mirror of
https://github.com/octoleo/syncthing.git
synced 2025-01-03 07:12:27 +00:00
77970d5113
At a high level, this is what I've done and why: - I'm moving the protobuf generation for the `protocol`, `discovery` and `db` packages to the modern alternatives, and using `buf` to generate because it's nice and simple. - After trying various approaches on how to integrate the new types with the existing code, I opted for splitting off our own data model types from the on-the-wire generated types. This means we can have a `FileInfo` type with nicer ergonomics and lots of methods, while the protobuf generated type stays clean and close to the wire protocol. It does mean copying between the two when required, which certainly adds a small amount of inefficiency. If we want to walk this back in the future and use the raw generated type throughout, that's possible, this however makes the refactor smaller (!) as it doesn't change everything about the type for everyone at the same time. - I have simply removed in cold blood a significant number of old database migrations. These depended on previous generations of generated messages of various kinds and were annoying to support in the new fashion. The oldest supported database version now is the one from Syncthing 1.9.0 from Sep 7, 2020. - I changed config structs to be regular manually defined structs. For the sake of discussion, some things I tried that turned out not to work... ### Embedding / wrapping Embedding the protobuf generated structs in our existing types as a data container and keeping our methods and stuff: ``` package protocol type FileInfo struct { *generated.FileInfo } ``` This generates a lot of problems because the internal shape of the generated struct is quite different (different names, different types, more pointers), because initializing it doesn't work like you'd expect (i.e., you end up with an embedded nil pointer and a panic), and because the types of child types don't get wrapped. That is, even if we also have a similar wrapper around a `Vector`, that's not the type you get when accessing `someFileInfo.Version`, you get the `*generated.Vector` that doesn't have methods, etc. ### Aliasing ``` package protocol type FileInfo = generated.FileInfo ``` Doesn't help because you can't attach methods to it, plus all the above. ### Generating the types into the target package like we do now and attaching methods This fails because of the different shape of the generated type (as in the embedding case above) plus the generated struct already has a bunch of methods that we can't necessarily override properly (like `String()` and a bunch of getters). ### Methods to functions I considered just moving all the methods we attach to functions in a specific package, so that for example ``` package protocol func (f FileInfo) Equal(other FileInfo) bool ``` would become ``` package fileinfos func Equal(a, b *generated.FileInfo) bool ``` and this would mostly work, but becomes quite verbose and cumbersome, and somewhat limits discoverability (you can't see what methods are available on the type in auto completions, etc). In the end I did this in some cases, like in the database layer where a lot of things like `func (fv *FileVersion) IsEmpty() bool` becomes `func fvIsEmpty(fv *generated.FileVersion)` because they were anyway just internal methods. Fixes #8247
707 lines
20 KiB
Go
707 lines
20 KiB
Go
// Copyright (C) 2019 The Syncthing Authors.
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla Public
|
|
// License, v. 2.0. If a copy of the MPL was not distributed with this file,
|
|
// You can obtain one at https://mozilla.org/MPL/2.0/.
|
|
|
|
package protocol
|
|
|
|
import (
|
|
"context"
|
|
"crypto/sha256"
|
|
"encoding/base32"
|
|
"encoding/binary"
|
|
"errors"
|
|
"fmt"
|
|
"io"
|
|
"strings"
|
|
"sync"
|
|
|
|
lru "github.com/hashicorp/golang-lru/v2"
|
|
"github.com/miscreant/miscreant.go"
|
|
"golang.org/x/crypto/chacha20poly1305"
|
|
"golang.org/x/crypto/hkdf"
|
|
"golang.org/x/crypto/scrypt"
|
|
"google.golang.org/protobuf/proto"
|
|
|
|
"github.com/syncthing/syncthing/internal/gen/bep"
|
|
"github.com/syncthing/syncthing/lib/rand"
|
|
)
|
|
|
|
const (
|
|
nonceSize = 24 // chacha20poly1305.NonceSizeX
|
|
tagSize = 16 // chacha20poly1305.Overhead()
|
|
keySize = 32 // fits both chacha20poly1305 and AES-SIV
|
|
minPaddedSize = 1024 // smallest block we'll allow
|
|
blockOverhead = tagSize + nonceSize
|
|
maxPathComponent = 200 // characters
|
|
encryptedDirExtension = ".syncthing-enc" // for top level dirs
|
|
miscreantAlgo = "AES-SIV"
|
|
folderKeyCacheEntries = 1000
|
|
fileKeyCacheEntries = 5000
|
|
)
|
|
|
|
// The encryptedModel sits between the encrypted device and the model. It
|
|
// receives encrypted metadata and requests from the untrusted device, so it
|
|
// must decrypt those and answer requests by encrypting the data.
