Jakob Borg 916ec63af6 cmd/stdiscosrv: New discovery server (fixes #4618)
This is a new revision of the discovery server. Relevant changes and
non-changes:

- Protocol towards clients is unchanged.

- Recommended large scale design is still to be deployed nehind nginx (I
  tested, and it's still a lot faster at terminating TLS).

- Database backend is leveldb again, only. It scales enough, is easy to
  setup, and we don't need any backend to take care of.

- Server supports replication. This is a simple TCP channel - protect it
  with a firewall when deploying over the internet. (We deploy this within
  the same datacenter, and with firewall.) Any incoming client announces
  are sent over the replication channel(s) to other peer discosrvs.
  Incoming replication changes are applied to the database as if they came
  from clients, but without the TLS/certificate overhead.

- Metrics are exposed using the prometheus library, when enabled.

- The database values and replication protocol is protobuf, because JSON
  was quite CPU intensive when I tried that and benchmarked it.

- The "Retry-After" value for failed lookups gets slowly increased from
  a default of 120 seconds, by 5 seconds for each failed lookup,
  independently by each discosrv. This lowers the query load over time for
  clients that are never seen. The Retry-After maxes out at 3600 after a
  couple of weeks of this increase. The number of failed lookups is
  stored in the database, now and then (avoiding making each lookup a
  database put).

All in all this means clients can be pointed towards a cluster using
just multiple A / AAAA records to gain both load sharing and redundancy
(if one is down, clients will talk to the remaining ones).

GitHub-Pull-Request: https://github.com/syncthing/syncthing/pull/4648
2018-01-14 08:52:31 +00:00

