, 0xaf, 0x90, 0x9f, 0xcb, 0x58},
2 << MiB: {0x56, 0x47, 0xf0, 0x5e, 0xc1, 0x89, 0x58, 0x94, 0x7d, 0x32, 0x87, 0x4e, 0xeb, 0x78, 0x8f, 0xa3, 0x96, 0xa0, 0x5d, 0xb, 0xab, 0x7c, 0x1b, 0x71, 0xf1, 0x12, 0xce, 0xb7, 0xe9, 0xb3, 0x1e, 0xee},
4 << MiB: {0xbb, 0x9f, 0x8d, 0xf6, 0x14, 0x74, 0xd2, 0x5e, 0x71, 0xfa, 0x0, 0x72, 0x23, 0x18, 0xcd, 0x38, 0x73, 0x96, 0xca, 0x17, 0x36, 0x60, 0x5e, 0x12, 0x48, 0x82, 0x1c, 0xc0, 0xde, 0x3d, 0x3a, 0xf8},
8 << MiB: {0x2d, 0xae, 0xb1, 0xf3, 0x60, 0x95, 0xb4, 0x4b, 0x31, 0x84, 0x10, 0xb3, 0xf4, 0xe8, 0xb5, 0xd9, 0x89, 0xdc, 0xc7, 0xbb, 0x2, 0x3d, 0x14, 0x26, 0xc4, 0x92, 0xda, 0xb0, 0xa3, 0x5, 0x3e, 0x74},
16 << MiB: {0x8, 0xa, 0xcf, 0x35, 0xa5, 0x7, 0xac, 0x98, 0x49, 0xcf, 0xcb, 0xa4, 0x7d, 0xc2, 0xad, 0x83, 0xe0, 0x1b, 0x75, 0x66, 0x3a, 0x51, 0x62, 0x79, 0xc8, 0xb9, 0xd2, 0x43, 0xb7, 0x19, 0x64, 0x3e},
}
var errNotCompressible = errors.New("not compressible")
func init() {
for blockSize := MinBlockSize; blockSize <= MaxBlockSize; blockSize *= 2 {
BlockSizes = append(BlockSizes, blockSize)
if _, ok := sha256OfEmptyBlock[blockSize]; !ok {
panic("missing hard coded value for sha256 of empty block")
}
}
BufferPool = newBufferPool()
}
// BlockSize returns the block size to use for the given file size
func BlockSize(fileSize int64) int {
var blockSize int
for _, blockSize = range BlockSizes {
if fileSize < DesiredPerFileBlocks*int64(blockSize) {
break
}
}
return blockSize
}
const (
stateInitial = iota
stateReady
)
// FileInfo.LocalFlags flags
const (
FlagLocalUnsupported = 1 << 0 // The kind is unsupported, e.g. symlinks on Windows
FlagLocalIgnored = 1 << 1 // Matches local ignore patterns
FlagLocalMustRescan = 1 << 2 // Doesn't match content on disk, must be rechecked fully
FlagLocalReceiveOnly = 1 << 3 // Change detected on receive only folder
// Flags that should result in the Invalid bit on outgoing updates
LocalInvalidFlags = FlagLocalUnsupported | FlagLocalIgnored | FlagLocalMustRescan | FlagLocalReceiveOnly
// Flags that should result in a file being in conflict with its
// successor, due to us not having an up to date picture of its state on
// disk.
