syncthing/lib/protocol/protocol_test.go
Jakob Borg 020cfe395a all: Use multiple QUIC streams (fixes #8879)
Work in progress, to be described more fully in time, but in principle:

- support multiple streams on a single connection at the protocol level
- use multiple streams for concurrent requests
- hope for improved greatness
2023-04-28 09:01:54 +02:00

1035 lines
26 KiB
Go

// Copyright (C) 2014 The Protocol Authors.
package protocol
import (
"bytes"
"context"
"crypto/sha256"
"encoding/hex"
"encoding/json"
"errors"
"io"
"os"
"sync"
"testing"
"testing/quick"
"time"
lz4 "github.com/pierrec/lz4/v4"
"github.com/syncthing/syncthing/lib/build"
"github.com/syncthing/syncthing/lib/netutil"
"github.com/syncthing/syncthing/lib/rand"
"github.com/syncthing/syncthing/lib/testutils"
)
var (
c0ID = NewDeviceID([]byte{1})
c1ID = NewDeviceID([]byte{2})
quickCfg = &quick.Config{}
)
func TestPing(t *testing.T) {
ar, aw := io.Pipe()
br, bw := io.Pipe()
au := netutil.NewRWStream(ar, bw)
bu := netutil.NewRWStream(br, aw)
c0 := getRawConnection(NewConnection(c0ID, au, newTestModel(), new(mockedConnectionInfo), CompressionAlways, nil, testKeyGen))
c0.Start()
defer closeAndWait(c0, ar, bw)
c1 := getRawConnection(NewConnection(c1ID, bu, newTestModel(), new(mockedConnectionInfo), CompressionAlways, nil, testKeyGen))
c1.Start()
defer closeAndWait(c1, ar, bw)
c0.ClusterConfig(ClusterConfig{})
c1.ClusterConfig(ClusterConfig{})
if ok := c0.ping(); !ok {
t.Error("c0 ping failed")
}
if ok := c1.ping(); !ok {
t.Error("c1 ping failed")
}
}
var errManual = errors.New("manual close")
func TestClose(t *testing.T) {
m0 := newTestModel()
m1 := newTestModel()
ar, aw := io.Pipe()
br, bw := io.Pipe()
au := netutil.NewRWStream(ar, bw)
bu := netutil.NewRWStream(br, aw)
c0 := getRawConnection(NewConnection(c0ID, au, m0, new(mockedConnectionInfo), CompressionAlways, nil, testKeyGen))
c0.Start()
defer closeAndWait(c0, ar, bw)
c1 := NewConnection(c1ID, bu, m1, new(mockedConnectionInfo), CompressionAlways, nil, testKeyGen)
c1.Start()
defer closeAndWait(c1, ar, bw)
c0.ClusterConfig(ClusterConfig{})
c1.ClusterConfig(ClusterConfig{})
c0.internalClose(errManual)
<-c0.closed
if err := m0.closedError(); err != errManual {
t.Fatal("Connection should be closed")
}
// None of these should panic, some should return an error
if c0.ping() {
t.Error("Ping should not return true")
}
ctx := context.Background()
c0.Index(ctx, "default", nil)
c0.Index(ctx, "default", nil)
if _, err := c0.Request(ctx, "default", "foo", 0, 0, 0, nil, 0, false); err == nil {
t.Error("Request should return an error")
}
}
// TestCloseOnBlockingSend checks that the connection does not deadlock when
// Close is called while the underlying connection is broken (send blocks).