569 lines
13 KiB
Go

package mark
import (
"regexp"
"strings"
"unicode/utf8"
)
// type position
type Pos int
// itemType identifies the type of lex items.
type itemType int
// Item represent a token or text string returned from the scanner
type item struct {
typ itemType // The type of this item.
pos Pos // The starting position, in bytes, of this item in the input string.
val string // The value of this item.
}
const eof = -1 // Zero value so closed channel delivers EOF
const (
itemError itemType = iota // Error occurred; value is text of error
itemEOF
itemNewLine
itemHTML
itemHeading
itemLHeading
itemBlockQuote
itemList
itemListItem
itemLooseItem
itemCodeBlock
itemGfmCodeBlock
itemHr
itemTable
itemLpTable
itemTableRow
itemTableCell
itemStrong
itemItalic
itemStrike
itemCode
itemLink
itemDefLink
itemRefLink
itemAutoLink
itemGfmLink
itemImage
itemRefImage
itemText
itemBr
itemPipe
itemIndent
)
// stateFn represents the state of the scanner as a function that returns the next state.
type stateFn func(*lexer) stateFn
// Lexer interface, used to composed it inside the parser
type Lexer interface {
nextItem() item
}
// lexer holds the state of the scanner.
type lexer struct {
input string // the string being scanned
state stateFn // the next lexing function to enter
pos Pos // current position in the input
start Pos // start position of this item
width Pos // width of last rune read from input
lastPos Pos // position of most recent item returned by nextItem
items chan item // channel of scanned items
}
// lex creates a new lexer for the input string.
func lex(input string) *lexer {
l := &lexer{
input: input,
items: make(chan item),
}
go l.run()
return l
}
// lexInline create a new lexer for one phase lexing(inline blocks).
func lexInline(input string) *lexer {
l := &lexer{
input: input,
items: make(chan item),
}
go l.lexInline()
return l
}
// run runs the state machine for the lexer.
func (l *lexer) run() {
for l.state = lexAny; l.state != nil; {
l.state = l.state(l)
}
close(l.items)
}
// next return the next rune in the input
func (l *lexer) next() rune {
if int(l.pos) >= len(l.input) {
l.width = 0
return eof
}
r, w := utf8.DecodeRuneInString(l.input[l.pos:])
l.width = Pos(w)
l.pos += l.width
return r
}
// lexAny scanner is kind of forwarder, it get the current char in the text
// and forward it to the appropriate scanner based on some conditions.
func lexAny(l *lexer) stateFn {
switch r := l.peek(); r {
case '*', '-', '_':
return lexHr
case '+', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9':
return lexList
case '<':
return lexHTML
case '>':
return lexBlockQuote
case '[':
return lexDefLink
case '#':
return lexHeading
case '`', '~':
return lexGfmCode
case ' ':
if reCodeBlock.MatchString(l.input[l.pos:]) {
return lexCode
} else if reGfmCode.MatchString(l.input[l.pos:]) {
return lexGfmCode
}
// Keep moving forward until we get all the indentation size
for ; r == l.peek(); r = l.next() {
}
l.emit(itemIndent)
return lexAny
case '|':
if m := reTable.itemLp.MatchString(l.input[l.pos:]); m {
l.emit(itemLpTable)
return lexTable
}
fallthrough
default:
if m := reTable.item.MatchString(l.input[l.pos:]); m {
l.emit(itemTable)
return lexTable
}
return lexText
}
}
// lexHeading test if the current text position is an heading item.
// is so, it will emit an item and return back to lenAny function
// else, lex it as a simple text value
func lexHeading(l *lexer) stateFn {
if m := reHeading.FindString(l.input[l.pos:]); m != "" {
l.pos += Pos(len(m))
l.emit(itemHeading)
return lexAny
}
return lexText
}
// lexHr test if the current text position is an horizontal rules item.
// is so, it will emit an horizontal rule item and return back to lenAny function
// else, forward it to lexList function
func lexHr(l *lexer) stateFn {
if match := reHr.FindString(l.input[l.pos:]); match != "" {
l.pos += Pos(len(match))
l.emit(itemHr)
return lexAny
}
return lexList
}
// lexGfmCode test if the current text position is start of GFM code-block item.
// if so, it will generate regexp based on the fence type[`~] and it length.