LocalConflictFlags = FlagLocalUnsupported | FlagLocalIgnored | FlagLocalReceiveOnly
LocalAllFlags = FlagLocalUnsupported | FlagLocalIgnored | FlagLocalMustRescan | FlagLocalReceiveOnly
)
var (
ErrClosed = errors.New("connection closed")
ErrTimeout = errors.New("read timeout")
errUnknownMessage = errors.New("unknown message")
errInvalidFilename = errors.New("filename is invalid")
errUncleanFilename = errors.New("filename not in canonical format")
errDeletedHasBlocks = errors.New("deleted file with non-empty block list")
errDirectoryHasBlocks = errors.New("directory with non-empty block list")
errFileHasNoBlocks = errors.New("file with empty block list")
)
type Model interface {
// An index was received from the peer device
Index(deviceID DeviceID, folder string, files []FileInfo) error
// An index update was received from the peer device
IndexUpdate(deviceID DeviceID, folder string, files []FileInfo) error
// A request was made by the peer device
Request(deviceID DeviceID, folder, name string, blockNo, size int32, offset int64, hash []byte, weakHash uint32, fromTemporary bool) (RequestResponse, error)
// A cluster configuration message was received
ClusterConfig(deviceID DeviceID, config ClusterConfig) error
// The peer device closed the connection or an error occurred
Closed(device DeviceID, err error)
// The peer device sent progress updates for the files it is currently downloading
DownloadProgress(deviceID DeviceID, folder string, updates []FileDownloadProgressUpdate) error
}
type RequestResponse interface {
Data() []byte
Close() // Must always be called once the byte slice is no longer in use
Wait() // Blocks until Close is called
}
type Connection interface {
Start()
SetFolderPasswords(passwords map[string]string)
Close(err error)
ID() DeviceID
Index(ctx context.Context, folder string, files []FileInfo) error
IndexUpdate(ctx context.Context, folder string, files []FileInfo) error
Request(ctx context.Context, folder string, name string, blockNo int, offset int64, size int, hash []byte, weakHash uint32, fromTemporary bool) ([]byte, error)
ClusterConfig(config ClusterConfig)
DownloadProgress(ctx context.Context, folder string, updates []FileDownloadProgressUpdate)
Statistics() Statistics
Closed() <-chan struct{}
ConnectionInfo
}
type ConnectionInfo interface {
Type() string
Transport() string
IsLocal() bool
RemoteAddr() net.Addr
Priority() int
String() string
Crypto() string
EstablishedAt() time.Time
}
type rawConnection struct {
ConnectionInfo
id DeviceID
receiver Model
startTime time.Time
stream netutil.CountedStream
desiredSubstreams int
substreamsMut sync.Mutex // Protects substreams.
substreams []chan asyncMessage
nextSubstream int
awaitingMut sync.Mutex // Protects awaiting and nextID.
awaiting map[int]chan asyncResult
nextID int
idxMut sync.Mutex // ensures serialization of Index calls
inbox chan streamMessage
outbox chan asyncMessage
closeBox chan asyncMessage
clusterConfigBox chan *ClusterConfig
dispatcherLoopStopped chan struct{}
closed chan struct{}
closeOnce sync.Once
sendCloseOnce sync.Once
compression Compression
loopWG sync.WaitGroup // Need to ensure no leftover routines in testing
}
type asyncResult struct {
val []byte
err error
}
type message interface {
ProtoSize() int
Marshal() ([]byte, error)
MarshalTo([]byte) (int, error)
Unmarshal([]byte) error
}
type asyncMessage struct {
msg message
done chan struct{} // done closes when we're done sending the message
}
// A streamMessage is a message and the outbox (specific substream) replies
// should go to
type streamMessage struct {
message
outbox chan asyncMessage
}
const (
// PingSendInterval is how often we make sure to send a message, by
// triggering pings if necessary.
PingSendInterval = 90 * time.Second
// ReceiveTimeout is the longest we'll wait for a message from the other
// side before closing the connection.
ReceiveTimeout = 300 * time.Second
)
// CloseTimeout is the longest we'll wait when trying to send the close
// message before just closing the connection.
// Should not be modified in production code, just for testing.
var CloseTimeout = 10 * time.Second
func NewConnection(deviceID DeviceID, stream netutil.Stream, receiver Model, connInfo ConnectionInfo, compress Compression, passwords map[string]string, keyGen *KeyGenerator) Connection {
// Encryption / decryption is first (outermost) before conversion to
// native path formats.
nm := makeNative(receiver)
em := newEncryptedModel(nm, newFolderKeyRegistry(keyGen, passwords), keyGen)
// We do the wire format conversion first (outermost) so that the
// metadata is in wire format when it reaches the encryption step.
rc := newRawConnection(deviceID, stream, em, connInfo, compress)
ec := newEncryptedConnection(rc, rc, em.folderKeys, keyGen)
wc := wireFormatConnection{ec}
return wc
}
func newRawConnection(deviceID DeviceID, stream netutil.Stream, receiver Model, connInfo ConnectionInfo, compress Compression) *rawConnection {
// The stream may already be a counted stream, in which case we can use
// it as-is. If it isn't, set it up as a counting stream for our own
// purposes.