// https://github.com/syncthing/syncthing/pull/5442
func TestCloseOnBlockingSend(t *testing.T) {
oldCloseTimeout := CloseTimeout
CloseTimeout = 100 * time.Millisecond
defer func() {
CloseTimeout = oldCloseTimeout
}()
m := newTestModel()
rw := testutils.NewBlockingRW()
strm := netutil.NewRWStream(rw, rw)
c := getRawConnection(NewConnection(c0ID, strm, m, new(mockedConnectionInfo), CompressionAlways, nil, testKeyGen))
c.Start()
defer closeAndWait(c, rw)
wg := sync.WaitGroup{}
wg.Add(1)
go func() {
c.ClusterConfig(ClusterConfig{})
wg.Done()
}()
wg.Add(1)
go func() {
c.Close(errManual)
wg.Done()
}()
// This simulates an error from ping timeout
wg.Add(1)
go func() {
c.internalClose(ErrTimeout)
wg.Done()
}()
done := make(chan struct{})
go func() {
wg.Wait()
close(done)
}()
select {
case <-done:
case <-time.After(time.Second):
t.Fatal("timed out before all functions returned")
}
}
func TestCloseRace(t *testing.T) {
indexReceived := make(chan struct{})
unblockIndex := make(chan struct{})
m0 := newTestModel()
m0.indexFn = func(_ DeviceID, _ string, _ []FileInfo) {
close(indexReceived)
<-unblockIndex
}
m1 := newTestModel()
ar, aw := io.Pipe()
br, bw := io.Pipe()
au := netutil.NewRWStream(ar, bw)
bu := netutil.NewRWStream(br, aw)
c0 := getRawConnection(NewConnection(c0ID, au, m0, new(mockedConnectionInfo), CompressionNever, nil, testKeyGen))
c0.Start()
defer closeAndWait(c0, ar, bw)
c1 := NewConnection(c1ID, bu, m1, new(mockedConnectionInfo), CompressionNever, nil, testKeyGen)
c1.Start()
defer closeAndWait(c1, ar, bw)
c0.ClusterConfig(ClusterConfig{})
c1.ClusterConfig(ClusterConfig{})
c1.Index(context.Background(), "default", nil)
select {
case <-indexReceived:
case <-time.After(time.Second):
t.Fatal("timed out before receiving index")
}
go c0.internalClose(errManual)
select {
case <-c0.closed:
case <-time.After(time.Second):
t.Fatal("timed out before c0.closed was closed")
}
select {
case <-m0.closedCh:
t.Errorf("receiver.Closed called before receiver.Index")
default:
}
close(unblockIndex)
if err := m0.closedError(); err != errManual {
t.Fatal("Connection should be closed")
}
}
func TestClusterConfigFirst(t *testing.T) {
m := newTestModel()
rw := testutils.NewBlockingRW()
strm := netutil.NewRWStream(rw, &testutils.NoopRW{})
c := getRawConnection(NewConnection(c0ID, strm, m, new(mockedConnectionInfo), CompressionAlways, nil, testKeyGen))
c.Start()
defer closeAndWait(c, rw)
select {
case c.outbox <- asyncMessage{&Ping{}, nil}:
t.Fatal("able to send ping before cluster config")
case <-time.After(100 * time.Millisecond):
// Allow some time for c.writerLoop to setup after c.Start
}
c.ClusterConfig(ClusterConfig{})
done := make(chan struct{})
if ok := c.send(context.Background(), &Ping{}, done); !ok {
t.Fatal("send ping after cluster config returned false")
}
select {
case <-done:
case <-time.After(time.Second):
t.Fatal("timed out before ping was sent")
}
done = make(chan struct{})
go func() {
c.internalClose(errManual)
close(done)
}()
select {
case <-done:
case <-time.After(5 * time.Second):
t.Fatal("Close didn't return before timeout")
}
if err := m.closedError(); err != errManual {
t.Fatal("Connection should be closed")
}
}
// TestCloseTimeout checks that calling Close times out and proceeds, if sending
// the close message does not succeed.