|
|
type encryptedModel struct {
|
|
model rawModel
|
|
folderKeys *folderKeyRegistry
|
|
keyGen *KeyGenerator
|
|
}
|
|
|
|
func newEncryptedModel(model rawModel, folderKeys *folderKeyRegistry, keyGen *KeyGenerator) encryptedModel {
|
|
return encryptedModel{
|
|
model: model,
|
|
folderKeys: folderKeys,
|
|
keyGen: keyGen,
|
|
}
|
|
}
|
|
|
|
func (e encryptedModel) Index(idx *Index) error {
|
|
if folderKey, ok := e.folderKeys.get(idx.Folder); ok {
|
|
// incoming index data to be decrypted
|
|
if err := decryptFileInfos(e.keyGen, idx.Files, folderKey); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
return e.model.Index(idx)
|
|
}
|
|
|
|
func (e encryptedModel) IndexUpdate(idxUp *IndexUpdate) error {
|
|
if folderKey, ok := e.folderKeys.get(idxUp.Folder); ok {
|
|
// incoming index data to be decrypted
|
|
if err := decryptFileInfos(e.keyGen, idxUp.Files, folderKey); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
return e.model.IndexUpdate(idxUp)
|
|
}
|
|
|
|
func (e encryptedModel) Request(req *Request) (RequestResponse, error) {
|
|
folderKey, ok := e.folderKeys.get(req.Folder)
|
|
if !ok {
|
|
return e.model.Request(req)
|
|
}
|
|
|
|
// Figure out the real file name, offset and size from the encrypted /
|
|
// tweaked values.
|
|
|
|
realName, err := decryptName(req.Name, folderKey)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("decrypting name: %w", err)
|
|
}
|
|
realSize := req.Size - blockOverhead
|
|
realOffset := req.Offset - int64(req.BlockNo*blockOverhead)
|
|
|
|
if req.Size < minPaddedSize {
|
|
return nil, errors.New("short request")
|
|
}
|
|
|
|
// Attempt to decrypt the block hash; it may be nil depending on what
|
|
// type of device the request comes from. Trusted devices with
|
|
// encryption enabled know the hash but don't bother to encrypt & send
|
|
// it to us. Untrusted devices have the hash from the encrypted index
|
|
// data and do send it. The model knows to only verify the hash if it
|
|
// actually gets one.
|
|
|
|
var realHash []byte
|
|
fileKey := e.keyGen.FileKey(realName, folderKey)
|
|
if len(req.Hash) > 0 {
|
|
var additional [8]byte
|
|
binary.BigEndian.PutUint64(additional[:], uint64(realOffset))
|
|
realHash, err = decryptDeterministic(req.Hash, fileKey, additional[:])
|
|
if err != nil {
|
|
// "Legacy", no offset additional data?
|
|
realHash, err = decryptDeterministic(req.Hash, fileKey, nil)
|
|
}
|
|
if err != nil {
|
|
return nil, fmt.Errorf("decrypting block hash: %w", err)
|
|
}
|
|
}
|
|
|
|
// Perform that request and grab the data.