cs, ok := stream.(netutil.CountedStream)
if !ok {
cs = netutil.NewCountingStream(stream, netutil.NewCounter())
}
c := &rawConnection{
ConnectionInfo: connInfo,
id: deviceID,
receiver: receiver,
stream: cs,
awaiting: make(map[int]chan asyncResult),
inbox: make(chan streamMessage),
outbox: make(chan asyncMessage),
closeBox: make(chan asyncMessage),
clusterConfigBox: make(chan *ClusterConfig),
dispatcherLoopStopped: make(chan struct{}),
closed: make(chan struct{}),
compression: compress,
loopWG: sync.WaitGroup{},
desiredSubstreams: desiredQUICSubstreams,
}
return c
}
// Start creates the goroutines for sending and receiving of messages. It must
// be called exactly once after creating a connection.
func (c *rawConnection) Start() {
c.loopWG.Add(1)
go func() {
c.readerLoop()
c.loopWG.Done()
}()
c.loopWG.Add(1)
go func() {
err := c.dispatcherLoop()
c.Close(err)
c.loopWG.Done()
}()
c.loopWG.Add(1)
go func() {
c.writerLoop()
c.loopWG.Done()
}()
c.loopWG.Add(1)
go func() {
c.pingSender()
c.loopWG.Done()
}()
c.loopWG.Add(1)
go func() {
c.pingReceiver()
c.loopWG.Done()
}()
c.loopWG.Add(1)
go func() {
c.streamAcceptLoop()
c.loopWG.Done()
}()
c.startTime = time.Now().Truncate(time.Second)
}
func (c *rawConnection) ID() DeviceID {
return c.id
}
// Index writes the list of file information to the connected peer device
func (c *rawConnection) Index(ctx context.Context, folder string, idx []FileInfo) error {
select {
case <-c.closed:
return ErrClosed
default:
}
c.idxMut.Lock()
c.send(ctx, &Index{
Folder: folder,
Files: idx,
}, nil)
c.idxMut.Unlock()
return nil
}
// IndexUpdate writes the list of file information to the connected peer device as an update
func (c *rawConnection) IndexUpdate(ctx context.Context, folder string, idx []FileInfo) error {
select {
case <-c.closed:
return ErrClosed
default:
}
c.idxMut.Lock()
c.send(ctx, &IndexUpdate{
Folder: folder,
Files: idx,
}, nil)
c.idxMut.Unlock()
return nil
}
// Request returns the bytes for the specified block after fetching them from the connected peer.
func (c *rawConnection) Request(ctx context.Context, folder string, name string, blockNo int, offset int64, size int, hash []byte, weakHash uint32, fromTemporary bool) ([]byte, error) {
rc := make(chan asyncResult, 1)
c.awaitingMut.Lock()
id := c.nextID
c.nextID++
if _, ok := c.awaiting[id]; ok {
c.awaitingMut.Unlock()
panic("id taken")
}
c.awaiting[id] = rc
c.awaitingMut.Unlock()
outbox := c.streamForRequest(ctx)
ok := c.sendOutbox(ctx, &Request{
ID: id,
Folder: folder,
Name: name,
Offset: offset,
Size: size,
BlockNo: blockNo,
Hash: hash,
WeakHash: weakHash,
FromTemporary: fromTemporary,
}, nil, outbox)
if !ok {
return nil, ErrClosed
}
select {
case res, ok := <-rc:
if !ok {
return nil, ErrClosed
}
return res.val, res.err
case <-ctx.Done():
return nil, ctx.Err()
}
}
// streamForRequest returns the channel to use for sending a request. If
// substreams aren't supported this is the main channel. Otherwise, if we
// haven't yet reached the desired number of open substreams we create a new
// substream and use that. Otherwise we round-robin through the existing
// substreams.
func (c *rawConnection) streamForRequest(ctx context.Context) chan asyncMessage {
c.substreamsMut.Lock()
defer c.substreamsMut.Unlock()
if c.desiredSubstreams == 0 {
return c.outbox
}
if len(c.substreams) >= c.desiredSubstreams {
strm := c.substreams[c.nextSubstream]
c.nextSubstream = (c.nextSubstream + 1) % c.desiredSubstreams
return strm
}
if strm, err := c.stream.CreateSubstream(ctx); err == nil {
return c.registerNewSubstream(strm)
} else {
if errors.Is(err, netutil.ErrSubstreamsUnsupported) {
// No need to try this again
c.desiredSubstreams = 0
}
return c.outbox
}
}
func (c *rawConnection) registerNewSubstream(strm io.ReadWriteCloser) chan asyncMessage {
outbox := make(chan asyncMessage)
c.substreams = append(c.substreams, outbox)
go c.substreamReaderLoop(strm, outbox)
go c.substreamWriterLoop(strm, outbox)
return outbox
}
// ClusterConfig sends the cluster configuration message to the peer.