func TestCloseTimeout(t *testing.T) {
oldCloseTimeout := CloseTimeout
CloseTimeout = 100 * time.Millisecond
defer func() {
CloseTimeout = oldCloseTimeout
}()
m := newTestModel()
rw := testutils.NewBlockingRW()
strm := netutil.NewRWStream(rw, &testutils.NoopRW{})
c := getRawConnection(NewConnection(c0ID, strm, m, new(mockedConnectionInfo), CompressionAlways, nil, testKeyGen))
c.Start()
defer closeAndWait(c, rw)
done := make(chan struct{})
go func() {
c.Close(errManual)
close(done)
}()
select {
case <-done:
case <-time.After(5 * CloseTimeout):
t.Fatal("timed out before Close returned")
}
}
func TestMarshalIndexMessage(t *testing.T) {
if testing.Short() {
quickCfg.MaxCount = 10
}
f := func(m1 Index) bool {
if len(m1.Files) == 0 {
m1.Files = nil
}
for i, f := range m1.Files {
if len(f.BlocksHash) == 0 {
m1.Files[i].BlocksHash = nil
}
if len(f.VersionHash) == 0 {
m1.Files[i].VersionHash = nil
}
if len(f.Blocks) == 0 {
m1.Files[i].Blocks = nil
} else {
for j := range f.Blocks {
f.Blocks[j].Offset = 0
if len(f.Blocks[j].Hash) == 0 {
f.Blocks[j].Hash = nil
}
}
}
if len(f.Version.Counters) == 0 {
m1.Files[i].Version.Counters = nil
}
if len(f.Encrypted) == 0 {
m1.Files[i].Encrypted = nil
}
}
return testMarshal(t, "index", &m1, &Index{})
}
if err := quick.Check(f, quickCfg); err != nil {
t.Error(err)
}
}
func TestMarshalRequestMessage(t *testing.T) {
if testing.Short() {
quickCfg.MaxCount = 10
}
f := func(m1 Request) bool {
if len(m1.Hash) == 0 {
m1.Hash = nil
}
return testMarshal(t, "request", &m1, &Request{})
}
if err := quick.Check(f, quickCfg); err != nil {
t.Error(err)
}
}
func TestMarshalResponseMessage(t *testing.T) {
if testing.Short() {
quickCfg.MaxCount = 10
}
f := func(m1 Response) bool {
if len(m1.Data) == 0 {
m1.Data = nil
}
return testMarshal(t, "response", &m1, &Response{})
}
if err := quick.Check(f, quickCfg); err != nil {
t.Error(err)
}
}
func TestMarshalClusterConfigMessage(t *testing.T) {
if testing.Short() {
quickCfg.MaxCount = 10
}
f := func(m1 ClusterConfig) bool {
if len(m1.Folders) == 0 {
m1.Folders = nil
}
for i := range m1.Folders {
if len(m1.Folders[i].Devices) == 0 {
m1.Folders[i].Devices = nil
}
for j := range m1.Folders[i].Devices {
if len(m1.Folders[i].Devices[j].Addresses) == 0 {
m1.Folders[i].Devices[j].Addresses = nil
}
if len(m1.Folders[i].Devices[j].EncryptionPasswordToken) == 0 {
m1.Folders[i].Devices[j].EncryptionPasswordToken = nil
}
}
}
return testMarshal(t, "clusterconfig", &m1, &ClusterConfig{})
}
if err := quick.Check(f, quickCfg); err != nil {
t.Error(err)
}
}
func TestMarshalCloseMessage(t *testing.T) {
if testing.Short() {
quickCfg.MaxCount = 10
}
f := func(m1 Close) bool {
return testMarshal(t, "close", &m1, &Close{})
}
if err := quick.Check(f, quickCfg); err != nil {
t.Error(err)
}
}
func TestMarshalFDPU(t *testing.T) {
if testing.Short() {
quickCfg.MaxCount = 10
}
f := func(m1 FileDownloadProgressUpdate) bool {
if len(m1.Version.Counters) == 0 {
m1.Version.Counters = nil
}
if len(m1.BlockIndexes) == 0 {
m1.BlockIndexes = nil
}
return testMarshal(t, "fdpu", &m1, &FileDownloadProgressUpdate{})
}
if err := quick.Check(f, quickCfg); err != nil {
t.Error(err)
}
}
func TestUnmarshalFDPUv16v17(t *testing.T) {
var fdpu FileDownloadProgressUpdate