|
|
|
|
req.Name = realName
|
|
req.Size = realSize
|
|
req.Offset = realOffset
|
|
req.Hash = realHash
|
|
resp, err := e.model.Request(req)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Encrypt the response. Blocks smaller than minPaddedSize are padded
|
|
// with random data.
|
|
|
|
data := resp.Data()
|
|
if len(data) < minPaddedSize {
|
|
nd := make([]byte, minPaddedSize)
|
|
copy(nd, data)
|
|
if _, err := rand.Read(nd[len(data):]); err != nil {
|
|
panic("catastrophic randomness failure")
|
|
}
|
|
data = nd
|
|
}
|
|
enc := encryptBytes(data, fileKey)
|
|
resp.Close()
|
|
return rawResponse{enc}, nil
|
|
}
|
|
|
|
func (e encryptedModel) DownloadProgress(p *DownloadProgress) error {
|
|
if _, ok := e.folderKeys.get(p.Folder); !ok {
|
|
return e.model.DownloadProgress(p)
|
|
}
|
|
|
|
// Encrypted devices shouldn't send these - ignore them.
|
|
return nil
|
|
}
|
|
|
|
func (e encryptedModel) ClusterConfig(config *ClusterConfig) error {
|
|
return e.model.ClusterConfig(config)
|
|
}
|
|
|
|
func (e encryptedModel) Closed(err error) {
|
|
e.model.Closed(err)
|
|
}
|
|
|
|
// The encryptedConnection sits between the model and the encrypted device. It
|
|
// encrypts outgoing metadata and decrypts incoming responses.
|
|
type encryptedConnection struct {
|
|
ConnectionInfo
|
|
conn *rawConnection
|
|
folderKeys *folderKeyRegistry
|
|
keyGen *KeyGenerator
|
|
}
|
|
|
|
func newEncryptedConnection(ci ConnectionInfo, conn *rawConnection, folderKeys *folderKeyRegistry, keyGen *KeyGenerator) encryptedConnection {
|
|
return encryptedConnection{
|
|
ConnectionInfo: ci,
|
|
conn: conn,
|
|
folderKeys: folderKeys,
|
|
keyGen: keyGen,
|
|
}
|
|
}
|
|
|
|
func (e encryptedConnection) Start() {
|
|
e.conn.Start()
|
|
}
|
|
|
|
func (e encryptedConnection) SetFolderPasswords(passwords map[string]string) {
|
|
e.folderKeys.setPasswords(passwords)
|
|
}
|
|
|
|
func (e encryptedConnection) DeviceID() DeviceID {
|
|
return e.conn.DeviceID()
|
|
}
|
|
|
|
func (e encryptedConnection) Index(ctx context.Context, idx *Index) error {
|
|
if folderKey, ok := e.folderKeys.get(idx.Folder); ok {
|
|
encryptFileInfos(e.keyGen, idx.Files, folderKey)
|
|
}
|
|
return e.conn.Index(ctx, idx)
|
|
}
|
|
|
|
func (e encryptedConnection) IndexUpdate(ctx context.Context, idxUp *IndexUpdate) error {
|
|
if folderKey, ok := e.folderKeys.get(idxUp.Folder); ok {
|
|
encryptFileInfos(e.keyGen, idxUp.Files, folderKey)
|
|
}
|
|
return e.conn.IndexUpdate(ctx, idxUp)
|
|
}
|
|
|
|
func (e encryptedConnection) Request(ctx context.Context, req *Request) ([]byte, error) {
|
|
folderKey, ok := e.folderKeys.get(req.Folder)
|
|
if !ok {
|
|
return e.conn.Request(ctx, req)
|
|
}
|
|
fileKey := e.keyGen.FileKey(req.Name, folderKey)
|
|
|
|
// Encrypt / adjust the request parameters.
|
|
|
|
encSize := req.Size
|
|
if encSize < minPaddedSize {
|
|
// Make a request for minPaddedSize data instead of the smaller
|
|
// block. We'll chop of the extra data later.