func (c *rawConnection) ClusterConfig(config ClusterConfig) {
select {
case c.clusterConfigBox <- &config:
case <-c.closed:
}
}
func (c *rawConnection) Closed() <-chan struct{} {
return c.closed
}
// DownloadProgress sends the progress updates for the files that are currently being downloaded.
func (c *rawConnection) DownloadProgress(ctx context.Context, folder string, updates []FileDownloadProgressUpdate) {
c.send(ctx, &DownloadProgress{
Folder: folder,
Updates: updates,
}, nil)
}
func (c *rawConnection) ping() bool {
return c.send(context.Background(), &Ping{}, nil)
}
func (c *rawConnection) readerLoop() {
fourByteBuf := make([]byte, 4)
for {
msg, err := c.readMessage(c.stream, fourByteBuf)
if err != nil {
if errors.Is(err, errUnknownMessage) {
// Unknown message types are skipped, for future extensibility.
continue
}
c.internalClose(err)
return
}
select {
case c.inbox <- streamMessage{msg, c.outbox}:
case <-c.closed:
return
}
}
}
// streamAcceptLoop accepts new substreams and registers them with the connection.
// It exits when the connection is closed or when substreams are not supported.
func (c *rawConnection) streamAcceptLoop() {
for {
strm, err := c.stream.AcceptSubstream(context.TODO())
if errors.Is(err, netutil.ErrSubstreamsUnsupported) {
l.Debugf("Substreams not supported on %v, shutting down", c)
// Substreams are not supported on this connection so cease
// trying to accept them.
return
} else if err != nil {
l.Debugf("Error accepting substream on %v: %v", c, err)
return
}
l.Debugf("Accepted substream from %v", c)
c.registerNewSubstream(strm)
}
}
// substreamReaderLoop reads messages from a substream and forwards them to
// the main inbox. It exits when the substream or the connection is closed.
func (c *rawConnection) substreamReaderLoop(strm io.ReadWriteCloser, outbox chan asyncMessage) {
defer strm.Close()
fourByteBuf := make([]byte, 4)
for {
msg, err := c.readMessage(strm, fourByteBuf)
if err != nil {
if err == errUnknownMessage {
// Unknown message types are skipped, for future extensibility.
continue
}
l.Debugf("Closing substream reader loop for %v: %v", c, err)
return
}
select {
case c.inbox <- streamMessage{msg, outbox}:
case <-c.closed:
return
}
}
}
// substreamWriterLoop writes messages from the outbox to a substream. It
// exits when the substream or the connection is closed. Closes the
// substream when exiting.
func (c *rawConnection) substreamWriterLoop(strm io.ReadWriteCloser, outbox chan asyncMessage) {
defer strm.Close()
// Unregister the substream when we exit. This probably isn't strictly
// required as there should be no way for a substream to be closed or
// error out withtout the main connection closing/erroring, in which
// case everything is being torn down anyway.
defer func() {
c.substreamsMut.Lock()
defer c.substreamsMut.Unlock()
for i, s := range c.substreams {
if s == outbox {
c.substreams = append(c.substreams[:i], c.substreams[i+1:]...)