m0, _ := hex.DecodeString("08cda1e2e3011278f3918787f3b89b8af2958887f0aa9389f3a08588f3aa8f96f39aa8a5f48b9188f19286a0f3848da4f3aba799f3beb489f0a285b9f487b684f2a3bda2f48598b4f2938a89f2a28badf187a0a2f2aebdbdf4849494f4808fbbf2b3a2adf2bb95bff0a6ada4f198ab9af29a9c8bf1abb793f3baabb2f188a6ba1a0020bb9390f60220f6d9e42220b0c7e2b2fdffffffff0120fdb2dfcdfbffffffff0120cedab1d50120bd8784c0feffffffff0120ace99591fdffffffff0120eed7d09af9ffffffff01")
if err := fdpu.Unmarshal(m0); err != nil {
t.Fatal("Unmarshalling message from v0.14.16:", err)
}
m1, _ := hex.DecodeString("0880f1969905128401f099b192f0abb1b9f3b280aff19e9aa2f3b89e84f484b39df1a7a6b0f1aea4b1f0adac94f3b39caaf1939281f1928a8af0abb1b0f0a8b3b3f3a88e94f2bd85acf29c97a9f2969da6f0b7a188f1908ea2f09a9c9bf19d86a6f29aada8f389bb95f0bf9d88f1a09d89f1b1a4b5f29b9eabf298a59df1b2a589f2979ebdf0b69880f18986b21a440a1508c7d8fb8897ca93d90910e8c4d8e8f2f8f0ccee010a1508afa8ffd8c085b393c50110e5bdedc3bddefe9b0b0a1408a1bedddba4cac5da3c10b8e5d9958ca7e3ec19225ae2f88cb2f8ffffffff018ceda99cfbffffffff01b9c298a407e295e8e9fcffffffff01f3b9ade5fcffffffff01c08bfea9fdffffffff01a2c2e5e1ffffffffff0186dcc5dafdffffffff01e9ffc7e507c9d89db8fdffffffff01")
if err := fdpu.Unmarshal(m1); err != nil {
t.Fatal("Unmarshalling message from v0.14.16:", err)
}
}
func testMarshal(t *testing.T, prefix string, m1, m2 message) bool {
buf, err := m1.Marshal()
if err != nil {
t.Fatal(err)
}
err = m2.Unmarshal(buf)
if err != nil {
t.Fatal(err)
}
bs1, _ := json.MarshalIndent(m1, "", " ")
bs2, _ := json.MarshalIndent(m2, "", " ")
if !bytes.Equal(bs1, bs2) {
os.WriteFile(prefix+"-1.txt", bs1, 0o644)
os.WriteFile(prefix+"-2.txt", bs2, 0o644)
return false
}
return true
}
func TestWriteCompressed(t *testing.T) {
for _, random := range []bool{false, true} {
buf := new(bytes.Buffer)
c := &rawConnection{
stream: netutil.NewCountingStream(netutil.NewRWStream(buf, buf), netutil.NewCounter()),
compression: CompressionAlways,
}
msg := &Response{Data: make([]byte, 10240)}
if random {
// This should make the message uncompressible.
rand.Read(msg.Data)
}
if err := c.writeMessage(c.stream, msg); err != nil {
t.Fatal(err)
}
got, err := c.readMessage(c.stream, make([]byte, 4))
if err != nil {
t.Fatal(err)
}
if !bytes.Equal(got.(*Response).Data, msg.Data) {
t.Error("received the wrong message")
}
hdr := Header{Type: typeOf(msg)}
size := int64(2 + hdr.ProtoSize() + 4 + msg.ProtoSize())
if read := c.stream.BytesRead(); read > size {
t.Errorf("compression enlarged message from %d to %d",
size, read)
}
}
}
func TestLZ4Compression(t *testing.T) {
for i := 0; i < 10; i++ {
dataLen := 150 + rand.Intn(150)
data := make([]byte, dataLen)
_, err := io.ReadFull(rand.Reader, data[100:])
if err != nil {
t.Fatal(err)
}
comp := make([]byte, lz4.CompressBlockBound(dataLen))
compLen, err := lz4Compress(data, comp)
if err != nil {
t.Errorf("compressing %d bytes: %v", dataLen, err)
continue
}
res, err := lz4Decompress(comp[:compLen])
if err != nil {
t.Errorf("decompressing %d bytes to %d: %v", len(comp), dataLen, err)
continue
}
if len(res) != len(data) {
t.Errorf("Incorrect len %d != expected %d", len(res), len(data))
}
if !bytes.Equal(data, res) {
t.Error("Incorrect decompressed data")
}
t.Logf("OK #%d, %d -> %d -> %d", i, dataLen, len(comp), dataLen)
}
}
func TestLZ4CompressionUpdate(t *testing.T) {
uncompressed := []byte("this is some arbitrary yet fairly compressible data")
// Compressed, as created by the LZ4 implementation in Syncthing 1.18.6 and earlier.