|
|
encSize = minPaddedSize
|
|
}
|
|
encSize += blockOverhead
|
|
encName := encryptName(req.Name, folderKey)
|
|
encOffset := req.Offset + int64(req.BlockNo*blockOverhead)
|
|
encHash := encryptBlockHash(req.Hash, req.Offset, fileKey)
|
|
|
|
// Perform that request, getting back an encrypted block.
|
|
|
|
encReq := &Request{
|
|
ID: req.ID,
|
|
Folder: req.Folder,
|
|
Name: encName,
|
|
Offset: encOffset,
|
|
Size: encSize,
|
|
Hash: encHash,
|
|
BlockNo: req.BlockNo,
|
|
}
|
|
bs, err := e.conn.Request(ctx, encReq)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Return the decrypted block (or an error if it fails decryption)
|
|
|
|
bs, err = DecryptBytes(bs, fileKey)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
return bs[:req.Size], nil
|
|
}
|
|
|
|
func (e encryptedConnection) DownloadProgress(ctx context.Context, dp *DownloadProgress) {
|
|
if _, ok := e.folderKeys.get(dp.Folder); !ok {
|
|
e.conn.DownloadProgress(ctx, dp)
|
|
}
|
|
|
|
// No need to send these
|
|
}
|
|
|
|
func (e encryptedConnection) ClusterConfig(config *ClusterConfig) {
|
|
e.conn.ClusterConfig(config)
|
|
}
|
|
|
|
func (e encryptedConnection) Close(err error) {
|
|
e.conn.Close(err)
|
|
}
|
|
|
|
func (e encryptedConnection) Closed() <-chan struct{} {
|
|
return e.conn.Closed()
|
|
}
|
|
|
|
func (e encryptedConnection) Statistics() Statistics {
|
|
return e.conn.Statistics()
|
|
}
|
|
|
|
func encryptFileInfos(keyGen *KeyGenerator, files []FileInfo, folderKey *[keySize]byte) {
|
|
for i, fi := range files {
|
|
files[i] = encryptFileInfo(keyGen, fi, folderKey)
|
|
}
|
|
}
|
|
|
|
// encryptFileInfo encrypts a FileInfo and wraps it into a new fake FileInfo
|
|
// with an encrypted name.
|
|
func encryptFileInfo(keyGen *KeyGenerator, fi FileInfo, folderKey *[keySize]byte) FileInfo {
|
|
fileKey := keyGen.FileKey(fi.Name, folderKey)
|
|
|
|
// The entire FileInfo is encrypted with a random nonce, and concatenated
|
|
// with that nonce.
|
|
|
|
bs, err := proto.Marshal(fi.ToWire(false))
|
|
if err != nil {
|
|
panic("impossible serialization mishap: " + err.Error())
|
|
}
|
|
encryptedFI := encryptBytes(bs, fileKey)
|
|
|
|
// The vector is set to something that is higher than any other version sent
|
|
// previously. We do this because
|
|
// there is no way for the insecure device on the other end to do proper
|
|
// conflict resolution, so they will simply accept and keep whatever is the
|
|
// latest version they see. The secure devices will decrypt the real
|
|
// FileInfo, see the real Version, and act appropriately regardless of what
|
|
// this fake version happens to be.
|
|
// The vector also needs to be deterministic/the same among all trusted
|
|
// devices with the same vector, such that the pulling/remote completion
|
|
// works correctly on the untrusted device(s).
|
|
|
|
version := Vector{
|
|
Counters: []Counter{
|
|
{
|
|
ID: 1,
|
|
},
|
|
},
|
|
}
|
|
for _, counter := range fi.Version.Counters {
|
|
version.Counters[0].Value += counter.Value
|
|
}
|
|
|
|
// Construct the fake block list. Each block will be blockOverhead bytes
|
|
// larger than the corresponding real one and have an encrypted hash.
|
|
// Very small blocks will be padded upwards to minPaddedSize.