break
}
}
}()
for {
select {
case hm := <-outbox:
err := c.writeMessage(strm, hm.msg)
if hm.done != nil {
close(hm.done)
}
if err != nil {
l.Debugf("Closing substream writer loop for %v: %v", c, err)
return
}
case <-c.closed:
return
}
}
}
func (c *rawConnection) dispatcherLoop() (err error) {
defer close(c.dispatcherLoopStopped)
state := stateInitial
for {
var streamMsg streamMessage
select {
case streamMsg = <-c.inbox:
case <-c.closed:
return ErrClosed
}
msg := streamMsg.message
msgContext, err := messageContext(msg)
if err != nil {
return fmt.Errorf("protocol error: %w", err)
}
l.Debugf("handle %v message", msgContext)
switch msg := msg.(type) {
case *ClusterConfig:
if state == stateInitial {
state = stateReady
}
case *Close:
return fmt.Errorf("closed by remote: %v", msg.Reason)
default:
if state != stateReady {
return newProtocolError(fmt.Errorf("invalid state %d", state), msgContext)
}
}
switch msg := msg.(type) {
case *Index:
err = checkIndexConsistency(msg.Files)
case *IndexUpdate:
err = checkIndexConsistency(msg.Files)
case *Request:
err = checkFilename(msg.Name)
}
if err != nil {
return newProtocolError(err, msgContext)
}
switch msg := msg.(type) {
case *ClusterConfig:
err = c.receiver.ClusterConfig(c.id, *msg)
case *Index:
err = c.handleIndex(*msg)
case *IndexUpdate:
err = c.handleIndexUpdate(*msg)
case *Request:
go c.handleRequest(*msg, streamMsg.outbox)
case *Response:
c.handleResponse(*msg)
case *DownloadProgress:
err = c.receiver.DownloadProgress(c.id, msg.Folder, msg.Updates)
}
if err != nil {
return newHandleError(err, msgContext)
}
}
}
func (c *rawConnection) readMessage(r io.Reader, fourByteBuf []byte) (message, error) {
hdr, err := c.readHeader(r, fourByteBuf)
if err != nil {
return nil, err
}
return c.readMessageAfterHeader(r, hdr, fourByteBuf)
}
func (c *rawConnection) readMessageAfterHeader(r io.Reader, hdr Header, fourByteBuf []byte) (message, error) {
// First comes a 4 byte message length
if _, err := io.ReadFull(r, fourByteBuf[:4]); err != nil {
return nil, fmt.Errorf("reading message length: %w", err)
}
msgLen := int32(binary.BigEndian.Uint32(fourByteBuf))
if msgLen < 0 {
return nil, fmt.Errorf("negative message length %d", msgLen)
} else if msgLen > MaxMessageLen {
return nil, fmt.Errorf("message length %d exceeds maximum %d", msgLen, MaxMessageLen)
}
// Then comes the message
buf := BufferPool.Get(int(msgLen))
if _, err := io.ReadFull(r, buf); err != nil {
BufferPool.Put(buf)
return nil, fmt.Errorf("reading message: %w", err)
}
// ... which might be compressed
switch hdr.Compression {
case MessageCompressionNone:
// Nothing
case MessageCompressionLZ4:
decomp, err := lz4Decompress(buf)
BufferPool.Put(buf)
if err != nil {
return nil, fmt.Errorf("decompressing message: %w", err)
}
buf = decomp
default:
return nil, fmt.Errorf("unknown message compression %d", hdr.Compression)
}
// ... and is then unmarshalled
msg, err := newMessage(hdr.Type)
if err != nil {
BufferPool.Put(buf)
return nil, fmt.Errorf("message type %d: %w", hdr.Type, err)
}
if err := msg.Unmarshal(buf); err != nil {
BufferPool.Put(buf)
return nil, fmt.Errorf("unmarshalling message: %w", err)
}
BufferPool.Put(buf)
return msg, nil
}
func (c *rawConnection) readHeader(r io.Reader, fourByteBuf []byte) (Header, error) {
// First comes a 2 byte header length
if _, err := io.ReadFull(r, fourByteBuf[:2]); err != nil {
return Header{}, fmt.Errorf("reading length: %w", err)
}
hdrLen := int16(binary.BigEndian.Uint16(fourByteBuf))
if hdrLen < 0 {
return Header{}, fmt.Errorf("negative header length %d", hdrLen)
}
// Then comes the header
buf := BufferPool.Get(int(hdrLen))
if _, err := io.ReadFull(r, buf); err != nil {
BufferPool.Put(buf)
return Header{}, fmt.Errorf("reading header: %w", err)
}
var hdr Header
err := hdr.Unmarshal(buf)
BufferPool.Put(buf)
if err != nil {
return Header{}, fmt.Errorf("unmarshalling header: %w", err)
}
return hdr, nil
}
func (c *rawConnection) handleIndex(im Index) error {
l.Debugf("Index(%v, %v, %d file)", c.id, im.Folder, len(im.Files))
return c.receiver.Index(c.id, im.Folder, im.Files)
}
func (c *rawConnection) handleIndexUpdate(im IndexUpdate) error {
l.Debugf("queueing IndexUpdate(%v, %v, %d files)", c.id, im.Folder, len(im.Files))
return c.receiver.IndexUpdate(c.id, im.Folder, im.Files)
}
// checkIndexConsistency verifies a number of invariants on FileInfos received in
// index messages.