oldCompressed, _ := hex.DecodeString("00000033f0247468697320697320736f6d65206172626974726172792079657420666169726c7920636f6d707265737369626c652064617461")
// Verify that we can decompress
res, err := lz4Decompress(oldCompressed)
if err != nil {
t.Fatal(err)
}
if !bytes.Equal(uncompressed, res) {
t.Fatal("result does not match")
}
// Verify that our current compression is equivalent
buf := make([]byte, 128)
n, err := lz4Compress(uncompressed, buf)
if err != nil {
t.Fatal(err)
}
if !bytes.Equal(oldCompressed, buf[:n]) {
t.Logf("%x", oldCompressed)
t.Logf("%x", buf[:n])
t.Fatal("compression does not match")
}
}
func TestCheckFilename(t *testing.T) {
cases := []struct {
name string
ok bool
}{
// Valid filenames
{"foo", true},
{"foo/bar/baz", true},
{"foo/bar:baz", true}, // colon is ok in general, will be filtered on windows
{`\`, true}, // path separator on the wire is forward slash, so as above
{`\.`, true},
{`\..`, true},
{".foo", true},
{"foo..", true},
// Invalid filenames
{"foo/..", false},
{"foo/../bar", false},
{"../foo/../bar", false},
{"", false},
{".", false},
{"..", false},
{"/", false},
{"/.", false},
{"/..", false},
{"/foo", false},
{"./foo", false},
{"foo./", false},
{"foo/.", false},
{"foo/", false},
}
for _, tc := range cases {
err := checkFilename(tc.name)
if (err == nil) != tc.ok {
t.Errorf("Unexpected result for checkFilename(%q): %v", tc.name, err)
}
}
}
func TestCheckConsistency(t *testing.T) {
cases := []struct {
fi FileInfo
ok bool
}{
{
// valid
fi: FileInfo{
Name: "foo",
Type: FileInfoTypeFile,
Blocks: []BlockInfo{{Size: 1234, Offset: 0, Hash: []byte{1, 2, 3, 4}}},
},
ok: true,
},
{
// deleted with blocks
fi: FileInfo{
Name: "foo",
Deleted: true,
Type: FileInfoTypeFile,
Blocks: []BlockInfo{{Size: 1234, Offset: 0, Hash: []byte{1, 2, 3, 4}}},
},
ok: false,
},
{
// no blocks
fi: FileInfo{
Name: "foo",
Type: FileInfoTypeFile,
},
ok: false,
},
{
// directory with blocks
fi: FileInfo{
Name: "foo",
Type: FileInfoTypeDirectory,
Blocks: []BlockInfo{{Size: 1234, Offset: 0, Hash: []byte{1, 2, 3, 4}}},
},
ok: false,
},
}
for _, tc := range cases {
err := checkFileInfoConsistency(tc.fi)
if tc.ok && err != nil {
t.Errorf("Unexpected error %v (want nil) for %v", err, tc.fi)
}
if !tc.ok && err == nil {
t.Errorf("Unexpected nil error for %v", tc.fi)
}
}
}
func TestBlockSize(t *testing.T) {
cases := []struct {
fileSize int64
blockSize int
}{
{1 << KiB, 128 << KiB},
{1 << MiB, 128 << KiB},
{499 << MiB, 256 << KiB},
{500 << MiB, 512 << KiB},
{501 << MiB, 512 << KiB},
{1 << GiB, 1 << MiB},
{2 << GiB, 2 << MiB},
{3 << GiB, 2 << MiB},
{500 << GiB, 16 << MiB},
{50000 << GiB, 16 << MiB},
}
for _, tc := range cases {
size := BlockSize(tc.fileSize)
if size != tc.blockSize {
t.Errorf("BlockSize(%d), size=%d, expected %d", tc.fileSize, size, tc.blockSize)
}
}
}