|
|
//
|
|
// The encrypted hash becomes just a "token" for the data -- it doesn't
|
|
// help verifying it, but it lets the encrypted device do block level
|
|
// diffs and data reuse properly when it gets a new version of a file.
|
|
|
|
var offset int64
|
|
blocks := make([]BlockInfo, len(fi.Blocks))
|
|
for i, b := range fi.Blocks {
|
|
if b.Size < minPaddedSize {
|
|
b.Size = minPaddedSize
|
|
}
|
|
size := b.Size + blockOverhead
|
|
hash := encryptBlockHash(b.Hash, b.Offset, fileKey)
|
|
blocks[i] = BlockInfo{
|
|
Hash: hash,
|
|
Offset: offset,
|
|
Size: size,
|
|
}
|
|
offset += int64(size)
|
|
}
|
|
|
|
// Construct the fake FileInfo. This is mostly just a wrapper around the
|
|
// encrypted FileInfo and fake block list. We'll represent symlinks as
|
|
// directories, because they need some sort of on disk representation
|
|
// but have no data outside of the metadata. Deletion and sequence
|
|
// numbering are handled as usual.
|
|
|
|
typ := FileInfoTypeFile
|
|
if fi.Type != FileInfoTypeFile {
|
|
typ = FileInfoTypeDirectory
|
|
}
|
|
enc := FileInfo{
|
|
Name: encryptName(fi.Name, folderKey),
|
|
Type: typ,
|
|
Permissions: 0o644,
|
|
ModifiedS: 1234567890, // Sat Feb 14 00:31:30 CET 2009
|
|
Deleted: fi.Deleted,
|
|
RawInvalid: fi.IsInvalid(),
|
|
Version: version,
|
|
Sequence: fi.Sequence,
|
|
Encrypted: encryptedFI,
|
|
}
|
|
if typ == FileInfoTypeFile {
|
|
enc.Size = offset // new total file size
|
|
enc.Blocks = blocks
|
|
enc.RawBlockSize = int32(fi.BlockSize() + blockOverhead)
|
|
}
|
|
|
|
return enc
|
|
}
|
|
|
|
func encryptBlockHash(hash []byte, offset int64, fileKey *[keySize]byte) []byte {
|
|
// The offset goes into the encrypted block hash as additional data,
|
|
// essentially mixing in with the nonce. This means a block hash
|
|
// remains stable for the same data at the same offset, but doesn't
|
|
// reveal the existence of identical data blocks at other offsets.
|
|
var additional [8]byte
|
|
binary.BigEndian.PutUint64(additional[:], uint64(offset))
|
|
return encryptDeterministic(hash, fileKey, additional[:])
|
|
}
|
|
|
|
func decryptFileInfos(keyGen *KeyGenerator, files []FileInfo, folderKey *[keySize]byte) error {
|
|
for i, fi := range files {
|
|
decFI, err := DecryptFileInfo(keyGen, fi, folderKey)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
files[i] = decFI
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// DecryptFileInfo extracts the encrypted portion of a FileInfo, decrypts it
|
|
// and returns that.
|
|
func DecryptFileInfo(keyGen *KeyGenerator, fi FileInfo, folderKey *[keySize]byte) (FileInfo, error) {
|
|
realName, err := decryptName(fi.Name, folderKey)
|
|
if err != nil {
|
|
return FileInfo{}, err
|
|
}
|
|
|
|
fileKey := keyGen.FileKey(realName, folderKey)
|
|
dec, err := DecryptBytes(fi.Encrypted, fileKey)
|
|
if err != nil {
|
|
return FileInfo{}, err
|
|
}
|
|
|
|
var decFI bep.FileInfo
|
|
if err := proto.Unmarshal(dec, &decFI); err != nil {
|
|
return FileInfo{}, err
|
|
}
|
|
|
|
// Preserve sequence, which is legitimately controlled by the untrusted device
|
|
decFI.Sequence = fi.Sequence
|
|
|
|
return FileInfoFromWire(&decFI), nil
|
|
}
|
|
|
|
var base32Hex = base32.HexEncoding.WithPadding(base32.NoPadding)
|
|
|
|
// encryptName encrypts the given string in a deterministic manner (the
|
|
// result is always the same for any given string) and encodes it in a
|
|
// filesystem-friendly manner.