func checkIndexConsistency(fs []FileInfo) error {
for _, f := range fs {
if err := checkFileInfoConsistency(f); err != nil {
return fmt.Errorf("%q: %w", f.Name, err)
}
}
return nil
}
// checkFileInfoConsistency verifies a number of invariants on the given FileInfo
func checkFileInfoConsistency(f FileInfo) error {
if err := checkFilename(f.Name); err != nil {
return err
}
switch {
case f.Deleted && len(f.Blocks) != 0:
// Deleted files should have no blocks
return errDeletedHasBlocks
case f.Type == FileInfoTypeDirectory && len(f.Blocks) != 0:
// Directories should have no blocks
return errDirectoryHasBlocks
case !f.Deleted && !f.IsInvalid() && f.Type == FileInfoTypeFile && len(f.Blocks) == 0:
// Non-deleted, non-invalid files should have at least one block
return errFileHasNoBlocks
}
return nil
}
// checkFilename verifies that the given filename is valid according to the
// spec on what's allowed over the wire. A filename failing this test is
// grounds for disconnecting the device.
func checkFilename(name string) error {
cleanedName := path.Clean(name)
if cleanedName != name {
// The filename on the wire should be in canonical format. If
// Clean() managed to clean it up, there was something wrong with
// it.
return errUncleanFilename
}
switch name {
case "", ".", "..":
// These names are always invalid.
return errInvalidFilename
}
if strings.HasPrefix(name, "/") {
// Names are folder relative, not absolute.
return errInvalidFilename
}
if strings.HasPrefix(name, "../") {
// Starting with a dotdot is not allowed. Any other dotdots would
// have been handled by the Clean() call at the top.
return errInvalidFilename
}
return nil
}
func (c *rawConnection) handleRequest(req Request, outbox chan asyncMessage) {
res, err := c.receiver.Request(c.id, req.Folder, req.Name, int32(req.BlockNo), int32(req.Size), req.Offset, req.Hash, req.WeakHash, req.FromTemporary)
if err != nil {
c.sendOutbox(context.Background(), &Response{
ID: req.ID,
Code: errorToCode(err),
}, nil, outbox)
return
}
done := make(chan struct{})
c.sendOutbox(context.Background(), &Response{
ID: req.ID,
Data: res.Data(),
Code: errorToCode(nil),
}, done, outbox)
<-done
res.Close()
}
func (c *rawConnection) handleResponse(resp Response) {
c.awaitingMut.Lock()
if rc := c.awaiting[resp.ID]; rc != nil {
delete(c.awaiting, resp.ID)
rc <- asyncResult{resp.Data, codeToError(resp.Code)}
close(rc)
}
c.awaitingMut.Unlock()
}
func (c *rawConnection) send(ctx context.Context, msg message, done chan struct{}) bool {
return c.sendOutbox(ctx, msg, done, c.outbox)
}
func (c *rawConnection) sendOutbox(ctx context.Context, msg message, done chan struct{}, outbox chan asyncMessage) bool {
select {
case outbox <- asyncMessage{msg, done}:
return true
case <-c.closed:
case <-ctx.Done():
}
if done != nil {
close(done)
}
return false
}
func (c *rawConnection) writerLoop() {
select {
case cc := <-c.clusterConfigBox:
err := c.writeMessage(c.stream, cc)
if err != nil {
c.internalClose(err)
return
}
case hm := <-c.closeBox:
_ = c.writeMessage(c.stream, hm.msg)
close(hm.done)
return
case <-c.closed:
return
}
for {
select {
case cc := <-c.clusterConfigBox:
err := c.writeMessage(c.stream, cc)
if err != nil {
c.internalClose(err)
return
}
case hm := <-c.outbox:
err := c.writeMessage(c.stream, hm.msg)
if hm.done != nil {
close(hm.done)
}
if err != nil {
c.internalClose(err)
return
}
case hm := <-c.closeBox:
_ = c.writeMessage(c.stream, hm.msg)
close(hm.done)
return
case <-c.closed:
return
}
}
}
func (c *rawConnection) writeMessage(w io.Writer, msg message) error {
msgContext, _ := messageContext(msg)
l.Debugf("Writing %v", msgContext)
size := msg.ProtoSize()
hdr := Header{
Type: typeOf(msg),
}
hdrSize := hdr.ProtoSize()
if hdrSize > 1<<16-1 {
panic("impossibly large header")
}
overhead := 2 + hdrSize + 4
totSize := overhead + size
buf := BufferPool.Get(totSize)
defer BufferPool.Put(buf)
// Message
if _, err := msg.MarshalTo(buf[2+hdrSize+4:]); err != nil {
return fmt.Errorf("marshalling message: %w", err)
}
if c.shouldCompressMessage(msg) {
ok, err := c.writeCompressedMessage(w, msg, buf[overhead:])
if ok {
return err
}
}
// Header length
binary.BigEndian.PutUint16(buf, uint16(hdrSize))
// Header
if _, err := hdr.MarshalTo(buf[2:]); err != nil {
return fmt.Errorf("marshalling header: %w", err)
}
// Message length
binary.BigEndian.PutUint32(buf[2+hdrSize:], uint32(size))
n, err := w.Write(buf)
l.Debugf("wrote %d bytes on the wire (2 bytes length, %d bytes header, 4 bytes message length, %d bytes message), err=%v", n, hdrSize, size, err)
if err != nil {
return fmt.Errorf("writing message: %w", err)
}
return nil
}
// Write msg out compressed, given its uncompressed marshaled payload.