var blockSize int
func BenchmarkBlockSize(b *testing.B) {
for i := 0; i < b.N; i++ {
blockSize = BlockSize(16 << 30)
}
}
func TestLocalFlagBits(t *testing.T) {
var f FileInfo
if f.IsIgnored() || f.MustRescan() || f.IsInvalid() {
t.Error("file should have no weird bits set by default")
}
f.SetIgnored()
if !f.IsIgnored() || f.MustRescan() || !f.IsInvalid() {
t.Error("file should be ignored and invalid")
}
f.SetMustRescan()
if f.IsIgnored() || !f.MustRescan() || !f.IsInvalid() {
t.Error("file should be must-rescan and invalid")
}
f.SetUnsupported()
if f.IsIgnored() || f.MustRescan() || !f.IsInvalid() {
t.Error("file should be invalid")
}
}
func TestIsEquivalent(t *testing.T) {
b := func(v bool) *bool {
return &v
}
type testCase struct {
a FileInfo
b FileInfo
ignPerms *bool // nil means should not matter, we'll test both variants
ignBlocks *bool
ignFlags uint32
eq bool
}
cases := []testCase{
// Empty FileInfos are equivalent
{eq: true},
// Various basic attributes, all of which cause inequality when
// they differ
{
a: FileInfo{Name: "foo"},
b: FileInfo{Name: "bar"},
eq: false,
},
{
a: FileInfo{Type: FileInfoTypeFile},
b: FileInfo{Type: FileInfoTypeDirectory},
eq: false,
},
{
a: FileInfo{Size: 1234},
b: FileInfo{Size: 2345},
eq: false,
},
{
a: FileInfo{Deleted: false},
b: FileInfo{Deleted: true},
eq: false,
},
{
a: FileInfo{RawInvalid: false},
b: FileInfo{RawInvalid: true},
eq: false,
},
{
a: FileInfo{ModifiedS: 1234},
b: FileInfo{ModifiedS: 2345},
eq: false,
},
{
a: FileInfo{ModifiedNs: 1234},
b: FileInfo{ModifiedNs: 2345},
eq: false,
},
// Special handling of local flags and invalidity. "MustRescan"
// files are never equivalent to each other. Otherwise, equivalence
// is based just on whether the file becomes IsInvalid() or not, not
// the specific reason or flag bits.
{
a: FileInfo{LocalFlags: FlagLocalMustRescan},
b: FileInfo{LocalFlags: FlagLocalMustRescan},
eq: false,
},
{
a: FileInfo{RawInvalid: true},
b: FileInfo{RawInvalid: true},
eq: true,
},
{
a: FileInfo{LocalFlags: FlagLocalUnsupported},
b: FileInfo{LocalFlags: FlagLocalUnsupported},
eq: true,
},
{
a: FileInfo{RawInvalid: true},
b: FileInfo{LocalFlags: FlagLocalUnsupported},
eq: true,
},
{
a: FileInfo{LocalFlags: 0},
b: FileInfo{LocalFlags: FlagLocalReceiveOnly},
eq: false,
},
{
a: FileInfo{LocalFlags: 0},
b: FileInfo{LocalFlags: FlagLocalReceiveOnly},
ignFlags: FlagLocalReceiveOnly,
eq: true,
},
// Difference in blocks is not OK
{
a: FileInfo{Blocks: []BlockInfo{{Hash: []byte{1, 2, 3, 4}}}},
b: FileInfo{Blocks: []BlockInfo{{Hash: []byte{2, 3, 4, 5}}}},
ignBlocks: b(false),
eq: false,
},
// ... unless we say it is
{
a: FileInfo{Blocks: []BlockInfo{{Hash: []byte{1, 2, 3, 4}}}},
b: FileInfo{Blocks: []BlockInfo{{Hash: []byte{2, 3, 4, 5}}}},
ignBlocks: b(true),
eq: true,
},
// Difference in permissions is not OK.