|
|
func encryptName(name string, key *[keySize]byte) string {
|
|
enc := encryptDeterministic([]byte(name), key, nil)
|
|
return slashify(base32Hex.EncodeToString(enc))
|
|
}
|
|
|
|
// decryptName decrypts a string from encryptName
|
|
func decryptName(name string, key *[keySize]byte) (string, error) {
|
|
name, err := deslashify(name)
|
|
if err != nil {
|
|
return "", err
|
|
}
|
|
bs, err := base32Hex.DecodeString(name)
|
|
if err != nil {
|
|
return "", err
|
|
}
|
|
dec, err := decryptDeterministic(bs, key, nil)
|
|
if err != nil {
|
|
return "", err
|
|
}
|
|
|
|
return string(dec), nil
|
|
}
|
|
|
|
// encryptBytes encrypts bytes with a random nonce
|
|
func encryptBytes(data []byte, key *[keySize]byte) []byte {
|
|
nonce := randomNonce()
|
|
return encrypt(data, nonce, key)
|
|
}
|
|
|
|
// encryptDeterministic encrypts bytes using AES-SIV
|
|
func encryptDeterministic(data []byte, key *[keySize]byte, additionalData []byte) []byte {
|
|
aead, err := miscreant.NewAEAD(miscreantAlgo, key[:], 0)
|
|
if err != nil {
|
|
panic("cipher failure: " + err.Error())
|
|
}
|
|
return aead.Seal(nil, nil, data, additionalData)
|
|
}
|
|
|
|
// decryptDeterministic decrypts bytes using AES-SIV
|
|
func decryptDeterministic(data []byte, key *[keySize]byte, additionalData []byte) ([]byte, error) {
|
|
aead, err := miscreant.NewAEAD(miscreantAlgo, key[:], 0)
|
|
if err != nil {
|
|
panic("cipher failure: " + err.Error())
|
|
}
|
|
return aead.Open(nil, nil, data, additionalData)
|
|
}
|
|
|
|
func encrypt(data []byte, nonce *[nonceSize]byte, key *[keySize]byte) []byte {
|
|
aead, err := chacha20poly1305.NewX(key[:])
|
|
if err != nil {
|
|
// Can only fail if the key is the wrong length
|
|
panic("cipher failure: " + err.Error())
|
|
}
|
|
|
|
if aead.NonceSize() != nonceSize || aead.Overhead() != tagSize {
|
|
// We want these values to be constant for our type declarations so
|
|
// we don't use the values returned by the GCM, but we verify them
|
|
// here.
|
|
panic("crypto parameter mismatch")
|
|
}
|
|
|
|
// Data is appended to the nonce
|
|
return aead.Seal(nonce[:], nonce[:], data, nil)
|
|
}
|
|
|
|
// DecryptBytes returns the decrypted bytes, or an error if decryption
|
|
// failed.
|
|
func DecryptBytes(data []byte, key *[keySize]byte) ([]byte, error) {
|
|
if len(data) < blockOverhead {
|
|
return nil, errors.New("data too short")
|
|
}
|
|
|
|
aead, err := chacha20poly1305.NewX(key[:])
|
|
if err != nil {
|
|
// Can only fail if the key is the wrong length
|
|
panic("cipher failure: " + err.Error())
|
|
}
|
|
|
|
if aead.NonceSize() != nonceSize || aead.Overhead() != tagSize {
|
|
// We want these values to be constant for our type declarations so
|
|
// we don't use the values returned by the GCM, but we verify them
|
|
// here.