//
// The first return value indicates whether compression succeeded.
// If not, the caller should retry without compression.
func (c *rawConnection) writeCompressedMessage(w io.Writer, msg message, marshaled []byte) (ok bool, err error) {
hdr := Header{
Type: typeOf(msg),
Compression: MessageCompressionLZ4,
}
hdrSize := hdr.ProtoSize()
if hdrSize > 1<<16-1 {
panic("impossibly large header")
}
cOverhead := 2 + hdrSize + 4
// The compressed size may be at most n-n/32 = .96875*n bytes,
// I.e., if we can't save at least 3.125% bandwidth, we forgo compression.
// This number is arbitrary but cheap to compute.
maxCompressed := cOverhead + len(marshaled) - len(marshaled)/32
buf := BufferPool.Get(maxCompressed)
defer BufferPool.Put(buf)
compressedSize, err := lz4Compress(marshaled, buf[cOverhead:])
totSize := compressedSize + cOverhead
if err != nil {
return false, nil
}
// Header length
binary.BigEndian.PutUint16(buf, uint16(hdrSize))
// Header
if _, err := hdr.MarshalTo(buf[2:]); err != nil {
return true, fmt.Errorf("marshalling header: %w", err)
}
// Message length
binary.BigEndian.PutUint32(buf[2+hdrSize:], uint32(compressedSize))
n, err := w.Write(buf[:totSize])
l.Debugf("wrote %d bytes on the wire (2 bytes length, %d bytes header, 4 bytes message length, %d bytes message (%d uncompressed)), err=%v", n, hdrSize, compressedSize, len(marshaled), err)
if err != nil {
return true, fmt.Errorf("writing message: %w", err)
}
return true, nil
}
func typeOf(msg message) MessageType {
switch msg.(type) {
case *ClusterConfig:
return MessageTypeClusterConfig
case *Index:
return MessageTypeIndex
case *IndexUpdate:
return MessageTypeIndexUpdate
case *Request:
return MessageTypeRequest
case *Response:
return MessageTypeResponse
case *DownloadProgress:
return MessageTypeDownloadProgress
case *Ping:
return MessageTypePing
case *Close:
return MessageTypeClose
default:
panic("bug: unknown message type")
}
}
func newMessage(t MessageType) (message, error) {
switch t {
case MessageTypeClusterConfig:
return new(ClusterConfig), nil
case MessageTypeIndex:
return new(Index), nil
case MessageTypeIndexUpdate:
return new(IndexUpdate), nil
case MessageTypeRequest:
return new(Request), nil
case MessageTypeResponse:
return new(Response), nil
case MessageTypeDownloadProgress:
return new(DownloadProgress), nil
case MessageTypePing:
return new(Ping), nil
case MessageTypeClose:
return new(Close), nil
default:
return nil, errUnknownMessage
}
}
func (c *rawConnection) shouldCompressMessage(msg message) bool {
switch c.compression {
case CompressionNever:
return false
case CompressionAlways:
// Use compression for large enough messages
return msg.ProtoSize() >= compressionThreshold
case CompressionMetadata:
_, isResponse := msg.(*Response)
// Compress if it's large enough and not a response message
return !isResponse && msg.ProtoSize() >= compressionThreshold
default:
panic("unknown compression setting")
}
}
// Close is called when the connection is regularely closed and thus the Close
// BEP message is sent before terminating the actual connection. The error
// argument specifies the reason for closing the connection.
func (c *rawConnection) Close(err error) {
c.sendCloseOnce.Do(func() {
done := make(chan struct{})
timeout := time.NewTimer(CloseTimeout)
select {
case c.closeBox <- asyncMessage{&Close{err.Error()}, done}:
select {
case <-done:
case <-timeout.C:
case <-c.closed:
}
case <-timeout.C:
case <-c.closed:
}
})
// Close might be called from a method that is called from within
// dispatcherLoop, resulting in a deadlock.