// it scan until the end, and then emit the code-block item and return back to the
// lenAny forwarder.
// else, lex it as a simple inline text.
func lexGfmCode(l *lexer) stateFn {
if match := reGfmCode.FindStringSubmatch(l.input[l.pos:]); len(match) != 0 {
l.pos += Pos(len(match[0]))
fence := match[2]
// Generate Regexp based on fence type[`~] and length
reGfmEnd := reGfmCode.endGen(fence[0:1], len(fence))
infoContainer := reGfmEnd.FindStringSubmatch(l.input[l.pos:])
l.pos += Pos(len(infoContainer[0]))
infoString := infoContainer[1]
// Remove leading and trailing spaces
if indent := len(match[1]); indent > 0 {
reSpace := reSpaceGen(indent)
infoString = reSpace.ReplaceAllString(infoString, "")
}
l.emit(itemGfmCodeBlock, match[0]+infoString)
return lexAny
}
return lexText
}
// lexCode scans code block.
func lexCode(l *lexer) stateFn {
match := reCodeBlock.FindString(l.input[l.pos:])
l.pos += Pos(len(match))
l.emit(itemCodeBlock)
return lexAny
}
// lexText scans until end-of-line(\n)
func lexText(l *lexer) stateFn {
// Drain text before emitting
emit := func(item itemType, pos Pos) {
if l.pos > l.start {
l.emit(itemText)
}
l.pos += pos
l.emit(item)
}
Loop:
for {
switch r := l.peek(); r {
case eof:
emit(itemEOF, Pos(0))
break Loop
case '\n':
// CM 4.4: An indented code block cannot interrupt a paragraph.
if l.pos > l.start && strings.HasPrefix(l.input[l.pos+1:], " ") {
l.next()
continue
}
emit(itemNewLine, l.width)
break Loop
default:
// Test for Setext-style headers
if m := reLHeading.FindString(l.input[l.pos:]); m != "" {
emit(itemLHeading, Pos(len(m)))
break Loop
}
l.next()
}
}
return lexAny
}
// backup steps back one rune. Can only be called once per call of next.
func (l *lexer) backup() {
l.pos -= l.width
}
// peek returns but does not consume the next rune in the input.
func (l *lexer) peek() rune {
r := l.next()
l.backup()
return r
}
// emit passes an item back to the client.
func (l *lexer) emit(t itemType, s ...string) {
if len(s) == 0 {
s = append(s, l.input[l.start:l.pos])
}
l.items <- item{t, l.start, s[0]}
l.start = l.pos
}
// lexItem return the next item token, called by the parser.
func (l *lexer) nextItem() item {
item := <-l.items
l.lastPos = l.pos
return item
}
// One phase lexing(inline reason)
func (l *lexer) lexInline() {
escape := regexp.MustCompile("^\\\\([\\`*{}\\[\\]()#+\\-.!_>~|])")
// Drain text before emitting
emit := func(item itemType, pos int) {
if l.pos > l.start {
l.emit(itemText)
}
l.pos += Pos(pos)
l.emit(item)
}
Loop:
for {
switch r := l.peek(); r {
case eof:
if l.pos > l.start {
l.emit(itemText)
}
break Loop
// backslash escaping
case '\\':
if m := escape.FindStringSubmatch(l.input[l.pos:]); len(m) != 0 {
if l.pos > l.start {
l.emit(itemText)
}
l.pos += Pos(len(m[0]))
l.emit(itemText, m[1])
break
}
fallthrough
case ' ':
if m := reBr.FindString(l.input[l.pos:]); m != "" {
// pos - length of new-line
emit(itemBr, len(m))
break
}
l.next()
case '_', '*', '~', '`':
input := l.input[l.pos:]
// Strong
if m := reStrong.FindString(input); m != "" {
emit(itemStrong, len(m))
break
}
// Italic
if m := reItalic.FindString(input); m != "" {
emit(itemItalic, len(m))
break
}
// Strike
if m := reStrike.FindString(input); m != "" {
emit(itemStrike, len(m))
break
}
// InlineCode
if m := reCode.FindString(input); m != "" {
emit(itemCode, len(m))
break
}
l.next()
// itemLink, itemImage, itemRefLink, itemRefImage
case '[', '!':
input := l.input[l.pos:]
if m := reLink.FindString(input); m != "" {
pos := len(m)
if r == '[' {
emit(itemLink, pos)
} else {
emit(itemImage, pos)
}
break
}
if m := reRefLink.FindString(input); m != "" {
pos := len(m)
if r == '[' {
emit(itemRefLink, pos)
} else {
emit(itemRefImage, pos)
}
break
}
l.next()
// itemAutoLink, htmlBlock
case '<':
if m := reAutoLink.FindString(l.input[l.pos:]); m != "" {
emit(itemAutoLink, len(m))
break
}
if match, res := l.matchHTML(l.input[l.pos:]); match {
emit(itemHTML, len(res))
break
}
l.next()
default:
if m := reGfmLink.FindString(l.input[l.pos:]); m != "" {
emit(itemGfmLink, len(m))
break
}
l.next()
}
}
close(l.items)
}
// lexHTML.
func lexHTML(l *lexer) stateFn {