|
|
panic("crypto parameter mismatch")
|
|
}
|
|
|
|
return aead.Open(nil, data[:nonceSize], data[nonceSize:], nil)
|
|
}
|
|
|
|
// randomNonce is a normal, cryptographically random nonce
|
|
func randomNonce() *[nonceSize]byte {
|
|
var nonce [nonceSize]byte
|
|
if _, err := rand.Read(nonce[:]); err != nil {
|
|
panic("catastrophic randomness failure: " + err.Error())
|
|
}
|
|
return &nonce
|
|
}
|
|
|
|
// keysFromPasswords converts a set of folder ID to password into a set of
|
|
// folder ID to encryption key, using our key derivation function.
|
|
func keysFromPasswords(keyGen *KeyGenerator, passwords map[string]string) map[string]*[keySize]byte {
|
|
res := make(map[string]*[keySize]byte, len(passwords))
|
|
for folder, password := range passwords {
|
|
res[folder] = keyGen.KeyFromPassword(folder, password)
|
|
}
|
|
return res
|
|
}
|
|
|
|
func knownBytes(folderID string) []byte {
|
|
return []byte("syncthing" + folderID)
|
|
}
|
|
|
|
type KeyGenerator struct {
|
|
mut sync.Mutex
|
|
folderKeys *lru.TwoQueueCache[folderKeyCacheKey, *[keySize]byte]
|
|
fileKeys *lru.TwoQueueCache[fileKeyCacheKey, *[keySize]byte]
|
|
}
|
|
|
|
func NewKeyGenerator() *KeyGenerator {
|
|
folderKeys, _ := lru.New2Q[folderKeyCacheKey, *[keySize]byte](folderKeyCacheEntries)
|
|
fileKeys, _ := lru.New2Q[fileKeyCacheKey, *[keySize]byte](fileKeyCacheEntries)
|
|
return &KeyGenerator{
|
|
folderKeys: folderKeys,
|
|
fileKeys: fileKeys,
|
|
}
|
|
}
|
|
|
|
type folderKeyCacheKey struct {
|
|
folderID string
|
|
password string
|
|
}
|
|
|
|
// KeyFromPassword uses key derivation to generate a stronger key from a
|
|
// probably weak password.
|
|
func (g *KeyGenerator) KeyFromPassword(folderID, password string) *[keySize]byte {
|
|
cacheKey := folderKeyCacheKey{folderID, password}
|
|
g.mut.Lock()
|
|
defer g.mut.Unlock()
|
|
if key, ok := g.folderKeys.Get(cacheKey); ok {
|
|
return key
|
|
}
|
|
bs, err := scrypt.Key([]byte(password), knownBytes(folderID), 32768, 8, 1, keySize)
|
|
if err != nil {
|
|
panic("key derivation failure: " + err.Error())
|
|
}
|
|
if len(bs) != keySize {
|
|
panic("key derivation failure: wrong number of bytes")
|
|
}
|
|
var key [keySize]byte
|
|
copy(key[:], bs)
|
|
g.folderKeys.Add(cacheKey, &key)
|
|
return &key
|
|
}
|
|
|
|
var hkdfSalt = []byte("syncthing")
|
|
|
|
type fileKeyCacheKey struct {
|
|
file string
|
|
key [keySize]byte
|
|
}
|
|
|
|
func (g *KeyGenerator) FileKey(filename string, folderKey *[keySize]byte) *[keySize]byte {
|
|
g.mut.Lock()
|
|
defer g.mut.Unlock()
|
|
cacheKey := fileKeyCacheKey{filename, *folderKey}
|
|
if key, ok := g.fileKeys.Get(cacheKey); ok {
|
|
return key
|
|
}
|
|
kdf := hkdf.New(sha256.New, append(folderKey[:], filename...), hkdfSalt, nil)
|
|
var fileKey [keySize]byte
|
|
n, err := io.ReadFull(kdf, fileKey[:])
|
|
if err != nil || n != keySize {
|
|
panic("hkdf failure")
|
|
}
|
|
g.fileKeys.Add(cacheKey, &fileKey)
|
|
return &fileKey
|
|
}
|
|
|
|
func PasswordToken(keyGen *KeyGenerator, folderID, password string) []byte {
|
|
return encryptDeterministic(knownBytes(folderID), keyGen.KeyFromPassword(folderID, password), nil)
|
|
}
|
|
|
|
// slashify inserts slashes (and file extension) in the string to create an
|
|
// appropriate tree. ABCDEFGH... => A.syncthing-enc/BC/DEFGH... We can use
|
|
// forward slashes here because we're on the outside of native path formats,
|
|
// the slash is the wire format.