// The sending above must happen before spawning the routine, to prevent
// the underlying connection from terminating before sending the close msg.
go c.internalClose(err)
}
// internalClose is called if there is an unexpected error during normal operation.
func (c *rawConnection) internalClose(err error) {
c.closeOnce.Do(func() {
l.Debugln("close due to", err)
if cerr := c.stream.Close(); cerr != nil {
l.Debugln(c.id, "failed to close underlying conn:", cerr)
}
close(c.closed)
c.awaitingMut.Lock()
for i, ch := range c.awaiting {
if ch != nil {
close(ch)
delete(c.awaiting, i)
}
}
c.awaitingMut.Unlock()
<-c.dispatcherLoopStopped
c.receiver.Closed(c.ID(), err)
})
}
// The pingSender makes sure that we've sent a message within the last
// PingSendInterval. If we already have something sent in the last
// PingSendInterval/2, we do nothing. Otherwise we send a ping message. This
// results in an effective ping interval of somewhere between
// PingSendInterval/2 and PingSendInterval.
func (c *rawConnection) pingSender() {
ticker := time.NewTicker(PingSendInterval / 2)
defer ticker.Stop()
for {
select {
case <-ticker.C:
d := time.Since(c.stream.LastWrite())
if d < PingSendInterval/2 {
l.Debugln(c.id, "ping skipped after wr", d)
continue
}
l.Debugln(c.id, "ping -> after", d)
c.ping()
case <-c.closed:
return
}
}
}
// The pingReceiver checks that we've received a message (any message will do,
// but we expect pings in the absence of other messages) within the last
// ReceiveTimeout. If not, we close the connection with an ErrTimeout.
func (c *rawConnection) pingReceiver() {
ticker := time.NewTicker(ReceiveTimeout / 2)
defer ticker.Stop()
for {
select {
case <-ticker.C:
d := time.Since(c.stream.LastRead())
if d > ReceiveTimeout {
l.Debugln(c.id, "ping timeout", d)
c.internalClose(ErrTimeout)
}
l.Debugln(c.id, "last read within", d)
case <-c.closed:
return
}
}
}
type Statistics struct {
At time.Time `json:"at"`
InBytesTotal int64 `json:"inBytesTotal"`
OutBytesTotal int64 `json:"outBytesTotal"`
StartedAt time.Time `json:"startedAt"`
}
func (c *rawConnection) Statistics() Statistics {
return Statistics{
At: time.Now().Truncate(time.Second),
InBytesTotal: c.stream.BytesRead(),
OutBytesTotal: c.stream.BytesWritten(),
StartedAt: c.startTime,
}
}
func lz4Compress(src, buf []byte) (int, error) {
n, err := lz4.CompressBlock(src, buf[4:], nil)
if err != nil {
return -1, err
} else if n == 0 {
return -1, errNotCompressible
}
// The compressed block is prefixed by the size of the uncompressed data.
binary.BigEndian.PutUint32(buf, uint32(len(src)))
return n + 4, nil
}
func lz4Decompress(src []byte) ([]byte, error) {
size := binary.BigEndian.Uint32(src)
buf := BufferPool.Get(int(size))
n, err := lz4.UncompressBlock(src[4:], buf)
if err != nil {
BufferPool.Put(buf)
return nil, err
}
return buf[:n], nil
}
func newProtocolError(err error, msgContext string) error {
return fmt.Errorf("protocol error on %v: %w", msgContext, err)
}
func newHandleError(err error, msgContext string) error {
return fmt.Errorf("handling %v: %w", msgContext, err)
}
func messageContext(msg message) (string, error) {
switch msg := msg.(type) {
case *ClusterConfig:
return "cluster-config", nil
case *Index:
return fmt.Sprintf("index for %v", msg.Folder), nil
case *IndexUpdate:
return fmt.Sprintf("index-update for %v", msg.Folder), nil
case *Request:
return fmt.Sprintf(`request for "%v" in %v`, msg.Name, msg.Folder), nil
case *Response:
return "response", nil
case *DownloadProgress:
return fmt.Sprintf("download-progress for %v", msg.Folder), nil
case *Ping:
return "ping", nil
case *Close:
return "close", nil
default:
return "", errors.New("unknown or empty message")
}
}