if match, res := l.matchHTML(l.input[l.pos:]); match {
l.pos += Pos(len(res))
l.emit(itemHTML)
return lexAny
}
return lexText
}
// Test if the given input is match the HTML pattern(blocks only)
func (l *lexer) matchHTML(input string) (bool, string) {
if m := reHTML.comment.FindString(input); m != "" {
return true, m
}
if m := reHTML.item.FindStringSubmatch(input); len(m) != 0 {
el, name := m[0], m[1]
// if name is a span... is a text
if reHTML.span.MatchString(name) {
return false, ""
}
// if it's a self-closed html element, but not a itemAutoLink
if strings.HasSuffix(el, "/>") && !reAutoLink.MatchString(el) {
return true, el
}
if name == reHTML.CDATA_OPEN {
name = reHTML.CDATA_CLOSE
}
reEndTag := reHTML.endTagGen(name)
if m := reEndTag.FindString(input); m != "" {
return true, m
}
}
return false, ""
}
// lexDefLink scans link definition
func lexDefLink(l *lexer) stateFn {
if m := reDefLink.FindString(l.input[l.pos:]); m != "" {
l.pos += Pos(len(m))
l.emit(itemDefLink)
return lexAny
}
return lexText
}
// lexList scans ordered and unordered lists.
func lexList(l *lexer) stateFn {
match, items := l.matchList(l.input[l.pos:])
if !match {
return lexText
}
var space int
var typ itemType
for i, item := range items {
// Emit itemList on the first loop
if i == 0 {
l.emit(itemList, reList.marker.FindStringSubmatch(item)[1])
}
// Initialize each loop
typ = itemListItem
space = len(item)
l.pos += Pos(space)
item = reList.marker.ReplaceAllString(item, "")
// Indented
if strings.Contains(item, "\n ") {
space -= len(item)
reSpace := reSpaceGen(space)
item = reSpace.ReplaceAllString(item, "")
}
// If current is loose
for _, l := range reList.loose.FindAllString(item, -1) {
if len(strings.TrimSpace(l)) > 0 || i != len(items)-1 {
typ = itemLooseItem
break
}
}
// or previous
if typ != itemLooseItem && i > 0 && strings.HasSuffix(items[i-1], "\n\n") {
typ = itemLooseItem
}
l.emit(typ, strings.TrimSpace(item))
}
return lexAny
}
func (l *lexer) matchList(input string) (bool, []string) {
var res []string
reItem := reList.item
if !reItem.MatchString(input) {
return false, res
}
// First item
m := reItem.FindStringSubmatch(input)
item, depth := m[0], len(m[1])
input = input[len(item):]
// Loop over the input
for len(input) > 0 {
// Count new-lines('\n')
if m := reList.scanNewLine(input); m != "" {
item += m
input = input[len(m):]
if len(m) >= 2 || !reItem.MatchString(input) && !strings.HasPrefix(input, " ") {
break
}
}
// DefLink or hr
if reDefLink.MatchString(input) || reHr.MatchString(input) {
break
}
// It's list in the same depth
if m := reItem.FindStringSubmatch(input); len(m) > 0 && len(m[1]) == depth {
if item != "" {
res = append(res, item)
}
item = m[0]
input = input[len(item):]
} else {
m := reList.scanLine(input)
item += m
input = input[len(m):]
}
}
// Drain res
if item != "" {
res = append(res, item)
}
return true, res
}
// Test if the given input match blockquote
func (l *lexer) matchBlockQuote(input string) (bool, string) {
match := reBlockQuote.FindString(input)
if match == "" {
return false, match
}
lines := strings.Split(match, "\n")
for i, line := range lines {
// if line is a link-definition or horizontal role, we cut the match until this point
if reDefLink.MatchString(line) || reHr.MatchString(line) {
match = strings.Join(lines[0:i], "\n")
break
}
}
return true, match
}
// lexBlockQuote
func lexBlockQuote(l *lexer) stateFn {
if match, res := l.matchBlockQuote(l.input[l.pos:]); match {
l.pos += Pos(len(res))
l.emit(itemBlockQuote)
return lexAny
}
return lexText
}
// lexTable
func lexTable(l *lexer) stateFn {
re := reTable.item
if l.peek() == '|' {
re = reTable.itemLp
}
table := re.FindStringSubmatch(l.input[l.pos:])
l.pos += Pos(len(table[0]))
l.start = l.pos
// Ignore the first match, and flat all rows(by splitting \n)
rows := append(table[1:3], strings.Split(table[3], "\n")...)
for _, row := range rows {
if row == "" {
continue
}
l.emit(itemTableRow)
rawCells := reTable.trim(row, "")
cells := reTable.split(rawCells, -1)
// Emit cells in the current row
for _, cell := range cells {
l.emit(itemTableCell, cell)
}
}
return lexAny
}