|
|
func slashify(s string) string {
|
|
// We somewhat sloppily assume bytes == characters here, but the only
|
|
// file names we should deal with are those that come from our base32
|
|
// encoding.
|
|
|
|
comps := make([]string, 0, len(s)/maxPathComponent+3)
|
|
comps = append(comps, s[:1]+encryptedDirExtension)
|
|
s = s[1:]
|
|
comps = append(comps, s[:2])
|
|
s = s[2:]
|
|
|
|
for len(s) > maxPathComponent {
|
|
comps = append(comps, s[:maxPathComponent])
|
|
s = s[maxPathComponent:]
|
|
}
|
|
if len(s) > 0 {
|
|
comps = append(comps, s)
|
|
}
|
|
return strings.Join(comps, "/")
|
|
}
|
|
|
|
// deslashify removes slashes and encrypted file extensions from the string.
|
|
// This is the inverse of slashify().
|
|
func deslashify(s string) (string, error) {
|
|
if s == "" || !strings.HasPrefix(s[1:], encryptedDirExtension) {
|
|
return "", fmt.Errorf("invalid encrypted path: %q", s)
|
|
}
|
|
s = s[:1] + s[1+len(encryptedDirExtension):]
|
|
return strings.ReplaceAll(s, "/", ""), nil
|
|
}
|
|
|
|
type rawResponse struct {
|
|
data []byte
|
|
}
|
|
|
|
func (r rawResponse) Data() []byte {
|
|
return r.data
|
|
}
|
|
|
|
func (rawResponse) Close() {}
|
|
func (rawResponse) Wait() {}
|
|
|
|
// IsEncryptedParent returns true if the path points at a parent directory of
|
|
// encrypted data, i.e. is not a "real" directory. This is determined by
|
|
// checking for a sentinel string in the path.
|
|
func IsEncryptedParent(pathComponents []string) bool {
|
|
l := len(pathComponents)
|
|
if l == 2 && len(pathComponents[1]) != 2 {
|
|
return false
|
|
} else if l == 0 {
|
|
return false
|
|
}
|
|
if pathComponents[0] == "" {
|
|
return false
|
|
}
|
|
if pathComponents[0][1:] != encryptedDirExtension {
|
|
return false
|
|
}
|
|
if l < 2 {
|
|
return true
|
|
}
|
|
for _, comp := range pathComponents[2:] {
|
|
if len(comp) != maxPathComponent {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
type folderKeyRegistry struct {
|
|
keyGen *KeyGenerator
|
|
keys map[string]*[keySize]byte // folder ID -> key
|
|
mut sync.RWMutex
|
|
}
|
|
|
|
func newFolderKeyRegistry(keyGen *KeyGenerator, passwords map[string]string) *folderKeyRegistry {
|
|
return &folderKeyRegistry{
|
|
keyGen: keyGen,
|
|
keys: keysFromPasswords(keyGen, passwords),
|
|
}
|
|
}
|
|
|
|
func (r *folderKeyRegistry) get(folder string) (*[keySize]byte, bool) {
|
|
r.mut.RLock()
|
|
key, ok := r.keys[folder]
|
|
r.mut.RUnlock()
|
|
return key, ok
|
|
}
|
|
|
|
func (r *folderKeyRegistry) setPasswords(passwords map[string]string) {
|
|
r.mut.Lock()
|
|
r.keys = keysFromPasswords(r.keyGen, passwords)
|
|
r.mut.Unlock()
|
|
}
|