{
a: FileInfo{Permissions: 0o444},
b: FileInfo{Permissions: 0o666},
ignPerms: b(false),
eq: false,
},
// ... unless we say it is
{
a: FileInfo{Permissions: 0o666},
b: FileInfo{Permissions: 0o444},
ignPerms: b(true),
eq: true,
},
// These attributes are not checked at all
{
a: FileInfo{NoPermissions: false},
b: FileInfo{NoPermissions: true},
eq: true,
},
{
a: FileInfo{Version: Vector{Counters: []Counter{{ID: 1, Value: 42}}}},
b: FileInfo{Version: Vector{Counters: []Counter{{ID: 42, Value: 1}}}},
eq: true,
},
{
a: FileInfo{Sequence: 1},
b: FileInfo{Sequence: 2},
eq: true,
},
// The block size is not checked (but this would fail the blocks
// check in real world)
{
a: FileInfo{RawBlockSize: 1},
b: FileInfo{RawBlockSize: 2},
eq: true,
},
// The symlink target is checked for symlinks
{
a: FileInfo{Type: FileInfoTypeSymlink, SymlinkTarget: "a"},
b: FileInfo{Type: FileInfoTypeSymlink, SymlinkTarget: "b"},
eq: false,
},
// ... but not for non-symlinks
{
a: FileInfo{Type: FileInfoTypeFile, SymlinkTarget: "a"},
b: FileInfo{Type: FileInfoTypeFile, SymlinkTarget: "b"},
eq: true,
},
}
if build.IsWindows {
// On windows we only check the user writable bit of the permission
// set, so these are equivalent.
cases = append(cases, testCase{
a: FileInfo{Permissions: 0o777},
b: FileInfo{Permissions: 0o600},
ignPerms: b(false),
eq: true,
})
}
for i, tc := range cases {
// Check the standard attributes with all permutations of the
// special ignore flags, unless the value of those flags are given
// in the tests.
for _, ignPerms := range []bool{true, false} {
for _, ignBlocks := range []bool{true, false} {
if tc.ignPerms != nil && *tc.ignPerms != ignPerms {
continue
}
if tc.ignBlocks != nil && *tc.ignBlocks != ignBlocks {
continue
}
if res := tc.a.isEquivalent(tc.b, FileInfoComparison{IgnorePerms: ignPerms, IgnoreBlocks: ignBlocks, IgnoreFlags: tc.ignFlags}); res != tc.eq {
t.Errorf("Case %d:\na: %v\nb: %v\na.IsEquivalent(b, %v, %v) => %v, expected %v", i, tc.a, tc.b, ignPerms, ignBlocks, res, tc.eq)
}
if res := tc.b.isEquivalent(tc.a, FileInfoComparison{IgnorePerms: ignPerms, IgnoreBlocks: ignBlocks, IgnoreFlags: tc.ignFlags}); res != tc.eq {
t.Errorf("Case %d:\na: %v\nb: %v\nb.IsEquivalent(a, %v, %v) => %v, expected %v", i, tc.a, tc.b, ignPerms, ignBlocks, res, tc.eq)
}
}
}
}
}
func TestSha256OfEmptyBlock(t *testing.T) {
// every block size should have a correct entry in sha256OfEmptyBlock
for blockSize := MinBlockSize; blockSize <= MaxBlockSize; blockSize *= 2 {
expected := sha256.Sum256(make([]byte, blockSize))
if sha256OfEmptyBlock[blockSize] != expected {
t.Error("missing or wrong hash for block of size", blockSize)
}
}
}
// TestClusterConfigAfterClose checks that ClusterConfig does not deadlock when
// ClusterConfig is called on a closed connection.
func TestClusterConfigAfterClose(t *testing.T) {
m := newTestModel()
rw := testutils.NewBlockingRW()
strm := netutil.NewRWStream(rw, rw)
c := getRawConnection(NewConnection(c0ID, strm, m, new(mockedConnectionInfo), CompressionAlways, nil, testKeyGen))
c.Start()
defer closeAndWait(c, rw)
c.internalClose(errManual)
done := make(chan struct{})
go func() {
c.ClusterConfig(ClusterConfig{})
close(done)
}()
select {
case <-done:
case <-time.After(time.Second):
t.Fatal("timed out before Cluster Config returned")
}
}
func TestDispatcherToCloseDeadlock(t *testing.T) {
// Verify that we don't deadlock when calling Close() from within one of
// the model callbacks (ClusterConfig).
m := newTestModel()
rw := testutils.NewBlockingRW()
strm := netutil.NewRWStream(rw, &testutils.NoopRW{})
c := getRawConnection(NewConnection(c0ID, strm, m, new(mockedConnectionInfo), CompressionAlways, nil, testKeyGen))
m.ccFn = func(devID DeviceID, cc ClusterConfig) {
c.Close(errManual)
}
c.Start()
defer closeAndWait(c, rw)
c.inbox <- streamMessage{&ClusterConfig{}, nil}
select {
case <-c.dispatcherLoopStopped:
case <-time.After(time.Second):
t.Fatal("timed out before dispatcher loop terminated")
}
}
func TestBlocksEqual(t *testing.T) {
blocksOne := []BlockInfo{{Hash: []byte{1, 2, 3, 4}}}
blocksTwo := []BlockInfo{{Hash: []byte{5, 6, 7, 8}}}
hashOne := []byte{42, 42, 42, 42}
hashTwo := []byte{29, 29, 29, 29}
cases := []struct {
b1 []BlockInfo
h1 []byte
b2 []BlockInfo
h2 []byte
eq bool
}{
{blocksOne, hashOne, blocksOne, hashOne, true}, // everything equal
{blocksOne, hashOne, blocksTwo, hashTwo, false}, // nothing equal
{blocksOne, hashOne, blocksOne, nil, true}, // blocks compared
{blocksOne, nil, blocksOne, nil, true}, // blocks compared
{blocksOne, nil, blocksTwo, nil, false}, // blocks compared
{blocksOne, hashOne, blocksTwo, hashOne, true}, // hashes equal, blocks not looked at
{blocksOne, hashOne, blocksOne, hashTwo, true}, // hashes different, blocks compared
{blocksOne, hashOne, blocksTwo, hashTwo, false}, // hashes different, blocks compared
{blocksOne, hashOne, nil, nil, false}, // blocks is different from no blocks
{blocksOne, nil, nil, nil, false}, // blocks is different from no blocks
{nil, hashOne, nil, nil, true}, // nil blocks are equal, even of one side has a hash
}
for _, tc := range cases {
f1 := FileInfo{Blocks: tc.b1, BlocksHash: tc.h1}
f2 := FileInfo{Blocks: tc.b2, BlocksHash: tc.h2}
if !f1.BlocksEqual(f1) {
t.Error("f1 is always equal to itself", f1)
}
if !f2.BlocksEqual(f2) {
t.Error("f2 is always equal to itself", f2)
}
if res := f1.BlocksEqual(f2); res != tc.eq {
t.Log("f1", f1.BlocksHash, f1.Blocks)
t.Log("f2", f2.BlocksHash, f2.Blocks)
t.Errorf("f1.BlocksEqual(f2) == %v but should be %v", res, tc.eq)
}
if res := f2.BlocksEqual(f1); res != tc.eq {
t.Log("f1", f1.BlocksHash, f1.Blocks)
t.Log("f2", f2.BlocksHash, f2.Blocks)
t.Errorf("f2.BlocksEqual(f1) == %v but should be %v", res, tc.eq)
}
}
}
func TestIndexIDString(t *testing.T) {
// Index ID is a 64 bit, zero padded hex integer.
var i IndexID = 42
if i.String() != "0x000000000000002A" {
t.Error(i.String())
}
}
func closeAndWait(c interface{}, closers ...io.Closer) {
for _, closer := range closers {
closer.Close()
}
var raw *rawConnection
switch i := c.(type) {
case *rawConnection:
raw = i
default:
raw = getRawConnection(c.(Connection))
}
raw.internalClose(ErrClosed)
raw.loopWG.Wait()
}
func getRawConnection(c Connection) *rawConnection {
var raw *rawConnection
switch i := c.(type) {
case wireFormatConnection:
raw = i.Connection.(encryptedConnection).conn
case encryptedConnection:
raw = i.conn
}
return raw
}